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Section 5. Gradient Descent

1. Gradient Decent
2. Stochastic Gradient Decent
3. Newton’s Method
4. More descent methods



Ø Taylor Expansion

• Taylor Expansion of 𝑓:ℝ → ℝ

𝑓 𝑎 + 𝑠 = 𝑓 𝑎 + 𝑠𝑓! 𝑎 +
1
2! 𝑠

"𝑓!! 𝑎 +
1
3! 𝑠

#𝑓!!! 𝑎 +⋯

• Taylor Expansion of 𝑓:ℝ$ → ℝ

𝑓 𝑎⃗ + 𝑠 = 𝑓 𝑎⃗ + 𝑠%∇𝑓 𝑎⃗ +
1
2! 𝑠

%𝐻 𝑓 𝑎⃗ 𝑠 + ⋯

𝐹 𝑎⃗ + 𝑠 = 𝐹 𝑎⃗ +
𝜕𝐹 𝑎⃗
𝜕𝑥⃗

%

𝑠% +
1
2!

𝑠%𝐻 𝐹& 𝑎⃗ 𝑠
⋮
𝑠%𝐻 𝐹' 𝑎⃗ 𝑠

+ ⋯

• Taylor Expansion of 𝐹:ℝ$ → ℝ'

= 𝑓 𝑎⃗ +5𝑠(
𝜕𝑓
𝜕𝑥(

+5
𝜕"𝑓
𝜕𝑥(𝑥)

𝑠(𝑠) +⋯



Ø Gradient Descent

Goal: find the local/global minimum of the cost function 𝐽(𝜃⃗ ).

1. No closed formula or too complicated to find a closed formula for the minimum.
2. Too complicated to compute even we have a formula, as the inverse. 

Examples:  𝐽(𝜃⃗ ) = 𝑅𝑆𝑆(𝜃⃗)

𝐽*($+, 𝜃⃗ = 𝑅𝑆𝑆 𝜃⃗ + λ 𝜃⃗
"

𝐽-.//0 𝜃⃗ = 𝑅𝑆𝑆 𝜃⃗ + λ 𝜃⃗ &

"

Difficulty:

Method: find critical points by solving ∇ 𝐽(𝜃⃗ ) = 0





Suppose 𝑓(𝑥⃗) is a differentiable function ℝ$ → ℝ.  

Question: Which direction has the largest rate of change?

𝑑 = 1



Directional derivative: 



This is just using the Chain Rule on the composition of 𝑓(𝑥⃗) and the path

Definition: Let 𝑢 be a unit vector in ℝ$ . The directional derivative of  𝑓(𝑥⃗) at 
point 𝑎⃗ ∈ ℝ$ in direction 𝑢 is

𝐷1𝑓 𝑥⃗ = lim
2→4

𝑓 𝑎⃗ + 𝑡𝑢 − 𝑓 𝑎⃗
𝑡

𝑥⃗ 𝑡 = 𝑎⃗ + 𝑡 𝑢

Theorem: The directional derivative of  𝑓(𝑥⃗) in direction 𝑢 is computed by 

𝐷1𝑓 𝑥⃗ = ∇𝑓 ⋅ 𝑢



Theorem: The maximum value of the directional derivative 𝐷1𝑓(𝑥⃗) is ∇𝑓(𝑥⃗)
and it occurs when 𝑢 has the same direction as the gradient vector ∇𝑓 𝑥⃗ .

The absolute minimum value of the directional derivative 𝐷!𝑓(𝑥⃗) occurs 
when 𝑢 has the same direction −∇𝑓 𝑥⃗ .

𝐷1𝑓 𝑥⃗ = ∇𝑓 ⋅ 𝑢 = ∇𝐹 𝑥⃗ u cos 𝛼 = ∇𝐹 𝑥⃗ cos 𝛼

𝐷1𝑓 𝑥⃗ = M ∇𝐹 𝑥⃗ 𝑤ℎ𝑒𝑛 𝛼 = 0
− ∇𝐹 𝑥⃗ 𝑤ℎ𝑒𝑛 𝛼 = 𝜋



Example: 𝑓 𝜃 = 𝜃"

Example: 𝑓 𝜃⃗ = 𝜃&" + 𝜃""



𝜃⃗

Ø Gradient Descent:

• Repeat 𝜃⃗!"#$ = 𝜃⃗ − 𝛼 ∇𝐽(𝜃⃗) until converge.

• Start with 𝜃⃗ = some initial value. 

Goal: find the local/global minimum of the cost function 𝐽(𝜃⃗ ).

Gradient Descent Algorithm:

𝜃4
𝜃&
⋮
𝜃$

5,62

=

𝜃4
𝜃&
⋮
𝜃$

− 𝛼

78(:)
7:!
⋮

78(:)
7:"



𝜃⃗

𝜃⃗

𝜃⃗

Key points: 

• Compute ∇𝐽(𝜃⃗)

• Set initial value 𝜃⃗ = 𝜃⃗4

• Set a good learning rate 𝛼

o Set different 𝛼 and recording the cost
o Start from large 𝛼4, then smaller 𝛼.
o Set 𝛼< =

&
<
𝛼4 or 𝛼< =

&
<
𝛼4

o ... 





Ø Example: (linear regression) ℎ 𝑥⃗ = 𝜃⃗%𝑥⃗ = 𝜃4 + 𝜃&𝑥& +⋯+ 𝜃$𝑥$

For each 𝑗 = 0,1, … , 𝑑

Repeat until converge



Ø Example: (linear regression, vector notation)

ℎ 𝑥⃗ = 𝜃⃗%𝑥⃗ = 𝜃4 + 𝜃&𝑥& +⋯+ 𝜃$𝑥$

𝐽 𝜃⃗ =
1
𝑛 𝑅𝑆𝑆 𝜃⃗ : =

1
n 𝑿𝜃⃗ − 𝑦⃗

"

=
1
𝑛 𝜃⃗%𝑿𝑻𝑿𝜃⃗ − 2𝑦⃗%𝑿𝜃⃗ + 𝑦⃗%𝑦⃗

We ran the update rule for all the training examples (𝑋, 𝑦⃗) at once, which is 
called (batch) gradient descent. 

𝛻: 𝐽 =
2
𝑛 (𝑋

%𝑋𝜃⃗ − 𝑋%𝑦⃗ )

Golden Rule: If you can use vector, never use a for loop.

Gradient descent formula:  𝜃⃗>?@A = 𝜃⃗ − 𝛼 "
5
𝑋%(𝑋𝜃⃗ − 𝑦⃗ )

Python (broadcast):  𝜃⃗>?@A = 𝜃⃗ − 𝛼 "
5
sum 𝑋𝜃⃗ − 𝑦⃗ ∗ 𝑋



Find a good learning rate:

For different learning rate
Use a small data set 
Repeat 100 times



Ø Stochastic Gradient Descent (SGD): 

• 𝜃⃗!"#$ = 𝜃⃗ − 𝛼 ∇𝐽(𝜃⃗; 𝑥⃗ % , 𝑦(%))

For each step, we use only one data point
(𝑥⃗ ( , 𝑦(()) to \ind descent direction.

For example, in linear regression,

𝜃⃗>?@A = 𝜃⃗ − 𝛼𝑥⃗ ( (𝑥⃗ ( 𝑻𝜃⃗ − 𝑦(())

Remark: 
1. Randomly with replacement, or use a 
random order on the data.
2. It is fast.
3. It may achieve global minimum.
4. We call an epoch for repeating a data set

𝐽

# iterations



Ø Mini-batch Gradient Descent: 

• 𝜃⃗!"#$ = 𝜃⃗ − 𝛼 ∇𝐽(𝜃⃗; 𝐷()

For each step, we use only a subset of data points 
DB ⊂ 𝐷 to \ind descent direction ∇𝐽(𝜃⃗; 𝐷)).

If each minibatch DB contains one point, it is Stochastic Gradient Descent.
If each minibatch DB contains all points, it is batch Gradient Descent.

𝐽

# iterations





Remarks: 
1. Normal equation

2. Stochastic gradient descent

3. Batch gradient descent

4. Mini batch gradient descent

Scale the features first: normalization or standardization



Ø Newton’ method

Find root of a function 𝑓:ℝ → ℝ . 

Solve 𝑓 𝑥 = 0

Newton’ method Algorithm

1. Make a guess 𝑥4
2. Repeat

𝑥<C& = 𝑥< −
𝑓 𝑥<
𝑓′ 𝑥<

Reason: 

𝑓 𝑥& + 𝑠 ≈ 𝑓 𝑥& + 𝑠𝑓! 𝑥& = 0

𝑠 = −
𝑓 𝑥<
𝑓′ 𝑥<



High dimension Newton’s method for 𝐹: ℝ' → ℝ'

Repeat  𝑥⃗<C& = 𝑥⃗< − 𝐵D&𝐹 𝑥⃗<

where,  𝐵 = 7E 6⃗#
76⃗

%
=

7G$
76$

⋯ 7G$
76%

⋮ ⋱ ⋮
7G%
76$

⋯ 7G%
76%



Application of Newton’s method to 

Goal: find the local/global minimum of the cost function 𝐽(𝜃⃗ ).

Find ∇ 𝐽(𝜃⃗ ) = 0

Let  𝐹 𝜃⃗ =∇ 𝐽(𝜃⃗ ) =

78(:)
7:!
⋮

78(:)
7:"

and apply Newton’s method. 

𝜃⃗ghi = 𝜃⃗g −𝐻ji∇ 𝐽(𝜃⃗g )

Here 𝐻 is the Hessian matrix 𝐻= 

7&8
7:$&

⋯ 7&8
7:$7:"

⋮ ⋱ ⋮
7&8

7:"7:$
⋯ 7&8

7:"
&



Example. Linear Regression.

Remark: Newton’s method is faster, since it depends on the second 
derivative.  However, sometimes it is hard to calculate or it is not 
invertible. 



More gradient methods: 

1. Descent with momentum(memory)

𝜃⃗<C& = 𝜃⃗< − 𝛼 ZH

Here 𝑍< = ∇𝐽 𝜃⃗< + 𝛽𝑍<D&

Recall GD:  𝜃⃗>?@A = 𝜃⃗ − 𝛼 ∇𝐽(𝜃⃗)



2. Adaptive Stochastic Gradient Descent

Recall SGD: 𝜃⃗>?@A = 𝜃⃗ − 𝛼 ∇𝐽(𝜃⃗; 𝑥⃗ ( , 𝑦(())

Adaptive: 
𝜃⃗<C& = 𝜃⃗< − 𝛼< DH

Here 𝛼< = 𝛼(∇𝐽< , ∇𝐽<D& , … , ∇𝐽4)

𝐷< = 𝐷(∇𝐽< , ∇𝐽<D& , … , ∇𝐽4)

For example, ADAGRAD (2011)

𝛼𝑘 =
𝛼
𝑘

1
𝑘 𝑑𝑖𝑎𝑔 5

𝑖=1

𝑘

∇𝐽𝑖 2

1
2

and 𝐷<= ∇ 𝐽(𝜃⃗<)

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning and Stochastic 
Optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.



ADAM (2015)

𝐷< = (1 − 𝛿)5
(N&

<

𝛿<D(∇𝐽(𝜃⃗<)

𝛼< =
𝛼
𝑘

(1 − 𝛽) 𝑑𝑖𝑎𝑔 5
(N&

<

𝛽<D( 𝛻𝐽 (𝜃()
"

&
"

𝐷< = 𝛿𝐷<D& + 1 − 𝛿 ∇ 𝐽 𝜃⃗<
𝛼<" = 𝛽𝛼<D&" + (1 − 𝛽) 𝛻𝐽 (𝜃()

"

Recursive formula:

More explicitly, 

Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization. 
International Conference on Learning Representations, pages 1–13, 2015.



https://arxiv.org/abs/1609.04747

An overview of gradient descent optimization algorithms

https://arxiv.org/abs/1609.04747

