
Math 7243-Machine Learning and Statistical Learning Theory – He Wang

Section  4.  Statistics of Machine Learning

I. Covariance of Parameters

II. Confidence Intervals for Coefficients

III. Subset Selection Methods 

IV. Gauss-Markov Theorem



BEDS BATHS LOCATION SQUARE_FEET LOT_SIZE YEAR_BUILT PRICE
3 3 Newton 2969 15014 1967 1090000
3 2.5 Newton 1566 5582 1922 805000
4 2.5 Newton Corner 2532 6273 1953 905000
7 4.5 Newton Center 6748 26607 1902 2660000
… …. … … … … …

The features of the data are

House Price Example: 

BEDS – 𝑥! Number of bedrooms
BATHS - 𝑥" Number of bathrooms 
LOCATION – 𝑥# city/town 
SQUARE_FEET –𝑥$ Square feet of the living spaces 
LOT_SIZE - 𝑥% Square feet of the lot size. 
YEAR_BUILT - 𝑥&

Linear Model ℎ �⃗� = �⃗�!�⃗� = 𝜃" + 𝜃#𝑥# +⋯+ 𝜃$𝑥$

Training Data:

Assumption:

Case Study: 



BEDS BATHS   SQUARE_FEET LOT_SIZE YEAR_BUILT DAYS_ON_MARKET PRICE

count 58 58 58 58 58 58 58

mean 4.293103 3.284483 3330.379 12709.79 1929.552 14.53448 1595263

std 1.297888 1.47824 1573.35 7656.194 46.82786 8.364955 807219

min 2 1.5 840 3966 1830 1 630000

25% 3 2.5 1906.75 7365.75 1897.75 6.25 941250

50% 4 3 3143.5 10146.5 1926.5 15 1324250

75% 5 4 4363.5 15004.5 1953 21 1893750

max 8 8.5 6748 33843 2020 29 3550000

DataFrame.d escribe()

Which parameters 𝜃% correspond to statistically significant features?

Which parameters 𝜃% correspond to less significant features? i.e., 𝜃% ≈ 0.

Use Pandas Library

We would like to know: 



Matplotlib



seaborn



Ø I. Review of statistics concepts: 

• For a 𝑑- dimensional vector 𝑋 =
𝑋#
⋮
𝑋$

of random variables, the expect value

of �⃗� is 

𝐸(𝑋) =
𝐸(𝑋#)
⋮

𝐸(𝑋$)

𝐸(𝑍) = 1
−∞

∞
𝑧 𝑝 𝑧 𝑑𝑧

• Given a random variable Z with pdf function 𝑝(𝑧), the expected value of Z is 

or 𝐸 𝑍 = 4
()) *

𝑧 𝑝(𝑧)

• If 𝑌 = 𝑓(𝑍), then the expected value of Y is

𝐸 𝑌 = 1
+,

,
𝑓(𝑧) 𝑝 𝑧 𝑑𝑧 or 𝐸 𝑌 = 4

()) *

𝑓(𝑧) 𝑝(𝑧)

Expect values



Ø Variance and Covariance

• Given a random variable Z with pdf function 𝑝(𝑧), the variance

Var 𝑍 = 𝐸 𝑍- − 𝐸 𝑍 -

• The covariance between two random variables X and Z on the same 
probability space is  

Cov 𝑋, 𝑍 = 𝐸 𝑋𝑍 − 𝐸(𝑋)𝐸 𝑍

• If X and Z are independent, then Cov 𝑋, 𝑍 = 0.

(The converse is not true)



For a 𝑑- dimensional vector �⃗� of random variables, the covariance of �⃗� is a 𝑑×𝑑
symmetric matrix:  

The (𝑖, 𝑗)-entry of Cov(�⃗�) given by the covariance of 𝑥% and 𝑥.

In particular, the diagonal entries of Cov(�⃗�) given by the variance of 𝑥%. 

Cov(�⃗�)%% = Var(𝑥%)=𝜎 𝑥% -

Ø Covariance/Variance matrix in high dimension



For a data set 

The sample covariance is calculated (estimate) by 

from random variables �⃗�

Cov 𝑥% , 𝑥. =
1

𝑛 − 14
/0#

1

(𝑥%
/ − �̅�%)(𝑥.

/ − �̅�.)

Ø Sample Covariance/Variance matrix

The sample mean is

𝑀𝑒𝑎𝑛 𝑋 :=
𝑥#
⋮
𝑥$

𝑥% =
∑.0#1 𝑥%

.

𝑛
where,

The sample variance is calculated by 

s- = Cov 𝑥% , 𝑥% =
1

𝑛 − 14
/0#

1

𝑥%
/ − �̅�%

-

Where O𝑋 = 𝑋 −𝑚𝑒𝑎𝑛(𝑋)

The covariance matrix is 

Cov(𝑋) =
1

𝑛 − 1
O𝑋2 O𝑋



O𝑋𝑋



BEDS BATHS SQUARE_FEET LOT_SIZE YEAR_BUILT DAYS_ON_MARKET PRICE

BEDS 1.684513 1.248488 1.521168e+03 5.018816e+03 1.923170 -3.843618 7.160882e+05

BATHS 1.248488 2.185194 1.925302e+03 4.943595e+03 28.884150 -4.689806 8.206805e+05

SQUARE_FEET 1521.167 1925.3024 2.475431e+06 7.843136e+06 19298.330913 -5634.118572 1.139606e+09

LOT_SIZE 5018.816 4943.5949 7.843136e+06 5.861731e+07 -57213.2171 -12123.115547 4.430783e+09

YEAR_BUILT 1.923170 28.884150 1.929833e+04 -5.7213e+04 2192.848155 -84.615850 5.700393e+06

DAYS_ON_MARK
ET -3.843618 -4.689806 -5.6341e+03 -1.21231e+04 -84.615850 69.972474 -2.3119e+06

PRICE 716088.24 820680.462 1.1396e+09 4.4307e+09 5.7003e+06 -2.3119e+06 6.51602e+11

The covariance in the variables for the dataset:

In pandas lib, DataFrame.cov() is a function that compute the covariance between the columns of a dataframe.



2. The correlation coefficient ranges from –1 to 1. When it is close to 1, it means that there is a 
strong positive correlation. Coefficients close to zero mean that there is no linear correlation.

Ø Correlation matrix.

Corr �⃗� %. =
Cov(�⃗�)%.

𝜎 𝑥% 𝜎 𝑥.
Remark: 
1. Correlation matrix is the covariance matrix of the standardized random variables '!

(('!)

3.  The correlation coefficient only measures linear correlations. It may completely miss out 
on nonlinear relationships. 

The correlation of �⃗� is a 𝑑×𝑑 matrix Corr �⃗� defined as



BEDS BATHS SQUARE_FEET LOT_SIZE YEAR_BUILT DAYS_ON_MARKET PRICE

BEDS 1.000000 0.650732 0.744928 0.505070 0.031643 -0.354029 0.683499

BATHS 0.650732 1.000000 0.827806 0.436802 0.417263 -0.379268 0.687761

SQUARE_FEET 0.744928 0.827806 1.000000 0.651106 0.261933 -0.428092 0.897301

LOT_SIZE 0.505070 0.436802 0.651106 1.000000 -0.159580 -0.189294 0.716929

YEAR_BUILT 0.031643 0.417263 0.261933 -0.159580 1.000000 -0.216015 0.150803

DAYS_ON_MAR
KET

-0.354029 -0.379268 -0.428092 -0.189294 -0.216015 1.000000 0.342381

PRICE 0.683499 0.687761 0.897301 0.716929 0.150803 -0.342381 1.000000

The correlation of the variables for the dataset: (by function DataFrame.corr() )





To minimize the cost function, by normal equation,

From the Training Data: �⃗� % , 𝑦 % for 𝑖 = 1… 𝑛.

�⃗� = (𝑋!𝑋)+#𝑋!�⃗�

Suppose the data follows linear model 𝑦 = ℎ �⃗� + 𝜖 with unmodeled error 𝜖.

Suppose ℎ �⃗� = �⃗�∗
!
�⃗� and the error 𝜖 follows normal distribution 

𝜖 ~ Normal 0, 𝜎-

Ø Application to Linear Regression

Cov(�⃗�) =𝜎! 𝑋"𝑋 #$

Proposition: The covariance matrix of �⃗� can be calculated by



“To me, this neat formula shows the 
beauty of matrix multiplication. I 
won’t prove this formula, just admire 
it. It is constantly used in 
applications”. -- Gilbert Strang

Lemma. The covariance matrix of 𝑧 = 𝐴�⃗� is 

Cov 𝑧 = 𝐴 Cov �⃗� 𝐴!

Proof of the Lemma (Exercise)

Cov 𝑧 = 𝐸(𝑧𝑧! − 𝐸 𝑧 𝐸 𝑧 !)

= 𝐴 Cov �⃗� 𝐴!

= 𝐸(𝐴�⃗�(𝐴�⃗�)^𝑇 − 𝐸 𝐴�⃗� 𝐸 𝐴�⃗� !)

= 𝐴𝐸 �⃗��⃗�! − 𝐸 �⃗� 𝐸 �⃗� ! 𝐴!



Proof of the Proposition: 

Cov(�⃗�) = Cov((𝑋!𝑋)+#𝑋!�⃗�)

= Cov((𝑋!𝑋)+#𝑋!(𝑋𝜃∗ + 𝜖))

= Cov(𝜃∗ + (𝑋!𝑋)+#𝑋!𝜖)

= Cov( (𝑋!𝑋)+#𝑋!𝜖)

= (𝑋!𝑋)+#𝑋! 𝜎-𝐼 ( 𝑋!𝑋)+#𝑋! !

= 𝜎- 𝑋!𝑋 +#

Here, �⃗�∗ is the true parameter.   

Cov(�⃗�) =𝜎- 𝑋!𝑋 +#



II. We want to understand p-values and confidence intervals of the parameters 𝜃%

Central Limit Theorem (CLT): Assume that the distribution of test statistics
𝑥(#), … , 𝑥(1) is drawn independently from a distribution  with mean µ and variance 
σ-, then the sample mean follows normal distribution   

The sample mean of test statistics 𝑥(#), … , 𝑥(1) is

Review: 

The 𝟏 − 𝜶 confidence interval for 𝜇 is a set 𝐼 such that

�̅� =
1
𝑛J
%0#

1

𝑥(%)



The 1 − 𝛼 confidence interval for any statistic 𝑍 is a set 𝐼 = [𝑎, 𝑏] such that

The above explicit calculation for confidence interval  is by CLT and the more general 
definition of confidence interval.

𝑃 𝑎 < 𝑍 < 𝑏 = 1 − 𝛼

Suppose we know the distribution for Z.

More confidence intervals 



The linear parameters U⃗𝜃 = (𝑋!𝑋)+#𝑋!�⃗� are normally distributed around the true 

solution �⃗�∗ with covariance matrix  Cov( U⃗𝜃) = 𝜎- 𝑋!𝑋 +#.

V⃗𝜃
~

Normal(�⃗�∗ , 𝜎- 𝑋!𝑋 +#)

𝑛 − 𝑑 − 1 𝑠- ~ 𝜎- 𝜒1+$+#-

Ø Statistical properties of least squares estimate:

Suppose y = �⃗�∗
!
�⃗� + 𝜖 with unmodeled error 𝜖 ~ Normal 0, 𝜎-

We can estimate the variance 𝜎- of 𝜖 from the data by the 
unbiased estimator:  

[𝜎- = 𝑠- =
1

𝑛 − 𝑑 − 1J
%0#

1

𝑦(%) − \𝑦 (%)
-



If we know 𝜎 , the 1 − 𝛼 confidence interval around each 𝜃 is 

U𝜃 − 𝑧 78 -
𝜎 𝑋!𝑋 %%

+# , U𝜃 + 𝑧 78 -
𝜎 𝑋!𝑋 %%

+#

If we know 𝜎 , to test the hypothesis that 𝜃% = 0, that is the 𝑖-th feature has 
no bearing on the outcome, we write the standardized 𝒛-Score of 𝜽𝒊 (test 
statistic)

𝑧% ≈
&'+

( ),) ++
-.

Ø Hypothesis Tests for U𝜃 :

Ø Confidence Interval for U𝜃



Since we need to estimate 𝜎- by 𝑠-, the distribution needs to be modified to 
be t-distribution, and the corresponding Confidence Interval is

,𝜃 − 𝑡*#+#$, -. !
𝑠 𝑋"𝑋 %%

#$ , ,𝜃 + 𝑡 -*#+#$,.
!
𝑠 𝑋"𝑋 %%

#$

𝒕-Score of 𝜽𝒊 is 𝑡2 ≈
34!

5 6"6 #$

t-distribution is close to z-distribution when the degree of freedom 𝑛 − 𝑑 −1 is large.

We can estimate the variance 𝜎- of 𝜖 from the data by the unbiased estimator:  

[𝜎- = 𝑠- =
𝑅𝑆𝑆(𝜃)
𝑛 − 𝑑 − 1

Ø t-distributions and t-tests

The test score/statistics for hypothesis test will be



Ø III (Best) Subset Selection Methods
Choose all possible subset combinations of inputs 𝑥#, … , 𝑥$.

With 𝑑 variables, there are 2$ many distinct combinations. 

Identify the best model among these models.

Algorithm: 

1. Let 𝑀" be the null model, 𝑦 = 𝜃" + 𝜖. The predictor is the sample mean of response.

2. For each 𝑘 = 1,2, … , 𝑑, fit all $
/ models that contain exactly 𝑘 predictors. 

3. Pick the best model that with (smallest RSS) and call it 𝑀/

4. Select a single best model from 𝑀", … ,𝑀$ (by RSS?)



1. The search space too large (2$ models), may lead to overfit.

2. Computationally infeasible: too many models to run. 

For example, if d = 20, there are 2-" models.

Pros of best subset selection: 

1. Straightforward to carry out. 

2. Conceptually clear. 

Cons of best subset selection



coef std err t P>|t| [0.025 0.975]

Intercept -832500.00 2420000.00 -0.35 0.73 -5680000.00 4020000.00

BEDS 27580.00 55400.00 0.50 0.62 -83700.00 139000.00

BATHS -66690.00 60100.00 -1.11 0.27 -187000.00 53900.00

SQUARE_FEET 426.23 70.62 6.04 0.00 284.45 568.01
LOT_SIZE 22.79 8.79 2.59 0.01 5.14 40.43

YEAR_BUILT 403.80 1240.96 0.33 0.75 -2087.54 2895.14

DAYS_ON_MARKET 2761.00 6061.43 0.46 0.65 -9407.82 14900.00

Dep. Variable: PRICE R-squared: 0.84

Model: OLS Adj. R-squared: 0.822

Method: Least Squares F-statistic: 44.77

Date: Sat, 23 Jan 2021 Prob (F-statistic): 1.23E-18

Time: 13:52:30 Log-Likelihood: -817.45

No. Observations: 58 AIC: 1649

Df Residuals: 51 BIC: 1663

Df Model: 6

statsmodels.api/ smf.ols / model.summary()



There is human readable scoring statistic is R-squared calculated by

𝑅- = 1 −
𝑅𝑆𝑆

𝑆𝑆:;:()
= 1 −

𝑅𝑆𝑆
∑%0#1 𝑦 % − f𝑦 -

So 𝑅- = 1 is perfect correlation.

0. R-squared

More error prediction methods. Mean Square Error 𝑀𝑆𝐸 = <==
1



The MSE and R-squared reflects the training error. However, a model with 
larger R-squared/ or smaller MSE error is not necessarily better than another 
model with smaller R-squared when we consider test error! 

Next we will introduce Adjusted 𝑹𝟐, Mallows’ 𝑪𝒑,  AIC, BIC for error prediction.

In the following classes, we will also introduce Validation/cross-validation approach. 



1. Adjusted R-squared.

The adjusted R-squared, taking into account of the degrees of freedom

With more inputs, the 𝑅- always increase, but the adjusted 𝑅- could decrease since 
more irrelevant inputs are penalized by the smaller degree of freedom of the residuals. 
The adjusted R-squared is preferred over the R-squared in evaluating models.

adjusted 𝑅-: = 1 −
𝑅𝑆𝑆(𝑘)/(𝑛 − 𝑘 − 1)

∑%0#1 𝑦 % − f𝑦 - /(𝑛 − 1)

2. Mallows’ 𝑪𝒑.

The statistic of Mallow's 𝐶@ is defined as

Mallows’ 𝑪𝒑: =
1
𝑛 (𝑅𝑆𝑆 𝑘 + 2𝑘𝑠$-)

Here, sA- =
<==

1+$+#
is estimated with all features and 𝑅𝑆𝑆 𝑘 is the RSS with k features. 

Mallows’ 𝐶@ is an unbiased estimate of test MSE. (that is 𝐸 𝐶@ = #
1
𝑅𝑆𝑆:BC:)

The model with the smallest 𝐶@ is preferred.

Suppose we check subset of size k in totally d features.



3. Akaike information criterion (AIC)

The goal of AIC is to maximize the predictive likelihood.

When Gaussian likelihood is assumed in least square regression. The model with 
the smallest AIC is preferred. 

𝐴𝐼𝐶:=
1
𝑛𝑠$-

(𝑅𝑆𝑆 𝑘 + 2𝑘𝑠$-)

Here, sA- = 𝑅𝑆𝑆/(𝑛 − 𝑑 − 1)

4. Schwarz's Bayesian information criterion(BIC) 

𝐵𝐼𝐶:=
1
𝑛𝑠$-

(𝑅𝑆𝑆 𝑘 + 𝑘𝑠$-(log 𝑛))

Again, the model with the smallest BIC is preferred.  

It replaces 2𝑑𝑠$- from AIC by 𝑑𝑠$-(log 𝑛)). So, for log 𝑛 > 2 or 𝑛 > 7, BIC penalizes 
more heavily the models with more number of inputs.

For a linear model with 𝑑 inputs





1. Forward Subset Selection

1. Let 𝑀" be the null model, 𝑦 = 𝜃" + 𝜖. The predictor is 
the sample mean of response.

2. For each 𝑘 = 0, 1,2, … , 𝑑 − 1, consider all 𝑑 − 𝑘 models 
that augment the predictors in 𝑀/ with one additional 
predictor.

3. Pick the best model that with (smallest RSS) and call it 
𝑀/D#

4. Select a single best model from 𝑀", … ,𝑀$ by AIC or BIC 
or 𝐶@ or adjusted 𝑅-.

The algorithm starts by fitting the intercept 𝜃", and then 
sequentially adds into the model the variable that most 
improves the fit.

Algorithm: 

Forward Subset Selection has less models (1 + d(d + 1)/2), hence less computation.
Once an input is in, it does not get out. No problem for first n-steps if d > n.

Since the computation of best subset selection is too heavy, we introduce two 
methods with less computation. 



2. Backward Subset Selection

Backward subset regression starts with the full model 
and sequentially deletes the predictor with the 
smallest z-score.

1. Start with the largest model 𝑀$ with all 𝑑
inputs. 

2. For 𝑘 = 𝑑, 𝑑 − 1,… , 1, Consider all 𝑘 models 
that contain all but one of the predictors in 𝑀/
for a total of 𝑘 − 1 predictors.

3. Pick the best model that with (smallest RSS) and 
call it 𝑀/D#

4. Select a single best model from 𝑀", … ,𝑀$ by 
AIC or BIC or 𝐶@ or adjusted 𝑅-.

Algorithm: 

Forward Subset Selection has less models (1 + d(d + 1)/2), hence less computation.
Once an input is out, it does not get in. No applicable to the case with d > n



Recall the least squares solution �⃗� = (𝑋!𝑋)+#𝑋!�⃗�

The matrix 𝐻 = 𝑋(𝑋!𝑋)+#𝑋! is the projection matrix. 

�⃗�

𝐻�⃗�

V = im(𝑋)

𝐻 is symmetric and idempotent.

Eigenvalues of 𝐻 are either 1 or 0.

Trace(H)= rank(H) 

�⃗� - = 𝑋�⃗�
-

+ �⃗� − 𝑋�⃗�
-

[𝑦 = 𝑋�⃗� = 𝐻�⃗� = ProjE �⃗�



Gauss-Markov Theorem. Among all linear unbiased estimates for the solution to 
𝑋 U𝜃 = �⃗�, the least squares estimate U𝜃 = (𝑋!𝑋)+#𝑋!�⃗� has the smallest variance. 

Proof: Suppose �⃗� = 𝐴�⃗� is another unbiased linear estimate.   

By Lemma, Cov �⃗� = 𝐴 Cov �⃗� 𝐴! = 𝜎-𝐴𝐴!

Suppose the data follows linear model 𝑦 = �⃗�!�⃗� + 𝜖 with error 𝜖 ~ Normal 0, 𝜎-

By Proposition, Cov( U𝜃) =𝜎- 𝑋!𝑋 +#

By unbiasedness, 𝐸 𝐴�⃗� = �⃗�∗, that is 𝐸 𝐴 𝑋�⃗� + 𝜖𝐼 = �⃗�∗. Hence 𝐴𝑋 = 𝐼

Then 𝐴𝐴! − 𝑋!𝑋 +# = 𝐷𝐷! which is positive semidefinite.

Let 𝐷 = 𝐴 − (𝑋!𝑋)+#𝑋!, then 𝐷𝑋 = 0.

IV. Gauss-Markov Theorem.



Subset selection method provides another way of doing this. If your selection 
procedure drops coefficients whose true value is nonzero, you will incur an 
error due to bias. However, subset selection is a discrete process and so often 
exhibits high variance.

The Gauss-Markov Theorem implies that the least squares estimator has the 
smallest mean squared error of any unbiased linear estimator. 

We already learned Ridge/ Lasso/ Elastic net regression methods for regularization.

There may still exists biased estimators with a smaller mean squared error. 
That is, we may be able to trade a small increase in bias for a large reduction 
in variance. 

Least squares estimator is the Best Linear Unbiased Estimator (BLUE).

Remarks: 



1. Prediction accuracy: Least squares estimates often have low bias at the cost 
of high variance.  Prediction accuracy can sometimes be improved by 
shrinking  some coefficients to zero. (reduce variance)

Ø Feature/variable selection

2. Interpretation power: With a large number of related parameters, one often 
wants to find a small number of predictors with strongest effects.  

Not all existing input variables are useful for predicting the output. Keeping redundant 
inputs in model can lead to poor prediction and poor interpretation. 

• We already learned Shrinkage/regularization methods to constrain some 
regression parameters to 0. 

• We also learned Best Subset Selection Methods. 
• Later, we also have dimension reduction method for high dimension data 

analysis. 



Useful libraries of Python: 

1. NumPy:  For large, multi-dimensional arrays and matrices.
2. pandas:  data manipulation and analysis.
3. Matplotlib: Visualization with Python.
4. seaborn: statistical data visualization visualization based on Matplotlib.  
5. scikit-learn: various classification, regression and clustering algorithms.
6. Statsmodels: classes and functions for the estimation of statistical models.
7. …

Libraries for deep learning: 

1. TensorFlow: focus on training and inference of deep neural networks.
2. Keras: interface for the TensorFlow. 
3. Pytorch: focus on  computer vision and natural language processing.
4. OpenCV: real-time computer vision.


