Math 7243-Machine Learning and Statistical Learning Theory - He Wang

Section 4. Statistics of Machine Learning

I. Covariance of Parameters
II. Confidence Intervals for Coefficients
III. Subset Selection Methods
IV. Gauss-Markov Theorem

Case Study: House Price Example:

BEDS	BATHS	LOCATION	SQUARE_FEET	LOT_SIZE	YEAR_BUILT	PRICE
3	3	Newton	2969	15014	1967	1090000
3	2.5	Newton	1566	5582	1922	805000
4	2.5	Newton Corner	2532	6273	1953	905000
7	4.5	Newton Center	6748	26607	1902	2660000
\ldots	$\ldots .$.	\ldots	\ldots	\ldots	\ldots	\ldots

The features of the data are
BEDS - x_{1} Number of bedrooms
BATHS - x_{2} Number of bathrooms
LOCATION - x_{3} city/town
SQUARE_FEET $-x_{4}$ Square feet of the living spaces
LOT_SIZE - x_{5} Square feet of the lot size.
YEAR_BUILT - x_{6}
Training Data: $D=\left\{\left(\vec{x}^{(1)}, y^{(1)}\right), \ldots,\left(\vec{x}^{(n)}, y^{(n)}\right)\right\}$
Assumption: Linear Model $h(\vec{x})=\vec{\theta}^{T} \vec{x}=\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{d} x_{d}$

We would like to know:

Which parameters θ_{i} correspond to statistically significant features?

Which parameters θ_{i} correspond to less significant features? i.e., $\theta_{i} \approx 0$.

Use Pandas Library
DataFrame.d escribe()

	BEDS	BATHS	SQUARE_FEET	LOT_SIZE	YEAR_BUILT	DAYS_ON_MARKET	PRICE
count	58	58	58	58	58	58	58
mean	4.293103	3.284483	3330.379	12709.79	1929.552	14.53448	1595263
std	1.297888	1.47824	1573.35	7656.194	46.82786	8.364955	807219
\min	2	1.5	840	3966	1830	1	630000
25%	3	2.5	1906.75	7365.75	1897.75	6.25	941250
50%	4	3	3143.5	10146.5	1926.5	15	1324250
75%	5	4	4363.5	15004.5	1953	21	1893750
\max	8	8.5	6748	33843	2020	29	3550000

Matplotlib

seaborn

> I. Review of statistics concepts:

Expect values

- Given a random variable Z with pdf function $p(z)$, the expected value of Z is

$$
E(Z)=\int_{-\infty}^{\infty} z p(z) d z \quad \text { or } \quad E(Z)=\sum_{\text {all } z} z p(z)
$$

- For a d-dimensional vector $\vec{X}=\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{d}\end{array}\right]$ of random variables, the expect value of \vec{x} is

$$
E(\vec{X})=\left[\begin{array}{c}
E\left(X_{1}\right) \\
\vdots \\
E\left(X_{d}\right)
\end{array}\right]
$$

- If $Y=f(Z)$, then the expected value of Y is

$$
E(Y)=\int_{-\infty}^{\infty} f(z) p(z) d z \quad \text { or } \quad E(Y)=\sum_{\text {all } z} f(z) p(z)
$$

> Variance and Covariance

- Given a random variable Z with pdf function $p(z)$, the variance

$$
\operatorname{Var}(Z)=E\left(Z^{2}\right)-E(Z)^{2}
$$

- The covariance between two random variables X and Z on the same probability space is

$$
\operatorname{Cov}(X, Z)=E(X Z)-E(X) E(Z)
$$

- If X and Z are independent, then $\operatorname{Cov}(X, Z)=0$. (The converse is not true)
$>$ Covariance/Variance matrix in high dimension

For a d-dimensional vector \vec{x} of random variables, the covariance of \vec{x} is a $d \times d$ symmetric matrix:

$$
\begin{aligned}
\operatorname{Cov}(\vec{x}) & =E\left[(\vec{x}-E[\vec{x}])(\vec{x}-E[\vec{x}])^{T}\right] \\
& =E\left[\vec{x} \vec{x}^{T}-E[\vec{x}] E[\vec{x}]^{T}\right]
\end{aligned}
$$

The (i, j)-entry of $\operatorname{Cov}(\vec{x})$ given by the covariance of x_{i} and x_{j}

$$
\begin{aligned}
\operatorname{Cov}(\vec{x})_{i j}=\operatorname{Cov}\left(x_{i}, x_{j}\right) & =E\left[\left(x_{i}-E\left[x_{i}\right]\right)\left(x_{j}-E\left[x_{j}\right]\right)\right] \\
& =E\left[x_{i} x_{j}-E\left[x_{i}\right] E\left[x_{j}\right]\right]
\end{aligned}
$$

In particular, the diagonal entries of $\operatorname{Cov}(\vec{x})$ given by the variance of x_{i}.

$$
\operatorname{Cov}(\vec{x})_{i i}=\operatorname{Var}\left(x_{i}\right)=\sigma\left(x_{i}\right)^{2}
$$

> Sample Covariance/Variance matrix
For a data set $D=\left\{\left(\vec{x}^{(1)}, y^{(1)}\right), \ldots,\left(\vec{x}^{(n)}, y^{(n)}\right)\right\}$ from random variables \vec{x}

The sample mean is

$$
\operatorname{Mean}(X):=\left[\begin{array}{l}
\overline{x_{1}} \\
\vdots \\
\overline{x_{d}}
\end{array}\right] \quad \text { where, } \quad \overline{x_{i}}=\frac{\sum_{j=1}^{n} x_{i}^{(j)}}{n}
$$

The sample covariance is calculated (estimate) by

$$
\operatorname{Cov}\left(x_{i}, x_{j}\right)=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{i}^{(k)}-\bar{x}_{i}\right)\left(x_{j}^{(k)}-\bar{x}_{j}\right)
$$

The sample variance is calculated by

$$
\mathrm{s}^{2}=\operatorname{Cov}\left(x_{i}, x_{i}\right)=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{i}^{(k)}-\bar{x}_{i}\right)^{2}
$$

The covariance matrix is

$$
\operatorname{Cov}(X)=\frac{1}{n-1} \hat{X}^{\mathrm{T}} \hat{X} \quad \text { Where } \hat{X}=X-\operatorname{mean}(X)
$$

X

Raw Data

Mean Centered Data

x

In pandas lib, DataFrame.cov() is a function that compute the covariance between the columns of a dataframe.

The covariance in the variables for the dataset:

	BEDS	BATHS	SQUARE_FEET	LOT_SIZE	YEAR_BUILT	DAYS_ON_MARKET	PRICE
BEDS	1.684513	1.248488	$1.521168 \mathrm{e}+03$	$5.018816 \mathrm{e}+03$	1.923170	-3.843618	$7.160882 \mathrm{e}+05$
BATHS	1.248488	2.185194	$1.925302 \mathrm{e}+03$	$4.943595 \mathrm{e}+03$	28.884150	-4.689806	$8.206805 \mathrm{e}+05$
SQUARE_FEET	1521.167	1925.3024	$2.475431 \mathrm{e}+06$	$7.843136 \mathrm{e}+06$	19298.330913	-5634.118572	$1.139606 \mathrm{e}+09$
LOT_SIZE	5018.816	4943.5949	$7.843136 \mathrm{e}+06$	$5.861731 \mathrm{e}+07$	-57213.2171	-12123.115547	$4.430783 \mathrm{e}+09$
YEAR_BUILT	1.923170	28.884150	$1.929833 \mathrm{e}+04$	$-5.7213 \mathrm{e}+04$	2192.848155	-84.615850	$5.700393 \mathrm{e}+06$
DAYS_ON_MARK ET	-3.843618	-4.689806	$-5.6341 \mathrm{e}+03$	$-1.21231 \mathrm{e}+04$	-84.615850	69.972474	$-2.3119 \mathrm{e}+06$
PRICE	716088.24	820680.462	$1.1396 \mathrm{e}+09$	$4.4307 \mathrm{e}+09$	$5.7003 \mathrm{e}+06$	$-2.3119 \mathrm{e}+06$	$6.51602 \mathrm{e}+11$

> Correlation matrix.

The correlation of \vec{x} is a $d \times d$ matrix $\operatorname{Corr}(\vec{x})$ defined as

$$
\operatorname{Corr}(\vec{x})_{i j}=\frac{\operatorname{Cov}(\vec{x})_{i j}}{\sigma\left(x_{i}\right) \sigma\left(x_{j}\right)}
$$

Remark:

1. Correlation matrix is the covariance matrix of the standardized random variables $\frac{x_{i}}{\sigma\left(x_{i}\right)}$
2. The correlation coefficient ranges from -1 to 1 . When it is close to 1 , it means that there is a strong positive correlation. Coefficients close to zero mean that there is no linear correlation.
3. The correlation coefficient only measures linear correlations. It may completely miss out on nonlinear relationships.

The correlation of the variables for the dataset: (by function DataFrame.corr())

	BEDS	BATHS	SQUARE_FEET	LOT_SIZE	YEAR_BUILT	DAYS_ON_MARKET	PRICE
BEDS	1.000000	0.650732	0.744928	0.505070	0.031643	-0.354029	0.683499
BATHS	0.650732	1.000000	0.827806	0.436802	0.417263	-0.379268	0.687761
SQUARE_FEET	0.744928	0.827806	1.000000	0.651106	0.261933	-0.428092	0.897301
LOT_SIZE	0.505070	0.436802	0.651106	1.000000	-0.159580	-0.189294	0.716929
YEAR_BUILT	0.031643	0.417263	0.261933	-0.159580	1.000000	-0.216015	0.150803
DAYS_ON_MAR	-0.354029	-0.379268	-0.428092	-0.189294	-0.216015	1.000000	0.342381
KET							
PRICE	0.683499	0.687761	0.897301	0.716929	0.150803	-0.342381	1.000000

import pandas as pd|
import seaborn as sns
fig, ax $=$ plt.subplots(figsize=(14, 10))
\#sns.set(font_scale=1.4)
sns.heatmap(Newton1.corr(), ax=ax, linewidths=0.05, cmap="magma", annot=True) plt.show()

> Application to Linear Regression

Suppose the data follows linear model $y=h(\vec{x})+\epsilon$ with unmodeled error ϵ.

Suppose $h(\vec{x})=\vec{\theta}_{*}{ }^{T} \vec{x}$ and the error ϵ follows normal distribution

$$
\epsilon \sim \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

From the Training Data: $\left(\vec{x}^{(i)}, y^{(i)}\right)$ for $i=1 \ldots n$.
To minimize the cost function, by normal equation,

$$
\vec{\theta}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

Proposition: The covariance matrix of $\vec{\theta}$ can be calculated by

$$
\operatorname{Cov}(\vec{\theta})=\sigma^{2}\left(X^{T} X\right)^{-1}
$$

Lemma. The covariance matrix of $\vec{z}=A \vec{x}$ is

$$
\operatorname{Cov}(\vec{z})=A \operatorname{Cov}(\vec{x}) A^{T}
$$

Proof of the Lemma (Exercise)

$$
\begin{aligned}
\operatorname{Cov}(\vec{z}) & =E\left(\vec{z} \vec{z}^{T}-E(\vec{z}) E(\vec{z})^{T}\right) \\
& =E\left(A \vec{x}(A \vec{x})^{\wedge} T-E(A \vec{x}) E(A \vec{x})^{T}\right) \\
& =A E\left(\vec{x} \vec{x}^{T}-E(\vec{x}) E(\vec{x})^{T}\right) A^{T} \\
& =A \operatorname{Cov}(\vec{x}) A^{T}
\end{aligned}
$$

Proof of the Proposition: $\quad \operatorname{Cov}(\vec{\theta})=\sigma^{2}\left(X^{T} X\right)^{-1}$

$$
\begin{aligned}
\operatorname{Cov}(\vec{\theta}) & =\operatorname{Cov}\left(\left(X^{T} X\right)^{-1} X^{T} \vec{y}\right) \\
& =\operatorname{Cov}\left(\left(X^{T} X\right)^{-1} X^{T}\left(X \theta_{*}+\epsilon\right)\right) \\
& =\operatorname{Cov}\left(\theta_{*}+\left(X^{T} X\right)^{-1} X^{T} \epsilon\right) \\
& =\operatorname{Cov}\left(\left(X^{T} X\right)^{-1} X^{T} \epsilon\right) \\
& =\left(X^{T} X\right)^{-1} X^{T} \sigma^{2} I\left(\left(X^{T} X\right)^{-1} X^{T}\right)^{T} \\
& =\sigma^{2}\left(X^{T} X\right)^{-1}
\end{aligned}
$$

Here, $\vec{\theta}_{*}$ is the true parameter.
II. We want to understand \mathbf{p}-values and confidence intervals of the parameters θ_{i}

Review:

The sample mean of test statistics $x^{(1)}, \ldots, x^{(n)}$ is

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x^{(i)}
$$

Central Limit Theorem (CLT): Assume that the distribution of test statistics $x^{(1)}, \ldots, x^{(n)}$ is drawn independently from a distribution with mean μ and variance σ^{2}, then the sample mean follows normal distribution

$$
\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \xrightarrow{n \text { large }} \mathscr{N}(1,0)
$$

The $\mathbf{1} \boldsymbol{-} \boldsymbol{\alpha}$ confidence interval for μ is a set I such that

$$
\left[\bar{x}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right), \bar{x}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)\right]
$$

More confidence intervals

The above explicit calculation for confidence interval is by CLT and the more general definition of confidence interval.

Suppose we know the distribution for Z.
The $1-\alpha$ confidence interval for any statistic Z is a set $I=[a, b]$ such that

$$
P(a<Z<b)=1-\alpha
$$

> Statistical properties of least squares estimate:

Suppose $y=\vec{\theta}_{*}^{T} \vec{x}+\epsilon$ with unmodeled error $\epsilon \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$
The linear parameters $\hat{\vec{\theta}}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}$ are normally distributed around the true solution $\vec{\theta}_{*}$ with covariance matrix $\operatorname{Cov}(\hat{\vec{\theta}})=\sigma^{2}\left(X^{T} X\right)^{-1}$.

$$
\widehat{\vec{\theta}} \xrightarrow{\sim} \operatorname{Normal}\left(\vec{\theta}_{*}, \sigma^{2}\left(X^{T} X\right)^{-1}\right)
$$

We can estimate the variance σ^{2} of ϵ from the data by the unbiased estimator:

$$
\hat{\sigma}^{2}=s^{2}=\frac{1}{n-d-1} \sum_{i=1}^{n}\left(y^{(i)}-\widehat{y}^{(i)}\right)^{2}
$$

$$
(n-d-1) s^{2} \sim \sigma^{2} \chi_{n-d-1}^{2}
$$

$>$ Confidence Interval for $\hat{\theta}$

If we know σ, the $1-\alpha$ confidence interval around each θ is

$$
\left[\hat{\theta}-z \alpha / 2 \sigma \sqrt{\left(X^{T} X\right)_{i i}^{-1}}, \quad \hat{\theta}+z \alpha / 2 \sigma \sqrt{\left(X^{T} X\right)_{i i}^{-1}}\right]
$$

$>$ Hypothesis Tests for $\hat{\theta}$:

If we know σ, to test the hypothesis that $\theta_{i}=0$, that is the i-th feature has no bearing on the outcome, we write the standardized \boldsymbol{z}-Score of $\boldsymbol{\theta}_{\boldsymbol{i}}$ (test statistic)

$$
Z_{i} \approx \frac{\widehat{\theta}_{i}}{\sigma \sqrt{\left(X^{T} X\right)_{i i}^{-1}}}
$$

t-distributions and t-tests

We can estimate the variance σ^{2} of ϵ from the data by the unbiased estimator:

$$
\hat{\sigma}^{2}=s^{2}=\frac{R S S(\theta)}{n-d-1}
$$

Since we need to estimate σ^{2} by s^{2}, the distribution needs to be modified to be t-distribution, and the corresponding Confidence Interval is

$$
\left[\hat{\theta}-t_{n-d-1, \alpha / 2} s \sqrt{\left(X^{T} X\right)_{i i}^{-1}}, \quad \hat{\theta}+t_{n-d-1, \alpha / 2} S \sqrt{\left(X^{T} X\right)_{i i}^{-1}}\right]
$$

The test score/statistics for hypothesis test will be
\boldsymbol{t}-Score of $\boldsymbol{\theta}_{\boldsymbol{i}}$ is

$$
t_{i} \approx \frac{\widehat{\theta}_{i}}{s \sqrt{\left(X^{T} X\right)^{-1}}}
$$

t -distribution is close to z -distribution when the degree of freedom $n-d-1$ is large.

> III (Best) Subset Selection Methods

Choose all possible subset combinations of inputs x_{1}, \ldots, x_{d}.
With d variables, there are 2^{d} many distinct combinations.
Identify the best model among these models.

Algorithm:

1. Let M_{0} be the null model, $y=\theta_{0}+\epsilon$. The predictor is the sample mean of response.
2. For each $k=1,2, \ldots, d$, fit all $\binom{d}{k}$ models that contain exactly k predictors.
3. Pick the best model that with (smallest RSS) and call it M_{k}
4. Select a single best model from M_{0}, \ldots, M_{d} (by RSS?)

Pros of best subset selection:

1. Straightforward to carry out.
2. Conceptually clear.

Cons of best subset selection

1. The search space too large (2^{d} models), may lead to overfit.
2. Computationally infeasible: too many models to run.

For example, if $\mathrm{d}=20$, there are 2^{20} models.
statsmodels.api/ smf.ols / model.summary()

Dep. Variable:	PRICE	R-squared:	0.84			
Model:	OLS	Adj. R-squared:	0.822			
Method:	Least Squares	F-statistic:	44.77			
Date:	Sat, 23 Jan 2021	Prob (F-statistic):	$1.23 \mathrm{E}-18$			
Time:	13:52:30	Log-Likelihood:	-817.45			
No. Observations:	58	AIC:	1649			
Df Residuals:	51	BIC:	1663			
Df Model:	6					
	coef	std err	t	$P>\|t\|$	[0.025	0.975]
Intercept	-832500.00	2420000.00	-0.35	0.73	-5680000.00	4020000.00
BEDS	27580.00	55400.00	0.50	0.62	-83700.00	139000.00
BATHS	-66690.00	60100.00	-1.11	0.27	-187000.00	53900.00
SQUARE_FEET	426.23	70.62	6.04	0.00	284.45	568.01
LOT_SIZE	22.79	8.79	2.59	0.01	5.14	40.43
YEAR_BUILT	403.80	1240.96	0.33	0.75	-2087.54	2895.14
DAYS_ON_MARKET 2761.00		6061.43	0.46	0.65	-9407.82	14900.00

More error prediction methods.
Mean Square Error $M S E=\frac{R S S}{n}$

O. R-squared

There is human readable scoring statistic is \mathbf{R}-squared calculated by

$$
R^{2}=1-\frac{R S S}{S S_{\text {total }}}=1-\frac{R S S}{\sum_{i=1}^{n}\left(y^{(i)}-\bar{y}\right)^{2}}
$$

So $R^{2}=1$ is perfect correlation.

The MSE and R-squared reflects the training error. However, a model with larger R-squared/ or smaller MSE error is not necessarily better than another model with smaller R-squared when we consider test error!

Next we will introduce Adjusted R^{2}, Mallows' C^{p}, AIC, BIC for error prediction.

In the following classes, we will also introduce Validation/cross-validation approach.

1. Adjusted R-squared. Suppose we check subset of size k in totally d features.

The adjusted R -squared, taking into account of the degrees of freedom

$$
\operatorname{adjusted} R^{2}:=1-\frac{R S S(k) /(n-k-1)}{\sum_{i=1}^{n}\left(y^{(i)}-\bar{y}\right)^{2} /(n-1)}
$$

With more inputs, the R^{2} always increase, but the adjusted R^{2} could decrease since more irrelevant inputs are penalized by the smaller degree of freedom of the residuals. The adjusted R -squared is preferred over the R -squared in evaluating models.

2. Mallows' $\boldsymbol{C}_{\boldsymbol{p}}$.

The statistic of Mallow's C_{p} is defined as

$$
\text { Mallows' } \boldsymbol{C}_{\boldsymbol{p}}:=\frac{1}{n}\left(R S S(k)+2 k s_{d}^{2}\right)
$$

Here, $\mathrm{s}_{\mathrm{d}}^{2}=\frac{R S S}{n-d-1}$ is estimated with all features and $\operatorname{RSS}(k)$ is the RSS with k features.

Mallows' C_{p} is an unbiased estimate of test MSE. (that is $E\left(C_{p}\right)=\frac{1}{n} R S S_{\text {test }}$)
The model with the smallest C_{p} is preferred.

3. Akaike information criterion (AIC)

The goal of AIC is to maximize the predictive likelihood.

$$
A I C:=\frac{1}{n s_{d}^{2}}\left(R S S(k)+2 k s_{d}^{2}\right)
$$

Here, $\mathrm{s}_{\mathrm{d}}^{2}=R S S /(n-d-1)$
When Gaussian likelihood is assumed in least square regression. The model with the smallest AIC is preferred.
4. Schwarz's Bayesian information criterion(BIC)

For a linear model with d inputs

$$
B I C:=\frac{1}{n s_{d}^{2}}\left(R S S(k)+k s_{d}^{2}(\log n)\right)
$$

Again, the model with the smallest BIC is preferred.
It replaces $2 d s_{d}^{2}$ from AIC by $d s_{d}^{2}(\log n)$). So, for $\log n>2$ or $n>7$, BIC penalizes more heavily the models with more number of inputs.

Subset selection using C_p, AIC, BIC, Adjusted R2

Since the computation of best subset selection is too heavy, we introduce two methods with less computation.

1. Forward Subset Selection

The algorithm starts by fitting the intercept θ_{0}, and then sequentially adds into the model the variable that most improves the fit.

Algorithm:

1. Let M_{0} be the null model, $y=\theta_{0}+\epsilon$. The predictor is the sample mean of response.
2. For each $k=0,1,2, \ldots, d-1$, consider all $d-k$ models that augment the predictors in M_{k} with one additional predictor.
3. Pick the best model that with (smallest RSS) and call it M_{k+1}
4. Select a single best model from M_{0}, \ldots, M_{d} by AIC or BIC or C_{p} or adjusted R^{2}.

Forward Subset Selection has less models ($1+d(d+1) / 2)$, hence less computation. Once an input is in, it does not get out. No problem for first n-steps if $d>n$.

2. Backward Subset Selection

Backward subset regression starts with the full model and sequentially deletes the predictor with the smallest z-score.

Algorithm:

1. Start with the largest model M_{d} with all d inputs.
2. For $k=d, d-1, \ldots, 1$, Consider all k models that contain all but one of the predictors in M_{k} for a total of $k-1$ predictors.
3. Pick the best model that with (smallest RSS) and call it M_{k+1}
4. Select a single best model from M_{0}, \ldots, M_{d} by AIC or BIC or C_{p} or adjusted R^{2}.

Forward Subset Selection has less models $(1+d(d+1) / 2)$, hence less computation. Once an input is out, it does not get in. No applicable to the case with $d>n$

Recall the least squares solution $\vec{\theta}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}$
The matrix $H=X\left(X^{T} X\right)^{-1} X^{T}$ is the projection matrix.

$$
\hat{y}=X \vec{\theta}=H \vec{y}=\operatorname{Proj}_{\mathrm{v}} \vec{y}
$$

H is symmetric and idempotent.
Eigenvalues of H are either 1 or 0.

Trace $(H)=\operatorname{rank}(H)$

$$
\|\vec{y}\|^{2}=\|X \vec{\theta}\|^{2}+\|\vec{y}-X \vec{\theta}\|^{2}
$$

IV. Gauss-Markov Theorem.

Suppose the data follows linear model $y=\vec{\theta}^{T} \vec{x}+\epsilon$ with error $\epsilon \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$

Gauss-Markov Theorem. Among all linear unbiased estimates for the solution to $X \hat{\theta}=\vec{y}$, the least squares estimate $\hat{\theta}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}$ has the smallest variance.

Proof: Suppose $\vec{\theta}=A \vec{y}$ is another unbiased linear estimate.
By unbiasedness, $E(A \vec{y})=\vec{\theta}_{*}$, that is $E(A(X \vec{\theta}+\epsilon I))=\vec{\theta}_{*}$. Hence $A X=I$
By Lemma, $\operatorname{Cov}(\vec{\theta})=A \operatorname{Cov}(\vec{y}) A^{T}=\sigma^{2} A A^{T}$
By Proposition, $\operatorname{Cov}(\hat{\theta})=\sigma^{2}\left(X^{T} X\right)^{-1}$

Let $D=A-\left(X^{T} X\right)^{-1} X^{T}$, then $D X=0$.

Then $A A^{T}-\left(X^{T} X\right)^{-1}=D D^{T}$ which is positive semidefinite.

Remarks:

The Gauss-Markov Theorem implies that the least squares estimator has the smallest mean squared error of any unbiased linear estimator.

Least squares estimator is the Best Linear Unbiased Estimator (BLUE).

There may still exists biased estimators with a smaller mean squared error. That is, we may be able to trade a small increase in bias for a large reduction in variance.

We already learned Ridge/ Lasso/ Elastic net regression methods for regularization.
Subset selection method provides another way of doing this. If your selection procedure drops coefficients whose true value is nonzero, you will incur an error due to bias. However, subset selection is a discrete process and so often exhibits high variance.
> Feature/variable selection

Not all existing input variables are useful for predicting the output. Keeping redundant inputs in model can lead to poor prediction and poor interpretation.

1. Prediction accuracy: Least squares estimates often have low bias at the cost of high variance. Prediction accuracy can sometimes be improved by shrinking some coefficients to zero. (reduce variance)
2. Interpretation power: With a large number of related parameters, one often wants to find a small number of predictors with strongest effects.

- We already learned Shrinkage/regularization methods to constrain some regression parameters to 0 .
- We also learned Best Subset Selection Methods.
- Later, we also have dimension reduction method for high dimension data analysis.

Useful libraries of Python:

1. NumPy: For large, multi-dimensional arrays and matrices.
2. pandas: data manipulation and analysis.
3. Matplotlib: Visualization with Python.
4. seaborn: statistical data visualization visualization based on Matplotlib.
5. scikit-learn: various classification, regression and clustering algorithms.
6. Statsmodels: classes and functions for the estimation of statistical models.
7. ...

Libraries for deep learning:

1. TensorFlow: focus on training and inference of deep neural networks.
2. Keras: interface for the TensorFlow.
3. Pytorch: focus on computer vision and natural language processing.
4. OpenCV: real-time computer vision.
