Math 7243 Machine Learning and Statistical Learning Theory - He Wang

## Section 5. Gradient Descent

1. Gradient Decent
2. Stochastic Gradient Decent
3. Newton's Method
4. More descent methods

- Taylor Expansion of $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(a+s)=f(a)+s f^{\prime}(a)+\frac{1}{2!} s^{2} f^{\prime \prime}(a)+\frac{1}{3!} s^{3} f^{\prime \prime \prime}(a)+\cdots
$$

- Taylor Expansion of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
\begin{aligned}
f(\vec{a}+\vec{s}) & =f(\vec{a})+\vec{s}^{T} \nabla f(\vec{a})+\frac{1}{2!} \vec{s}^{T} H(f(\vec{a})) \vec{s}+\cdots \\
& =f(\vec{a})+\sum s_{i} \frac{\partial f}{\partial x_{i}}+\sum \frac{\partial^{2} f}{\partial x_{i} x_{j}} s_{i} s_{j}+\cdots
\end{aligned}
$$

- Taylor Expansion of $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$

$$
F(\vec{a}+\vec{s})=F(\vec{a})+\left(\frac{\partial F(\vec{a})}{\partial \vec{x}}\right)^{T} \vec{s}^{T}+\frac{1}{2!}\left[\begin{array}{l}
\vec{s}^{T} H\left(F_{1}(\vec{a})\right) \vec{s} \\
\vdots \\
\vec{s}^{T} H\left(F_{m}(\vec{a})\right) \vec{s}
\end{array}\right]+\cdots
$$

## > Gradient Descent

Goal: find the local/global minimum of the cost function $J(\vec{\theta})$.

$$
\begin{array}{ll}
\text { Examples: } & J(\vec{\theta})=\operatorname{RSS}(\vec{\theta}) \\
& J^{\text {Ridge }}(\vec{\theta})=\operatorname{RSS}(\vec{\theta})+\lambda\|\vec{\theta}\|^{2} \\
& J^{\text {Lasso }}(\vec{\theta})=\operatorname{RSS}(\vec{\theta})+\lambda\|\vec{\theta}\|_{1}^{2}
\end{array}
$$

Method: find critical points by solving $\nabla J(\vec{\theta})=0$

## Difficulty:

1. No closed formula or too complicated to find a closed formula for the minimum.
2. Too complicated to compute even we have a formula, as the inverse.


Suppose $f(\vec{x})$ is a differentiable function $\mathbb{R}^{d} \rightarrow \mathbb{R}$.
Question: Which direction has the largest rate of change?

$$
d=1
$$



Directional derivative:


Definition: Let $\vec{u}$ be a unit vector in $\mathbb{R}^{d}$. The directional derivative of $f(\vec{x})$ at point $\vec{a} \in \mathbb{R}^{d}$ in direction $\vec{u}$ is

$$
D_{\vec{u}} f(\vec{x})=\lim _{t \rightarrow 0} \frac{f(\vec{a}+t \vec{u})-f(\vec{a})}{t}
$$

This is just using the Chain Rule on the composition of $f(\vec{x})$ and the path

$$
\vec{x}(t)=\vec{a}+t \vec{u}
$$

Theorem: The directional derivative of $f(\vec{x})$ in direction $\vec{u}$ is computed by

$$
D_{\vec{u}} f(\vec{x})=\nabla f \cdot \vec{u}
$$

Theorem: The maximum value of the directional derivative $D_{\vec{u}} f(\vec{x})$ is $\|\nabla f(\vec{x})\|$ and it occurs when $\vec{u}$ has the same direction as the gradient vector $\nabla f(\vec{x})$.

$$
\begin{gathered}
D_{\vec{u}} f(\vec{x})=\nabla f \cdot \vec{u}=\|\nabla F(\vec{x})\|\|\overrightarrow{\mathrm{u}}\| \cos \alpha=\|\nabla F(\vec{x})\| \cos \alpha \\
D_{\vec{u}} f(\vec{x})=\left\{\begin{array}{cc}
\|\nabla F(\vec{x})\| & \text { when } \alpha=0 \\
-\|\nabla F(\vec{x})\| & \text { when } \alpha=\pi
\end{array}\right.
\end{gathered}
$$

The absolute minimum value of the directional derivative $D_{\vec{u}} f(\vec{x})$ occurs when $\vec{u}$ has the same direction $-\nabla f(\vec{x})$.



Example: $f(\vec{\theta})=\theta_{1}^{2}+\theta_{2}^{2}$
> Gradient Descent:

Goal: find the local/global minimum of the cost function $J(\vec{\theta})$.

Gradient Descent Algorithm:

- Start with $\vec{\theta}=$ some initial value.
- Repeat $\vec{\theta}^{\text {next }}=\vec{\theta}-\alpha \nabla J(\vec{\theta})$ until converge.

$$
\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{d}
\end{array}\right]^{\text {next }}=\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{d}
\end{array}\right]-\alpha\left[\begin{array}{c}
\frac{\partial J(\vec{\theta})}{\partial \theta_{0}} \\
\vdots \\
\frac{\partial J(\vec{\theta})}{\partial \theta_{d}}
\end{array}\right]
$$



Key points:


- Compute $\nabla J(\vec{\theta})$
- Set initial value $\vec{\theta}=\vec{\theta}_{0}$
- Set a good learning rate $\alpha$

- Set different $\alpha$ and recording the cost
- Start from large $\alpha_{0}$, then smaller $\alpha$.
- Set $\alpha_{k}=\frac{1}{\sqrt{k}} \alpha_{0}$ or $\alpha_{k}=\frac{1}{k} \alpha_{0}$
- ...



$>$ Example: (linear regression) $h(\vec{x})=\vec{\theta}^{T} \vec{x}=\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{d} x_{d}$
$J(\vec{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(h\left(x^{(i)}\right)-y^{(i)}\right)^{2}$
For each $j=0,1, \ldots, d$

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} J(\vec{\theta}) & =\frac{\partial}{\partial \theta_{j}}\left(\frac{1}{n} \sum_{i=1}^{n}\left(h\left(x^{(i)}\right)-y^{(i)}\right)^{2}\right) \\
& =\frac{1}{n}\left(\sum_{i=1}^{n} \frac{\partial}{\partial \theta_{j}}\left(h\left(x^{(i)}\right)-y^{(i)}\right)^{2}\right) \\
& =\frac{1}{n} \cdot \sum_{i=1}^{n}\left(2\left(h\left(x^{(i)}\right)-y^{(i)}\right) \cdot \frac{\partial}{\partial \theta_{j}}\left(h\left(x^{(i)}\right)-y^{(i)}\right)\right) \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(\left(h\left(x^{(i)}\right)-y^{(i)}\right) \cdot \frac{\partial}{\partial \theta_{j}}\left(\theta_{0}+\theta_{1} x_{1}^{(i)}+\theta_{2} x_{2}^{(i)}+\ldots+\theta_{d} x_{d}^{(i)}-y^{(i)}\right)\right) \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(h\left(x^{(i)}\right)-y^{(i)}\right) \cdot x_{j}^{(i)}
\end{aligned}
$$

Repeat until converge

$$
\theta_{j}:=\theta_{j}-\alpha \cdot\left(\frac{2}{n} \sum_{i=1}^{n}\left(h\left(x^{(i)}\right)-y^{(i)}\right) \cdot x_{j}^{(i)}\right)
$$

$>$ Example: (linear regression, vector notation)

$$
\begin{aligned}
& h(\vec{x})=\vec{\theta}^{T} \vec{x}=\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{d} x_{d} \\
& J(\vec{\theta})=\frac{1}{n} R S S(\vec{\theta}):=\frac{1}{n}\|\boldsymbol{X} \vec{\theta}-\vec{y}\|^{2}=\frac{1}{n}\left(\vec{\theta}^{T} X^{T} X \vec{\theta}-2 \vec{y}^{T} X \vec{\theta}+\vec{y}^{T} \vec{y}\right) \\
& \nabla_{\vec{\theta}} J=\frac{2}{n}\left(X^{T} X \vec{\theta}-X^{T} \vec{y}\right)
\end{aligned}
$$

Gradient descent formula: $\vec{\theta}^{\text {next }}=\vec{\theta}-\alpha \frac{2}{n} X^{T}(X \vec{\theta}-\vec{y})$

Python (broadcast): $\vec{\theta}^{\text {next }}=\vec{\theta}-\alpha \frac{2}{n} \operatorname{sum}[(X \vec{\theta}-\vec{y}) * X]$

Golden Rule: If you can use vector, never use a for loop.

We ran the update rule for all the training examples $(X, \vec{y})$ at once, which is called (batch) gradient descent.


Find a good learning rate:

For different learning rate Use a small data set Repeat 100 times

> Stochastic Gradient Descent (SGD):

For each step, we use only one data point ( $\vec{x}^{(i)}, y^{(i)}$ ) to find descent direction.

- $\vec{\theta}^{\mathrm{next}}=\vec{\theta}-\alpha \nabla J\left(\vec{\theta} ; \vec{x}^{(i)}, y^{(i)}\right)$

For example, in linear regression,

$$
\vec{\theta}^{\mathrm{next}}=\vec{\theta}-\alpha \vec{x}^{(i)}\left(\vec{x}^{(i)^{\boldsymbol{T}}} \vec{\theta}-y^{(i)}\right)
$$

## Remark:

1. Randomly with replacement, or use a random order on the data.
2. It is fast.
3. It may achieve global minimum.
4. We call an epoch for repeating a data set

\# iterations


Cost

$>$ Mini-batch Gradient Descent:

For each step, we use only a subset of data points
$\mathrm{D}_{\mathrm{j}} \subset D$ to find descent direction $\nabla J\left(\vec{\theta} ; D_{j}\right)$.

- $\vec{\theta}^{\text {next }}=\vec{\theta}-\alpha \nabla J\left(\vec{\theta} ; D_{j}\right)$

If each minibatch $D_{j}$ contains one point, it is Stochastic Gradient Descent. If each minibatch $\mathrm{D}_{\mathrm{j}}$ contains all points, it is batch Gradient Descent.



Remarks:

1. Normal equation
2. Stochastic gradient descent
3. Batch gradient descent
4. Mini batch gradient descent

Scale the features first: normalization or standardization


## Newton' method

Find root of a function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Solve $f(x)=0$

## Newton' method Algorithm

1. Make a guess $x_{0}$
2. Repeat

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Reason:
$f\left(x_{1}+s\right) \approx f\left(x_{1}\right)+s f^{\prime}\left(x_{1}\right)=0$

$$
s=-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$




High dimension Newton's method for $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$

$$
\begin{aligned}
& \text { Repeat } \vec{x}_{k+1}=\vec{x}_{k}-B^{-1} F\left(\vec{x}_{k}\right) \\
& \text { where, } B=\left(\frac{\partial F\left(\vec{x}_{k}\right)}{\partial \vec{x}}\right)^{T}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{m}}
\end{array}\right]
\end{aligned}
$$

Application of Newton's method to

Goal: find the local/global minimum of the cost function $J(\vec{\theta})$.

Find $\nabla J(\vec{\theta})=0$
Let $F(\vec{\theta})=\nabla J(\vec{\theta})=\left[\begin{array}{c}\frac{\partial J(\vec{\theta})}{\partial \theta_{0}} \\ \vdots \\ \frac{\partial J(\vec{\theta})}{\partial \theta_{d}}\end{array}\right]$ and apply Newton's method.

$$
\vec{\theta}_{k+1}=\vec{\theta}_{k}-H^{-1} \nabla J\left(\vec{\theta}_{k}\right)
$$

Here $H$ is the Hessian matrix $H=\left[\begin{array}{ccc}\frac{\partial^{2} J}{\partial \theta_{1}{ }^{2}} & \cdots & \frac{\partial^{2} J}{\partial \theta_{1} \partial \theta_{d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} J}{\partial \theta_{d} \partial \theta_{1}} & \cdots & \frac{\partial^{2} J}{\partial \theta_{d}{ }^{2}}\end{array}\right]$

## Example. Linear Regression.

Remark: Newton's method is faster, since it depends on the second derivative. However, sometimes it is hard to calculate or it is not invertible.

More gradient methods:

Recall GD: $\vec{\theta}^{\text {next }}=\vec{\theta}-\alpha \nabla J(\vec{\theta})$

1. Descent with momentum(memory)

$$
\begin{gathered}
\vec{\theta}_{k+1}=\vec{\theta}_{k}-\alpha \mathrm{Z}_{\mathrm{k}} \\
\text { Here } Z_{k}=\nabla J\left(\vec{\theta}_{k}\right)+\beta Z_{k-1}
\end{gathered}
$$

## 2. Adaptive Stochastic Gradient Descent

Recall SGD: $\vec{\theta}^{\text {next }}=\vec{\theta}-\alpha \nabla J\left(\vec{\theta} ; \vec{x}^{(i)}, y^{(i)}\right)$

Adaptive:

$$
\vec{\theta}_{k+1}=\vec{\theta}_{k}-\alpha_{k} \mathrm{D}_{\mathrm{k}}
$$

$$
\text { Here } \begin{aligned}
\alpha_{k} & =\alpha\left(\nabla J_{k}, \nabla J_{k-1}, \ldots, \nabla J_{0}\right) \\
D_{k} & =D\left(\nabla J_{k}, \nabla J_{k-1}, \ldots, \nabla J_{0}\right)
\end{aligned}
$$

For example, ADAGRAD (2011)

$$
\alpha_{k}=\frac{\alpha}{\sqrt{k}}\left(\frac{1}{k} \operatorname{diag} \sum_{i=1}^{k}\left\|\nabla J_{i}\right\|^{2}\right)^{\frac{1}{2}} \quad \text { and } \quad D_{k}=\nabla J\left(\vec{\theta}_{k}\right)
$$

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.

## ADAM (2015)

Recursive formula:

$$
\begin{gathered}
D_{k}=\delta D_{k-1}+(1-\delta) \nabla J\left(\vec{\theta}_{k}\right) \\
\alpha_{k}^{2}=\beta \alpha_{k-1}^{2}+(1-\beta)\left\|\nabla J\left(\overrightarrow{\theta_{i}}\right)\right\|^{2}
\end{gathered}
$$

More explicitly,

$$
\begin{gathered}
D_{k}=(1-\delta) \sum_{i=1}^{k} \delta^{k-i} \nabla J\left(\vec{\theta}_{k}\right) \\
\alpha_{k}=\frac{\alpha}{\sqrt{k}}\left((1-\beta) \operatorname{diag} \sum_{i=1}^{k} \beta^{k-i}\left\|\nabla J\left(\overrightarrow{\theta_{i}}\right)\right\|^{2}\right)^{\frac{1}{2}}
\end{gathered}
$$

Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization. International Conference on Learning Representations, pages 1-13, 2015.

An overview of gradient descent optimization algorithms
https://arxiv.org/abs/1609.04747

