
Section 3. Ridge and LASSO Regressions

Math 7243-Machine Learning and Statistical Learning Theory – He Wang

1. Locally weighted linear regression
2. Interpretation in Probability
3. Ridge Regression
4. Lasso Regression  
5. Elastic net Regression



Linear Model Assumption: ℎ �⃗� = �⃗�!�⃗� = 𝜃" + 𝜃#𝑥# +⋯+ 𝜃$𝑥$

Training Data
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If rank X=d+1, argmin
,

𝑅𝑆𝑆(�⃗�) is given by 

𝐷 = �⃗� % , 𝑦 % | 𝑖 = 1, …𝑛



Ø Predict house price

Potential Disadvantage of a parametric 
approach:   The (linear) model we 
choose will usually not match the true 
unknown form of ℎ �⃗� . If the chosen 
model is too far from the true ℎ �⃗� , then 
our estimate will be poor.

We can try to solve this problem by choosing 
flexible models that can fit many different 
possible functional forms flexible for ℎ �⃗� . But 
in general, fitting a more flexible model 
requires estimating a greater number of 
parameters. 



Potential Disadvantage: overfitting the data. 
These more complex models can lead to a phenomenon that they follow the 
errors, or noise, too closely.

For example, New assumption: 

ℎ 𝑥# = 𝜃" + 𝜃#𝑥# + 𝜃(𝑥#( + 𝜃- 𝑥# + 𝜃. log 𝑥#

Suppose �⃗� =
𝑥#
𝑥( , we can try polynomial model using new features 

𝑥#, 𝑥(, 𝑥#( , 𝑥((, 𝑥#𝑥(, 𝑥#-, 𝑥(-, 𝑥#(𝑥(, 𝑥#𝑥((, 𝑥#. , 𝑥(., 𝑥#-𝑥(, 𝑥#(𝑥((, 𝑥#𝑥(-, …



Ø Locally weighted regression 

x

Goal: Evaluate h at certain x

ℎ �⃗� = �⃗�!�⃗� = 𝜃" + 𝜃#𝑥#

Ø Recall Linear Regression: Find 

to minimize the RSS cost function:
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Ø Minimize new weighted cost function
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Claim: ∇, 𝐽 = 2𝑋!𝑊(𝑋�⃗� − �⃗�)



We need the training data as well as the parameters to make a prediction.

𝜏 = 1

𝜏 = 50𝜏 = 20

𝜏 = 5







A non-parametric inference method estimates  without parameters, or 
with an infinite number of parameters. 

A parametric inference method gives a predictor function ℎ, �⃗� with a finite 
number of parameters 𝜃", 𝜃#, … , 𝜃$ .

Given training Data 𝐷 = �⃗� % , 𝑦 % | 𝑖 = 1, …𝑛



𝜏 = 1 𝜏 = 50

𝜏 = 1 𝜏 = 50



Ø Bias-Variance Trade Off (first view)

When 𝜏 = 1, if we change the training data from the same model and 
recompute the linear regression(or classifier), the change in the fit is very high.

By contrast, when 𝜏 = 50, if we change the training data from the same model 
and recompute the linear regression, the change in the fit is very low.

For a class of models, the bias roughly is the expected error of the best model 
(regression or classifier) in the model class given a random set of training data. 
(This part of the generalization error is due to wrong assumptions.) 

The variance is roughly the sensitivity of the model to the training data.  (This part 
is due to the model’s excessive sensitivity to small variations in the training data.)

Total Error = (Bias)2 + Variance + Irreducible Error

This contrast between the two algorithms is know as the bias-variance trade off. 

Irreducible Error is due to the noisiness of the data itself. The only way to reduce this
part of the error is to clean up the data. 



The best fit lies somewhere in between the extreme ends.

𝜏 = 5



Remark: Clean up the data.



Ø Interpretation in Probability 

Suppose the data follows (linear or non-linear) model with unmodeled error 𝜖.

Goal:  maximize the probability: 

Data:

This unmodeled error 𝜖 is also called irreducible error. 

It is a random error term, which is independent from �⃗� and has mean 𝐸(𝜖)=0.

𝑦 = ℎ �⃗� + 𝜖

𝐷 = �⃗� % , 𝑦 % | 𝑖 = 1, …𝑛

𝑃 𝑦 % | �⃗� % ; �⃗�



• Our focus is on techniques for estimating ℎ �⃗� with the aim of minimizing 
the reducible error comes from the model. 

• Keep in mind that the irreducible error will always provide an upper bound 
on the accuracy of our prediction for y = ℎ �⃗� . This bound is almost always 
unknown in practice. 

• Even if it was possible to form a perfect estimate for ℎ �⃗� , so that our 
estimated response took the form,  our prediction would still have some 
error in it! 

• The reason is that 𝜖 does not come from the model. we cannot control or 
reduce the error introduced by 𝜖. The quantity 𝜖 may also contain 
unmeasurable variation. 



That is 

So,

A more restrictive (but common) assumption: 
Suppose the unmodeled errors follow normal 
distribution,

Suppose the unmodeled errors are independent identical distribution (IID). 

Suppose the data follows linear model with unmodeled error 𝜖.

Ø Linear Regression

𝜖 ~ Normal 0, 𝜎(

𝑦(%)|�⃗� % ~ Normal(�⃗�!�⃗� % , 𝜎()

That is 



Ø Interpretation in Probability 





RSS( �⃗� ) =

ℎ �⃗� = �⃗�!�⃗� = 𝜃" + 𝜃#𝑥# +⋯+ 𝜃$𝑥$

Ridge regression cost function: 
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Data:

Model:

Square sum:

Ø Ridge Regression

Ø Feature selection (Shrinkage/regularization methods)

𝐷 = �⃗� % , 𝑦 % | 𝑖 = 1, …𝑛



Lagrange Multiplier method (Karush–Kuhn–Tucker)

Minimize the Ridge cost function

is equivalent to minimize RSS(�⃗�) subject to  ∑6&#$ 𝜃6( − t ≤ 0

𝐽3%$45(�⃗� ) = RSS(�⃗�) + λ+
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Ø Remarks on Ridge Regression

1. The first term measures goodness of fit, the smaller the better.

2. The second term is called shrinkage penalty, which shrinkage 𝜃% towards to 0.

3. The shrinkage reduces variance (at the cost increased bias). Ridge regression works 

best in situations where the least squares estimates have high variance.

4. The intercept 𝜃" is not penalized. 

5. Ridge Regression is affected by the scale. (Least squares solution is unaffected by 

the scale. )

6. Ridge regression also has substantial computational advantages.
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If the mean of the data matrix 𝑋 is zero, then 𝜃" = 0, in this case,  

= 𝑋�⃗� − �⃗�
!
𝑋�⃗� − �⃗� + 𝜆�⃗�!�⃗�

Calculate ∇, 𝐽 = 0, we get  

�⃗� = 𝑋^𝑋 + λ𝐼 _`𝑋^�⃗�



Before applying the Ridge/Lasso/ Elastic net regressions, we need to rescale an 
original variable to have equal range or variance.

Remark: (Standardization of feature variables/ Feature Scaling)

1. Min-max scaling/normalization/ 0-1 scaling (Scikit-Learn: MinMaxScaler) 

2. Standardization(Scikit-Learn: StandardScaler)

𝑥% −min(𝑥%)
max 𝑥% −min(𝑥%)

𝑥% −𝑚𝑒𝑎𝑛(𝑥%)
𝑠(𝑥%)

where 𝑠 𝑥 is the standard deviation of 𝑥. 





Ø Lasso Regression

Lasso regression cost function: 

𝐽7899:(�⃗� ) = RSS �⃗� + λ+
6&#

$

|𝜃6|

Minimize the Lasso cost function

is equivalent to minimize RSS(�⃗�) subject to  ∑6&#$ |𝜃6| − t ≤ 0

�⃗�7899: = argmin
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,

𝑅𝑆𝑆(�⃗�) subject to ∑6&#$ |𝜃6| − t ≤ 0



Ø Remarks on Lasso and Ridge Regressions

1. Lasso tends to completely eliminate the weights of the least important 

features. (It performs variable selection, and yields sparse models.) Hence, 

Lasso is more interpretable than ridge.  

2. The lasso implicitly assumes that a number of the coefficients truly equal zero.

3. Ridge regression outperforms the lasso in terms of prediction error.

4.   Both ridge and Lasso can improve over the traditional least squares by trade off 

variance with bias. 

5.   There are significant improvement when the variance of the least squares is 

large, mostly with small n and large d.

6.   Lasso has feature selection, while ridge does not.

7. Use cross validation to determine which one has better prediction.
8.   Ridge has closed form solution. Lasso generally does not have a closed form 
solution.

0.    Lasso stands for Least Absolute Shrinkage and Selection Operator.





Ø Elastic net Regression

Elastic net regression cost function: 

𝐽(�⃗� ) = RSS �⃗� + λ+
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Generalizations:

Generalizations

𝐽(�⃗� ) = RSS �⃗� + λ+
6&#

$
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For any positive number q.



George Box 1987: “All models are wrong, but some are useful.” (No Free Lunch Theorem)
Hence, no one method dominates all others over all possible data sets. On a particular data 
set, one specific method may work best, but some other method may work better on a 
similar but different data set.

It is an important task to decide for any given set of data which method produces the best 
results. Selecting the best approach can be one of the most challenging parts of machine 
learning in practice. (Project?)

We introduced a few different statistical learning methods. 
Which one is the best approach? 


