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Section 17   Topological Data Analysis - An introduction

1. Overview of topology and data
2. Homology and BeF numbers
3. Persistence homology 
4. TDA Mapper 
5. Applica4ons 

 



Topological Data Analysis (TDA) an approach to the analysis of datasets using 
techniques from topology.

1. Fit topological spaces to data. 

2. Compute topological invariants of spaces.

3. Apply ML to the invariants.

4. Inference the proper4es of the data.

TDA is a generalization of clustering and manifold learning.

Ø Overview: 



Ø Topological Spaces: 

• Mathematical definition: A topological space means a set ! with a family of 
subsets, so-called open sets, satisfying the property that the total set X and 
the empty set ∅ are open, the intersection of any two open sets is open, and 
an arbitrary union of open sets is open.

• You can learn topological spaces in Topology I, aUer you learned real analysis. 
Then you can learn algebraic topology courses using the methods from group 
theory, ring and fields, and homological algebra.  

• Examples of topological spaces: geometric objects like lines, planes, 3-
dimensional spaces, Euclidean Spaces ℝ$, spheres %$ , torus, Mobiüs Band, 
Klein Bo^le, manifolds, metric spaces etc. 



1. Homeomorphism.

2. Homotopy equivalence. 

Ideal Goal: Classification of all topological spaces up to some equivalent relations.

! ≅ '

! ≃ '

Con4nuous deforma4ons on spaces.

Con4nuous deforma4ons on maps.

≄

≇

≃ ≃



Joke: Topologists cannot tell their donut from their coffee cups.

≅

"Proof”: 



• Let + be a smooth compact ,-manifold. 
• Let %$ be the ,-sphere. 

n = 3, Perelman 2003 ( 2006 Fields medal), Thurston (1982 Fields), Hamilton, ... Poincare
n = 4, Freedman (1982) (1986 Fields medal).
n ≥5, Smale (1961) ( Fields1966, Wolf).  (n = 5, Zeeman (1961), n = 6, Stallings (1962)....)

If M ≃ %$, then + ≅ %$.

A story: 



Theorem: The Euler Characteris4c defined by

1:= (#vertices) − (#edges) + (#faces)

is independent of the triangula4on, and invariant under topological deforma4ons.

Example: Circle

Ø The Euler Characteristic



Euler Characteristic

≄So,



The projective plane

The sphere CD



The torus

The Klein boOle





Betti Numbers:

Theorem: Euler Characteristic



• Coordinate invariance: topological features/invariants do not rely on any 

coordinate system. ) no need to have data with coordinate or to embed data in 

spaces with coordinates.

• Deformation invariance: topological features are invariant under 

homeomorphism.

• Compressed representation: Topology offer a set of tools to summarize and 

represent the data in compact ways while preserving its global topological 

structure.



• A general mathematical framework to encode the evolution of the topology 
(homology) of families of nested spaces (filtered complex, sublevel sets,...).

• Multiscale topological information.
• Barcodes/persistence diagrams can be efficiently computed.
• Stability properties
• Formalized in its present form by H. Edelsbrunner (2002) et al and G. 

Carlsson et al (2005) - wide development during the last two decades:

Ø Persistent homology

• 2005: stability of persistence for con4nuous func4ons (D. Cohen-
Steiner et al).

• 2009 - 2012: algebraic stability of persistence modules (F.C. et al).
• 2014: the GUDHI soUware plateform (J.-D. Boissonnat et al). Also 

several other soUs since 2005: Dionysus, (J)Plex, PHAT,...
• Last few years: sta4s4cal aspects of persistence and machine 

learning.



Ø The Topology of Point Cloud  Data

Local connections are noisy, depending on observer's scale!

• Is it a circle or dots?

• How to find robust topology at different scales?

EF = 1 
EG = 3

Associate to a point cloud a sequence of 
simplicial complexes.

A point cloud



Betti numbers, Persistence barcodes





Persistence barcodes 

EF

EG

Filtra4on



Persistence barcodes Persistence diagrams

Persistence barcodes and Persistence diagrams



Barcodes

Betti Numbers



Persistence landscapes

[Bubenik 2012]

Persistence landscapes



Ø Simplicial complex

Definition: A k-simplex is a convex hull of k+1 affinely independent points, which 
are called vertices. 



Standard n-simplex:

Barycentric coordinates: 



Definition:  A simplicial complex K is a collection of simplices such that

1. The intersec4on of any two simplices is a simplex, and
2. Every face of every simplex in the complex is also in the complex.

Answer: 

{ø}
{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10}
{2,3} {3,4} {4,5} {6,7} {7,9} {9,6} {7,8} {8,10} {10,7} 
{6,7,9} {7,10,8}

Example: What are all the simplices in this simplicial complex? 

• Faces: the simplices of K.
• j-skeleton: the subcomplex made of the simplices of dimension at most j.
• Dimension of K: the maximum of the dimensions of the faces. K is 

homogenous of dimension n if any of its faces is a face of a n-dimensional 
simplex.



NOT simplicial complex
Simplicial complex

Simplicial complexes can be seen at the same time as geometric/topological
spaces (good for top./geom. inference) and as combinatorial objects
(abstract simplicial complexes, good for computations).



≅

Topological spaces Simplicial complex 

Triangulation:



Ø Homology groups

Chain complexes over a field H or a ring I

Let J be a K-dimensional simplicial complex. 

For each 0 ≤ N ≤ K, Let {OG, … , OQ} be the set of all N simplices of J.

The R-chain:

Sum and scalar product of k-chains:

Group (vector space) of k-chains is ST(J) is the vector spaces of all k-chains.



The chain complex U∗(W) is the sequence of chain groups SQ connected by 
boundary homomorphisms,

Here the boundary map XQ of a Y-simplex O is the sum of its (p-1)-dimensional faces:

Lemma: XQ XQZG = 0

[Q = ker XQThe group of cycles:

The group of boundary is ]Q = im XQZG



By Lemma, ]Q ⊆ [Q

The `-th homology group of K is the quotient 

aQ = [Q/]Q

The Y-th Betti number  of K is the rank of this group(vector space) 

EQ = rank aQ



Example:

We can see that (1,2)+(2,3)−(1,3) is an example of a k-cycle that is not a kk-boundary. 

It is a k-cycle because

X1({1,2} + {2,3} − {1,3}) = {2} − {1} + {3} − {2} − ({3} − {1}) = 0

But it is not a k-boundary because there are no 2-simplexes in S.



Example:



Example:



Example: Torus

27 × 18 matrix



Ø Persistent homology of functions

Persistent homology describes the homological features which persist as a 
single parameter changes. 

We take this parameter to be a threshold on the values of a function.

Local minima create a connected component in the corresponding sublevel set, 
while local maxima merge connected components. The pairing of birth and death 
is shown in the persistence diagram.

A func4on i: ℝ → ℝ (leU) and its 0-th persistence diagram (right).



Let + be a manifold and let i ∶ + → ℝ.

This function gives an increasing filtration of + by sublevel sets

+lmn = {o ∈ + | i (o) ≤ r}

Persistent homology for functions on manifolds



Tracking and encoding the evolution of the 0-dimensional homology, 1-dimensional
homology and 2-dimensional homology of the sublevel sets.

By Morse theory, the sublevel sets +lms only changes (up to homotopy) if t is a 
critical point. 



Persistence Diagram



Ø Stability properWes

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG09], [C., de Silva, 
Glisse, Oudot 12]



Ø Distance between persistence diagrams



Ø Data Visualization with TDA Mapper

Extracting insights from the shape of complex data using topology 
P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan, J. Carlsson & G. Carlsson
http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html

Data                coloring              Overlapping bins                      Graph

https://www.ayasdi.com/

https://research.math.osu.edu/tgda/mapperPBG.pdf

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html
https://www.ayasdi.com/
https://research.math.osu.edu/tgda/mapperPBG.pdf


A)  Data Set
Example:  Point cloud data  

represen4ng a hand.

B)  Func4on  f :  Data Set à ℝ
Example:  x-coordinate

f : (x, y, z) à x
C) Put data into overlapping bins. 

Example:  f-1(ai, bi) 

D) Cluster each bin & create network.
Vertex = a cluster of a bin.  

Edge = nonempty intersec4on             
between clusters



Function  f :  Data Set à ℝ
Ex 1:  x-coordinate

f : (x, y, z) à x

B. Coloring by filter value



Function  f :  Data Set à ℝ
Ex 1:  x-coordinate

f : (x, y, z) à x

( ( ) ( ) ( ) ( ) ( ) )

Put data into overlapping bins. 
Example:  f-1(ai, bi) 

This comes from the finite 
covering in topology. 

Function f can also be the probability density function for a Gaussian distribution. 



D) Cluster each bin 
& create network.

Vertex = a cluster of a bin.  
Edge = nonempty intersec4on between clusters

The size of a node indicates the number of 
points in the set represented by the node.

The color of a node indicates the value of the 
function f (red being high and blue being low)



A)  Data Set
Example:  Point cloud data  

representing a hand.

B)  Function  f :  Data Set à ℝ
Example:  x-coordinate

f : (x, y, z) à x
C) Put data into overlapping bins. 

Example:  f-1(ai, bi) 

D) Cluster each bin & create network.
Vertex = a cluster of a bin.  

Edge = nonempty intersection             
between clusters



In the next few examples, please note

1. The different types of data to which we can apply TDA mapper.

2. Several choices need to be made when applying TDA mapper. For example:

• How is the data modeled including how is the distance between data 
points calculated?

• How are the data put into overlapping bins?

Data                coloring              Overlapping bins                      Graph



Mapper on 3D Shape Database

Gurjeet Singh , Facundo Mémoli and Gunnar Carlsson, Topological Methods for the Analysis of High Dimensional
Data Sets and 3D Object Recognition. Eurographics Symposium on Point-Based Graphics (2007)

Each row of this image shows two poses of the same shape along with the Mapper result. For each 
Mapper computa4on, they used 15 intervals in the range of the filter with a 50% overlap. 
Euclidean distance is used between points. 



Three key ideas of topology that make extracting of patterns via shape possible. 

1.)  coordinate free. 
• No dependence on the coordinate system chosen. 
• Can compare data derived from different platforms

2.) invariant under “small” deformations. 
• less sensitive to noise

3.)  compressed representations of shapes. 
• Input:  dataset with thousands of points
• Output: network with 13 vertices and 12 edges. 

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html



5 intervals with 
50 percent 
overlap.

15 intervals 
with 50 percent 
overlap.

1,797 data points

data point:
8x8 matrix

Distance metric:
Euclidean

Filter function: 
principal SVD values

Node colors: 
filter values, 

red = high and 
blue = low

Nodes labels:
most frequently 

occurring digit in the 
associated clusters

Handwritten digits example: https://dl.acm.org/doi/pdf/10.1145/2627814

https://dl.acm.org/doi/pdf/10.1145/2627814


Applica4on: Basketball

Applications from paper 
http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html

Data:  rates (per minute played) of rebounds, assists, turnovers, steals, blocked 
shots, personal fouls, and points scored for 452 players.

è Input:  452 points in ℝ7

For each player, we have a vector
(rebounds/min,   assists /min,   turnovers /min,   steals /min,   blocked shots 
/min,   personal fouls /min,   points scored /min)=  (r, a, t, s, b, f, p)   in ℝ7

Distance: variance normalized Euclidean distance.
Clustering:  Single linkage. 

Filters:  principle and secondary SVD values.

Data

http://www.nature.com/srep/2013/130207/srep01236/full/srep01236.html


A) Low resolution map at 20 intervals for each filter B) High resolution map at 30 intervals for 
each filter. The overlap is such at that each interval overlaps with half of the adjacent 
intervals, the graphs are colored by points per game, and a variance normalized Euclidean 
distance metric is applied. Metric: Variance Normalized Euclidean; Lens: Principal SVD Value 
(Resolution 20, Gain 2.0x, Equalized) and Secondary SVD Value (Resolution 20, Gain 2.0x, 
Equalized). Color: red: high values, blue: low values.



Application 2:  US House of Representatives Voting records
Data:  (aye, abstain, nay, …. )= ( +1  ,      0     ,  -1  , … )
Distance:  Pearson correlation
Filters:  principal and secondary metric SVD

Clustering:  Single linkage. 



X-axis: 1990–2011. Y-axis: Fragmenta4on index. Color bars denote, from top to bo^om, 
party of the President, party for the House, party for the Senate (red: republican; blue: 
democrat; purple: split). The bo^om 3 panels are the actual topological networks for 
the members. Networks are constructed from vo4ng behavior of the member of the 
house, with an “aye” vote coded as a 1, “abstain” as zero, and “nay” as a -1. Each node 
contains sets of members. Each panel labeled with the year contains networks 
constructed from all the members for all the votes of that year. Note high 
fragmenta4on in 2010 in both middle panel and in the Fragmenta4on Index plot (black 
bar). The distance metric and filters used in the analysis were Pearson correla4on and 
principal and secondary metric SVD. Metric: Correla4on; Lens: Principal SVD Value 
(Resolu4on 120, Gain 4.5x, Equalized) and Secondary SVD Value (Resolu4on 120, Gain 
4.5x, Equalized). Color: Red: Republican; Blue: Democrats.



Application :  breast cancer gene expression
Data:  microarray gene expression data from 2 data sets, NKI and GSE2034
Distance:  correlation distance
Filters:  (1) L-infinity centrality:  f(x) = max{d(x, p) : p in data set} captures the structure of 
the points far      removed from the center or norm. 

(2) NKI:  survival vs. death.   GSE2034:  no relapse vs. relapse
Clustering:  Single linkage. 



Compare to  

Gene expression profiling predicts clinical outcome of breast cancer 

van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der 
Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley
PS, Bernards R, Friend SH 

Nature. 2002 Jan 31; 415(6871):530-6.

Breast cancer data sets:

1.)  NKI (2002): 
gene expression levels of 24,000 from 272 tumors. Includes node-negative and node-
positive patients, who had or had not received adjuvant systemic therapy.   Also includes 
survival information.

2.) GSE203414 (2005) 
expression of 22,000 transcripts from total RNA of frozen tumour samples from 286 lymph-
node-negative patients who had not received adjuvant systemic treatment.  Also includes 
time to relapse information.

http://bioinformatics.nki.nl/data.php

http://bioinformatics.nki.nl/data.php


http://danifold.net/mapper/

https://cran.r-project.org/web/packages/TDAmapper/

http://danifold.net/mapper/
https://cran.r-project.org/web/packages/TDAmapper/


ApplicaWons to clustering, segmentaWons, sensor networks,...

Persistence diagrams are defined and stable for a large class of continuous functions 
defined over (pre-)compact metric spaces.

Ref: F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Memoli, S. Oudot, Gromov-Hausdor Stable Signatures  
for Shapes using Persistence, Computer GraphicsForum (proc. SGP 2009), pp. 1393-1403, 2009.



Persistence diagrams can be reliably estimated from data (functions known 
through a point cloud data set approximating a topological space).

Previous approach can be generalized, leading to robust algorithms to compute the 
topological persistence of functions defined over point clouds sampled around 
unknown shapes
Ref:
F. Chazal, L. Guibas, S. Oudot, P. Skraba, Analysis of Scalar Fields over Point Cloud Data, proc. ACM Symposium on Discrete
Algorithms 2009.
F. Chazal, S. Oudot, Toward Persistence-Based Reconstruction in Euclidean Spaces, proc. ACM Symposium on Computational
Geometry 2008.



• P. Skraba, M. Ovsjanikov, F. Chazal, L. Guibas, Persistence-Based Segmentation of 
Deformable Shapes, Proc. Workshop on Nonrigid Shape Analysis and Deformable 
Image Alignment (NORDIA), Proc. CVPR 2010

Applications to non rigid shapes segmentation



PLLay: Efficient Topological Layer based on Persistence Landscapes, 
by Kwangho Kim, Jisu Kim, Manzil Zaheer, Joon Sik Kim, Frederic Chazal, 
Larry Wasserman.

Topological Data Analysis and Deep Learning

https://github.com/jisuk1/pllay/

https://papers.nips.cc/paper/2020/file/b803a9254688e259cde2ec0361c8abe4-Paper.pdf
https://github.com/jisuk1/pllay/


References: 

https://www.joperea.com/teaching/spring2020

https://yao-lab.github.io/2019_csic5011/

Persistence Theory: From Quiver Representations to Data Analysis, Book by Steve Oudot.

https://people.clas.ufl.edu/peterbubenik/intro-to-tda/

Topology and data, by Gunnar Carlsson
Topological pa^ern recogni4on for point cloud data, by Gunnar Carlsson
Persistent Homology and Applied Homotopy Theory, by Gunnar Carlsson

https://geometrica.saclay.inria.fr/team/Fred.Chazal/

http://graphics.stanford.edu/courses/cs233-21-spring/

Papers and Books

Courses
http://homepage.divms.uiowa.edu/~idarcy/COURSES/TDA/SPRING18/3900.html

https://scikit-tda.org/

https://www.joperea.com/teaching/spring2020
https://yao-lab.github.io/2019_csic5011/
http://bookstore.ams.org/surv-209/
https://people.clas.ufl.edu/peterbubenik/intro-to-tda/
http://www.ams.org/journals/bull/2009-46-02/S0273-0979-09-01249-X/
http://cdn.ayasdi.com/wp-content/uploads/2015/02/ayasdi-topological-pattern-recognition-for-point-cloud-data.pdf
https://arxiv.org/abs/2004.00738
https://geometrica.saclay.inria.fr/team/Fred.Chazal/
http://graphics.stanford.edu/courses/cs233-21-spring/
http://homepage.divms.uiowa.edu/~idarcy/COURSES/TDA/SPRING18/3900.html
https://scikit-tda.org/

