
Math 7243 Machine Learning and Statistical Learning Theory - He Wang

Section 5. Gradient Descent

1. Gradient Decent
2. Stochastic Gradient Decent
3. Newton’s Method
4. More descent methods

Ø Taylor Expansion

• Taylor Expansion of 𝑓:ℝ → ℝ

𝑓 𝑎 + 𝑠 = 𝑓 𝑎 + 𝑠𝑓! 𝑎 +
1
2! 𝑠

"𝑓!! 𝑎 +
1
3! 𝑠

#𝑓!!! 𝑎 +⋯

• Taylor Expansion of 𝑓:ℝ$ → ℝ

𝑓 �⃗� + 𝑠 = 𝑓 �⃗� + 𝑠%∇𝑓 �⃗� +
1
2! 𝑠

%𝐻 𝑓 �⃗� 𝑠 + ⋯

𝐹 �⃗� + 𝑠 = 𝐹 �⃗� +
𝜕𝐹 �⃗�
𝜕�⃗�

%

𝑠% +
1
2!

𝑠%𝐻 𝐹& �⃗� 𝑠
⋮
𝑠%𝐻 𝐹' �⃗� 𝑠

+ ⋯

• Taylor Expansion of 𝐹:ℝ$ → ℝ'

= 𝑓 �⃗� +5𝑠(
𝜕𝑓
𝜕𝑥(

+5
𝜕"𝑓
𝜕𝑥(𝑥)

𝑠(𝑠) +⋯

Ø Gradient Descent

Goal: find the local/global minimum of the cost function 𝐽(�⃗�).

1. No closed formula or too complicated to find a closed formula for the minimum.
2. Too complicated to compute even we have a formula, as the inverse.

Examples: 𝐽(�⃗�) = 𝑅𝑆𝑆(�⃗�)

𝐽*($+, �⃗� = 𝑅𝑆𝑆 �⃗� + λ �⃗�
"

𝐽-.//0 �⃗� = 𝑅𝑆𝑆 �⃗� + λ �⃗� &

"

Difficulty:

Method: find critical points by solving ∇ 𝐽(�⃗�) = 0

Suppose 𝑓(�⃗�) is a differentiable function ℝ$ → ℝ.

Question: Which direction has the largest rate of change?

𝑑 = 1

Directional derivative:

This is just using the Chain Rule on the composition of 𝑓(�⃗�) and the path

Definition: Let 𝑢 be a unit vector in ℝ$. The directional derivative of 𝑓(�⃗�) at
point �⃗� ∈ ℝ$ in direction 𝑢 is

𝐷1𝑓 �⃗� = lim
2→4

𝑓 �⃗� + 𝑡𝑢 − 𝑓 �⃗�
𝑡

�⃗� 𝑡 = �⃗� + 𝑡 𝑢

Theorem: The directional derivative of 𝑓(�⃗�) in direction 𝑢 is computed by

𝐷1𝑓 �⃗� = ∇𝑓 ⋅ 𝑢

Theorem: The maximum value of the directional derivative 𝐷1𝑓(�⃗�) is ∇𝑓(�⃗�)
and it occurs when 𝑢 has the same direction as the gradient vector ∇𝑓 �⃗� .

The absolute minimum value of the directional derivative 𝐷!𝑓(�⃗�) occurs
when 𝑢 has the same direction −∇𝑓 �⃗� .

𝐷1𝑓 �⃗� = ∇𝑓 ⋅ 𝑢 = ∇𝐹 �⃗� u cos 𝛼 = ∇𝐹 �⃗� cos 𝛼

𝐷1𝑓 �⃗� = M ∇𝐹 �⃗� 𝑤ℎ𝑒𝑛 𝛼 = 0
− ∇𝐹 �⃗� 𝑤ℎ𝑒𝑛 𝛼 = 𝜋

Example: 𝑓 𝜃 = 𝜃"

Example: 𝑓 �⃗� = 𝜃&" + 𝜃""

�⃗�

Ø Gradient Descent:

• Repeat �⃗�!"#$ = �⃗� − 𝛼 ∇𝐽(�⃗�) until converge.

• Start with �⃗� = some initial value.

Goal: find the local/global minimum of the cost function 𝐽(�⃗�).

Gradient Descent Algorithm:

𝜃4
𝜃&
⋮
𝜃$

5,62

=

𝜃4
𝜃&
⋮
𝜃$

− 𝛼

78(:)
7:!
⋮

78(:)
7:"

�⃗�

�⃗�

�⃗�

Key points:

• Compute ∇𝐽(�⃗�)

• Set initial value �⃗� = �⃗�4

• Set a good learning rate 𝛼

o Set different 𝛼 and recording the cost
o Start from large 𝛼4, then smaller 𝛼.
o Set 𝛼< =

&
<
𝛼4 or 𝛼< =

&
<
𝛼4

o ...

Ø Example: (linear regression) ℎ �⃗� = �⃗�%�⃗� = 𝜃4 + 𝜃&𝑥& +⋯+ 𝜃$𝑥$

For each 𝑗 = 0,1, … , 𝑑

Repeat until converge

Ø Example: (linear regression, vector notation)

ℎ �⃗� = �⃗�%�⃗� = 𝜃4 + 𝜃&𝑥& +⋯+ 𝜃$𝑥$

𝐽 �⃗� =
1
𝑛 𝑅𝑆𝑆 �⃗� : =

1
n 𝑿�⃗� − �⃗�

"

=
1
𝑛 �⃗�%𝑿𝑻𝑿�⃗� − 2�⃗�%𝑿�⃗� + �⃗�%�⃗�

We ran the update rule for all the training examples (𝑋, �⃗�) at once, which is
called (batch) gradient descent.

𝛻: 𝐽 =
2
𝑛 (𝑋

%𝑋�⃗� − 𝑋%�⃗�)

Golden Rule: If you can use vector, never use a for loop.

Gradient descent formula: �⃗�>?@A = �⃗� − 𝛼 "
5
𝑋%(𝑋�⃗� − �⃗�)

Python (broadcast): �⃗�>?@A = �⃗� − 𝛼 "
5
sum 𝑋�⃗� − �⃗� ∗ 𝑋

Find a good learning rate:

For different learning rate
Use a small data set
Repeat 100 times

Ø Stochastic Gradient Descent (SGD):

• �⃗�!"#$ = �⃗� − 𝛼 ∇𝐽(�⃗�; �⃗� % , 𝑦(%))

For each step, we use only one data point
(�⃗� (, 𝑦(()) to \ind descent direction.

For example, in linear regression,

�⃗�>?@A = �⃗� − 𝛼�⃗� ((�⃗� (𝑻�⃗� − 𝑦(())

Remark:
1. Randomly with replacement, or use a
random order on the data.
2. It is fast.
3. It may achieve global minimum.
4. We call an epoch for repeating a data set

𝐽

iterations

Ø Mini-batch Gradient Descent:

• �⃗�!"#$ = �⃗� − 𝛼 ∇𝐽(�⃗�; 𝐷()

For each step, we use only a subset of data points
DB ⊂ 𝐷 to \ind descent direction ∇𝐽(�⃗�; 𝐷)).

If each minibatch DB contains one point, it is Stochastic Gradient Descent.
If each minibatch DB contains all points, it is batch Gradient Descent.

𝐽

iterations

Remarks:
1. Normal equation

2. Stochastic gradient descent

3. Batch gradient descent

4. Mini batch gradient descent

Scale the features first: normalization or standardization

Ø Newton’ method

Find root of a function 𝑓:ℝ → ℝ .

Solve 𝑓 𝑥 = 0

Newton’ method Algorithm

1. Make a guess 𝑥4
2. Repeat

𝑥<C& = 𝑥< −
𝑓 𝑥<
𝑓′ 𝑥<

Reason:

𝑓 𝑥& + 𝑠 ≈ 𝑓 𝑥& + 𝑠𝑓! 𝑥& = 0

𝑠 = −
𝑓 𝑥<
𝑓′ 𝑥<

High dimension Newton’s method for 𝐹: ℝ' → ℝ'

Repeat �⃗�<C& = �⃗�< − 𝐵D&𝐹 �⃗�<

where, 𝐵 = 7E 6⃗#
76⃗

%
=

7G$
76$

⋯ 7G$
76%

⋮ ⋱ ⋮
7G%
76$

⋯ 7G%
76%

Application of Newton’s method to

Goal: find the local/global minimum of the cost function 𝐽(�⃗�).

Find ∇ 𝐽(�⃗�) = 0

Let 𝐹 �⃗� =∇ 𝐽(�⃗�) =

78(:)
7:!
⋮

78(:)
7:"

and apply Newton’s method.

�⃗�ghi = �⃗�g −𝐻ji∇ 𝐽(�⃗�g)

Here 𝐻 is the Hessian matrix 𝐻=

7&8
7:$&

⋯ 7&8
7:$7:"

⋮ ⋱ ⋮
7&8

7:"7:$
⋯ 7&8

7:"
&

Example. Linear Regression.

Remark: Newton’s method is faster, since it depends on the second
derivative. However, sometimes it is hard to calculate or it is not
invertible.

More gradient methods:

1. Descent with momentum(memory)

�⃗�<C& = �⃗�< − 𝛼 ZH

Here 𝑍< = ∇𝐽 �⃗�< + 𝛽𝑍<D&

Recall GD: �⃗�>?@A = �⃗� − 𝛼 ∇𝐽(�⃗�)

2. Adaptive Stochastic Gradient Descent

Recall SGD: �⃗�>?@A = �⃗� − 𝛼 ∇𝐽(�⃗�; �⃗� (, 𝑦(())

Adaptive:
�⃗�<C& = �⃗�< − 𝛼< DH

Here 𝛼< = 𝛼(∇𝐽< , ∇𝐽<D& , … , ∇𝐽4)

𝐷< = 𝐷(∇𝐽< , ∇𝐽<D& , … , ∇𝐽4)

For example, ADAGRAD (2011)

𝛼𝑘 =
𝛼
𝑘

1
𝑘 𝑑𝑖𝑎𝑔 5

𝑖=1

𝑘

∇𝐽𝑖 2

1
2

and 𝐷<= ∇ 𝐽(�⃗�<)

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

ADAM (2015)

𝐷< = (1 − 𝛿)5
(N&

<

𝛿<D(∇𝐽(�⃗�<)

𝛼< =
𝛼
𝑘

(1 − 𝛽) 𝑑𝑖𝑎𝑔 5
(N&

<

𝛽<D(𝛻𝐽 (𝜃()
"

&
"

𝐷< = 𝛿𝐷<D& + 1 − 𝛿 ∇ 𝐽 �⃗�<
𝛼<" = 𝛽𝛼<D&" + (1 − 𝛽) 𝛻𝐽 (𝜃()

"

Recursive formula:

More explicitly,

Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization.
International Conference on Learning Representations, pages 1–13, 2015.

https://arxiv.org/abs/1609.04747

An overview of gradient descent optimization algorithms

https://arxiv.org/abs/1609.04747

