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Section  Mixture of Gaussians.   

• Mixture of Gaussians. 
• The EM Algorithm
• Factor Analysis

 



Ø Gaussian Discriminant Analysis (Review)

Data:  "⃗ ! , $ ! for classi-ication

Suppose

"⃗ | $ = 2 ~ 456789 (;⃗" , Σ")

Want probability > $ = 2 "⃗)

By Bayes’ Theorem, we calculate 

> $ > "⃗ $ = 2)and

The goal is to define some parametric family of probability distributions and then 
maximize the likelihood of your data under this distribution by finding the best 
parameters.

$~Categorical(B#, … , B$)



D~456789 (;⃗ , Σ )Multivariant Gaussian Distribution

X X X



Ø LDA

Suppose Σ% = Σ# = Σ

Log likelihood function

Calculate the partial derivatives and maximize the (log) likelihood function:

$ ∈ 0, 1 8HI $ ~ JK6H5L9M B



Ø QDA

Suppose Σ% 8HI Σ# may different.

Want maximize posterior probability: > $ = 2 "⃗) = > "⃗ $ = 2) >($ = 2)
>("⃗)

log > $ = 2 "⃗) = log> "⃗ $ = 2) + log>($ = 2) − log>("⃗)

= −12 log Σ" − 12 "⃗ − ;" &Σ"'# "⃗ − ;" + logB" + constant

If Σ% = Σ# = ⋯ = Σ(

= "⃗&Σ'#;" −
1
2;"

&Σ'# ;" + logB" − 12 log |Σ| + constant



Data:  "⃗ !

Ø Mixture of Gaussians. 

No label on points.
Unsupervised learning.

We wish to model the data by 
specifying a joint distribution

> "⃗ ! , R ! = > "⃗ ! |R ! > R !

Here R ! ~Categorical(B#, … , B$) B! ≥ 0; U
)*#

$
B) = 1

The parameters B) = > R ! = V

"⃗ ! |R ! = V ~ 456789(;) , Σ))



"⃗(!) was drawn from one of K Gaussians depending on R(!). 

Here:  R(!) ∈ {1, … , X} are latent random variables. They’re hidden/unobserved.

This is called the mixture of Gaussians (or Gaussian mixture) model. 
A Gaussian Mixture is a function that is comprised of several Gaussians

Latent random variables make the estimation problem difficult.

B! defines how big or small the Gaussian function will be.



Ø Mixture of Gaussians v.s. K-means 

K-means is the same as the mixture of Gaussian, where each Gaussian is 
spherical (zero mean, Identity covariance matrix)



The parameters of Gaussian Mixture model are B) , ;) and Σ). To estimate them, we
can write down the likelihood of our data:

• We have a hidden/latent variable R(!) for every observation.
• General problem: sum inside the log.
• How can we optimize this?

The random variables R(-) indicate which of the K Gaussians each "⃗(-) comes from.

If we knew what the R(!) were, the maximum likelihood problem will be easy.  

we could then write down the likelihood as



Maximizing this with respect to B., ;. and Σ. gives the parameters:

So, these estimate formulas are the same as in LDA/QDA. 

However, in our data here, we don’t know the information of R(!).



EM (Expectation-Maximization) for density estimation.

Ø EM algorithm

EM is an elegant and powerful method for finding maximum likelihood solutions 
for models with latent variables.

1. E-step:

• In order to adjust the parameters, we must first solve the inference 
problem: Which Gaussian generated each datapoint? 

• It tries to “guess” the value of the R(!) for each "⃗(!).
• We cannot be sure, so it’s a distribution over all possibilities. 

\) ! = > R ! = V "⃗(!); B , ; and Σ )

• For each M, V, set

By Bayes’ rule, (parameters from the previous step)



2. M-step:

• Each Gaussian gets a certain amount of posterior probability for each datapoint. 
• We fit each Gaussian to the weighted datapoints.
• We can derive closed form updates for all parameters.
• Maximize the expectation of the complete data log-likelihood function.



from sklearn.mixture import GaussianMixture

gmm = GaussianMixture(n_components=n_clusters, max_iter=50).fit(X)
gmm_scores = gmm.score_samples(X)

Log-likelihood of our data:• Scores:

sklearn

• Initial Value: (step 0)

1. Random initialization.
2. By K-means. 



Ø Factor Analysis

• In EM algorithm for Gaussian Mixture, we usually suppose there are 
sufficient data to be able to discern the multiple-Gaussian structure in 
the data. 

• This would be the case if our training set size 7 was significantly larger 
than the dimension H of the data. (7 ≫ H)

• Now, if 7 ≪ H, it might be difficult to model the data even with a single 
Gaussian, much less a mixture of Gaussian. (pixels of pictures.)

• If we model the data as Gaussian, and estimate the mean and 
covariance using the usual maximum likelihood estimators,

• The matrix Σ is not invertible and det(Σ)=0! 



• More generally, unless 7 exceeds H by some reasonable amount, the maximum 
likelihood estimates of the mean and covariance may be quite poor.

• Nonetheless, we would still like to be able to fit a reasonable Gaussian model to 
the data, and perhaps capture some interesting covariance structure in the 
data.

Possible Solutions: Put restrictions on Σ.

For example, choose to fit a covariance matrix Σ that is diagonal.

Recall that the contours of a Gaussian density are ellipses. A 
diagonal Σ corresponds to a Gaussian where the major axes of 
these ellipses are axis-aligned.



We may place a further restriction on the covariance matrix that not only must it 
be diagonal, but its diagonal entries must all be equal.
In this setting, we have Σ = _/`, where _/ is the parameter under our control.
The maximum likelihood estimate of _/ can be found to be:

This model corresponds to using Gaussians whose densities have contours that 
are circles (in 2 dimensions; or spheres/hyperspheres in higher dimensions)



However, restricting Σ to be diagonal also means modeling the different
coordinates "! 8HI ") of the data as being uncorrelated and independent. 
This will fail to capture interesting correlation structure in the data.

If we were fitting a full, unconstrained, covariance matrix Σ to data, it was 
necessary that 7 ≥ H + 1 in order for the maximum likelihood estimate Σ of not 
to be singular. Under either of the two restrictions above, we may obtain non-
singular Σ when 7 ≥ 2.

we will describe the factor analysis model, which uses more parameters than 
the diagonal Σ and captures some correlations in the data, but also without 
having to fit a full covariance matrix.


