
Section 7 Gaussian Discriminant Analysis

Math 7243-Machine Learning and Statistical Learning Theory – He Wang

1. Gaussian Discriminant Analysis
2. Review Gaussian distribution
3. Linear Discriminant Analysis (LDA)
4. LDA v.s. Logistics regression



𝐷 = �⃗� ! , 𝑦 ! , 𝑖 = 1, …𝑛

Classification Data:

𝑦 ! ∈ 1,2, … , 𝐾 ,

Goal: Find conditional (posterior) probability 

𝑃 𝑌 = 𝑘 �⃗� = �⃗�) for 𝑘 = 1, 2, … , 𝐾

Question: 



Ø Discriminative learning algorithms. 

Ø Generative learning algorithms.

• Based on a model of the conditional probability.

• Based on models of the distributions of the dataset:

𝑃 𝑌 = 𝑘 𝑋 = �⃗�): = 𝑠𝑜𝑚𝑒 𝑚𝑜𝑑𝑒𝑙

• Prior probability 𝑃(𝑌)
• Likelihood probability 𝑃(𝑋|𝑌 = 𝑘)

Examples: logistics/softmax, SVM,    

Examples:  Gauss discriminant analysis (GDA: 
LDA/QDA), Navis Bayes,  



By Bayes Rule: 

𝑃 𝑌 = 𝑘 𝑋 = �⃗�) =
𝑃 𝑋 = �⃗� 𝑌 = 𝑘)𝑃(𝑌 = 𝑘)

∑"## ! 𝑃 𝑋 = �⃗� 𝑌 = 𝑖)𝑃(𝑌 = 𝑖)

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒

=
𝑃 𝑋 = �⃗� 𝑌 = 𝑘)𝑃(𝑌 = 𝑘)

𝑃(𝑋 = �⃗�)

argmax
$

𝑃 𝑌 = 𝑘 𝑋 = �⃗�) = argmax
$

𝑃 𝑋 = �⃗� 𝑌 = 𝑘)𝑃(𝑌 = 𝑘)

Ø Gauss discriminant analysis



• Prior probability 𝑃(𝑌)

Ø Gaussian Discriminant Analysis (GDA) assumptions

• Likelihood probability 𝑃(𝑋|𝑌 = 𝑘)

Assume 𝑌 ∽ Bernouli 𝜙 or Categorical(𝜙%, … , 𝜙&)

Assume 𝑋|𝑌 = 𝑘 is a normal distribution for each k.



• Binary Classification 𝑦 ∈ {0,1}

Assume 𝑌 ∽ Bernouli 𝜙

Pdf function 𝑝 𝑦 = 𝜙$ 1 − 𝜙 %'$ = [𝜙 𝑖𝑓 𝑦 = 1
1 − 𝜙 𝑖𝑓 𝑦 = 0

• Multiclass Classification 𝑦 ∈ {1,2, … , 𝐾}

Assume 𝑌 ∽ Categorical(𝜙%, … , 𝜙&) such that 𝜙% +⋯+ 𝜙& = 1

Pdf function 𝑝 𝑦 = 𝜙%
𝕀(*+%)𝜙-

𝕀(*+-)… 𝜙&
𝕀(*+.)



Ø Normal (Gaussian) distribution (single variable).

• The mean of X is 𝐸 𝑋 = 𝜇

• The variance of X is 𝑉𝑎𝑟 𝑋 = 𝜎-

Random variable 𝑋~ Normal(𝜇, 𝜎-)

• The probability density function (pdf) for X is

𝑓/ 𝑥 =
1
2𝜋 𝜎

𝑒'
%
-
0'1
2

!

−∞ < 𝑥 < ∞

𝑃 𝑎 < 𝑋 < 𝑏 = i
"

3
𝑓/ 𝑥 𝑑𝑥

• Probability



Ø Multivariate normal distribution.

𝑓/ �⃗� =
1

2𝜋 4 Σ
exp −

1
2 �⃗� − �⃗� 5Σ'% �⃗� − �⃗�

Vector random variable �⃗� =
𝑋!
⋮
𝑋"

~ Normal(�⃗�, Σ)

Here �⃗� ∈ ℝ4 and Σ is an 𝑑×𝑑 symmetric, positive definite matrix.

• The joint probability density function (pdf) for 𝑋 is
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𝑓/ �⃗� 𝑑�⃗� = 1



• The mean vector of 𝑋 is 𝐸 𝑋 = �⃗�

• The (co)variance matrix is Cov(𝑋)= Σ

Standard normal Compressed Spread-out





See more the probability review or Chapter 2“Pattern Recognition and Machine Learning”-Chris Bishop 



Ø Gaussian (Linear) Discriminant Analysis (LDA).

𝐷 = �⃗� ! , 𝑦 ! , 𝑖 = 1, …𝑛Binary Classification Data: 𝑦 ! ∈ 0,1 ,

Goal: Find conditional (posterior) probability 

𝑃 𝑌 = 𝑘 �⃗� = �⃗�) for 𝑘 = 0,1

𝑃 𝑋 = �⃗� 𝑌 = 𝑘)

GDA Method: We need to find

𝑃(𝑌 = 𝑘)

Assume 𝑌 ∽ Bernouli 𝜙

Assume 𝑋 |𝑌 = 0 ∽ Normal(�⃗�7, Σ7)

𝑋 |𝑌 = 1 ∽ Normal(�⃗�%, Σ%)

LDA Assume: Σ7 = Σ% = Σ



𝑝(𝑋|𝑌 = 0) =
1

2𝜋 4 Σ
exp −

1
2 �⃗� − �⃗�7 5Σ'% �⃗� − �⃗�7

𝑝(𝑋|𝑌 = 1) =
1

2𝜋 4 Σ
exp −

1
2 �⃗� − �⃗�% 5Σ'% �⃗� − �⃗�%

𝑝8 𝑦 = 𝜙$ 1 − 𝜙 %'$

pdf functions: 

Given data 𝐷 = �⃗� ! , 𝑦 ! , 𝑖 = 1, …𝑛 , we want to maximize likelihood

)𝑃(data) = 𝑃(𝑿, 𝒚 =p
!+%

9

𝑃 𝑋 = �⃗�(!), 𝑌 = 𝑦(!)



Equivalently, we maximize likelihood

𝐿 𝜙, �⃗�7, �⃗�%, Σ =p
!+%

9

𝑝 𝑋 = �⃗�(!) | 𝑌 = 𝑦(!) 𝑝8(𝑦(!))

Equivalently, we maximize log likelihood

𝑙 𝜙, �⃗�7, �⃗�%, Σ = log 𝐿 𝜙, �⃗�7, �⃗�%, Σ

=q
!+%

9

log 𝑝 𝑋 = �⃗� ! r 𝑌 = 𝑦 ! + log 𝑝8 𝑦(!)

Calculate ∇ 𝑙 𝜙, �⃗�7, �⃗�%, Σ = 0 and find critical points.  (Practice.) 



𝜙 =
1
𝑛q
!+%

9

𝕝(𝑦 ! = 1)

Σ =
1

𝑛 − 2
q
!+%

9

�⃗� ! − �⃗�$ " �⃗� ! − �⃗�$ "
5

�⃗�7 =
∑!+%9 𝕝 𝑦 ! = 0 �⃗�(!)

∑!+%9 𝕝(𝑦 ! = 0)

�⃗�% =
∑!+%9 𝕝 𝑦 ! = 1 �⃗� !

∑!+%9 𝕝 𝑦 ! = 1

We obtain formulas for the parameters maximizing the likelihood: 

Maximum Likelihood estimates:



𝑝 𝑌 = 𝑘 𝑋 = �⃗�) =
𝑝 𝑋 = �⃗� 𝑌 = 𝑘)𝑝8 𝑘

∑"## ! 𝑝 𝑋 = �⃗� 𝑌 = 𝑖)𝑝8 𝑖

We have the formulas for the conditional pdf of 𝑌 give𝑛 𝑋 = �⃗�

𝑝(𝑋 = �⃗�|𝑌 = 0) =
1

2𝜋 4 Σ
exp −

1
2 �⃗� − �⃗�7 5Σ'% �⃗� − �⃗�7

𝑝(𝑋 = �⃗�|𝑌 = 1) =
1

2𝜋 4 Σ
exp −

1
2 �⃗� − �⃗�% 5Σ'% �⃗� − �⃗�%

𝑝8 𝑘 = 𝜙: 1 − 𝜙 %':

We have the optimal distribution models with pdf functions:  



We can find the level curves of the distributions and the boundary: 

On boundary points �⃗�, we have

So, 
log

v𝑝 𝑌 = 0 𝑋 = �⃗�
v𝑝 𝑌 = 1 𝑋 = �⃗�
= 0

𝑝 𝑌 = 0 𝑋 = �⃗�) = 𝑝 𝑌 = 1 𝑋 = �⃗�)



𝑝 𝑌 = 𝑘 𝑋 = �⃗�) =
𝑝 𝑋 = �⃗� 𝑌 = 𝑘)𝑝8 𝑘

𝑝(𝑋 = �⃗�)

log 𝑝 𝑌 = 𝑘 𝑋 = �⃗�) = log 𝑝 𝑋 = �⃗� 𝑌 = 𝑘) + log 𝑝8 𝑘 − log 𝑝(𝑋 = �⃗�)

= −
1
2 log Σ: −

1
2 �⃗� − �⃗�: 5𝛴:'% �⃗� − �⃗�: + log𝜙: + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

LDA assumption:
Σ7 = Σ% = Σ = �⃗�5𝛴'%�⃗�: −

1
2 �⃗�:

5𝛴'%�⃗�: + log𝜙: + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Linear discriminant function 𝛿:(�⃗�)

Quadratic discriminant function 𝛿:
;(�⃗�)



log v𝑝 𝑌 = 0 𝑋 = �⃗� = log v𝑝 𝑌 = 1 𝑋 = �⃗�

Boundary formula 

• LDA boundary Equivalent to  

�⃗�5𝛴'%�⃗�7 −
1
2 �⃗�7

5𝛴'%�⃗�7 + log𝜙7 = �⃗�5𝛴'%�⃗�% −
1
2 �⃗�%

5𝛴'%�⃗�% + log𝜙%

𝛿7 �⃗� = 𝛿% (�⃗�)

• QDA boundary Equivalent to  

−
1
2 log Σ7 −

1
2 �⃗� − �⃗�7 5𝛴7'% �⃗� − �⃗�7 + log𝜙7 =

𝛿7
; �⃗� = 𝛿%

; (�⃗�)

−
1
2 log Σ% −

1
2 �⃗� − �⃗�% 5𝛴%'% �⃗� − �⃗�% + log𝜙%





Example from the book.

• The left plot shows some data from three classes, with linear decision 
boundaries found by linear discriminant analysis. 

• The right plot shows quadratic decision boundaries. These were obtained by 
finding linear boundaries in the five-dimensional space 𝑥% , 𝑥-, 𝑥%𝑥-, 𝑥%-, 𝑥-- . 
Linear inequalities in this space are quadratic inequalities in the original 
space.



• Two methods for fitting quadratic boundaries. 
• The left plot shows the quadratic decision boundaries for the data 

(obtained using LDA in the five-dimensional space 𝑥% , 𝑥-, 𝑥%𝑥-, 𝑥%-, 𝑥-- ). 
• The right plot shows the quadratic decision boundaries found by QDA. The 

differences are small, as is usually the case.



Ø Compare to Logistic regression

• When these modeling assumptions are correct, then GDA will be better fits to the 
data. 

• GDA will be a better algorithm than logistic regression for small training set sizes.

• logistic regression makes significantly weaker assumptions. So, it is more robust and 
less sensitive to incorrect modeling assumptions.

• GDA has closed formulas for the optimal points. Logistic regression need to use 
gradient descent or Newton’s methods.



Example: 



Ø Multiclass Classification

Assume 𝑌 ∽ Categorical(𝜙%, … , 𝜙&) such that 𝜙% +⋯+ 𝜙& = 1

Pdf function 𝑝 𝑦 = 𝜙%
𝕀(*+%)𝜙-

𝕀(*+-)… 𝜙&
𝕀(*+.)

𝑦 ∈ {1,2, … , 𝐾}



𝜙< =
1
𝑛q
!+%

9

𝕝(𝑦 ! = 𝑗)

Σ =
1

𝑛 − 𝐾 q
!+%

9

�⃗� ! − �⃗�$ " �⃗� ! − �⃗�$ "
5

�⃗�= =
∑!+%9 𝕝 𝑦 ! = 𝑗 �⃗� !

∑!+%9 𝕝 𝑦 ! = 𝑗

LDA assumption: Σ% = ⋯ = Σ. = Σ

We obtain formulas for the parameters maximizing the likelihood: 

Maximum Likelihood estimates:



The left panel shows three Gaussian distributions, with the same covariance and 
different means. Included are the contours of constant density
enclosing 95% of the probability in each case. The Bayes decision boundaries
between each pair of classes are shown (broken straight lines), and the Bayes
decision boundaries separating all three classes are the thicker solid lines (a 
subset of the former). On the right we see a sample of 30 drawn from each 
Gaussian distribution, and the fitted LDA decision boundaries.



Iris dataset



https://scikit-learn.org/stable/modules/lda_qda.html

https://scikit-learn.org/stable/modules/lda_qda.html

