
Math 7243-Machine Learning and Statistical Learning Theory – He Wang

Section 11Tree methods

Ø Tree-based method for regression
Ø Tree-based method for classification
Ø Bagging
Ø Random Forest 
Ø Boosting



o The Boosting problem (Kearns & Valiant 1988): Can a set of weak learners 
create a single strong learner.

o Decisions trees: splitting each variable sequentially, creating rectangular regions. 

• Making fitting/prediction locally at each region. 

• It is intuitive and easy to implement, may have good interpretation. 

• Lower prediction accuracy in general (weak learners). 

Bagging, random forests and boosting ... make fitting/prediction based on a 
number of trees. 

Bagging and Boosting are general methodologies, not just limited to trees. 

Ø Overview: 

• CART refers to Classification And Regression Trees.    



We first consider regression trees through an example of predicting Baseball players' salaries.  

This dataset was originally taken from the StatLib library maintained at Carnegie Mellon University.

AtBat Number of times at bat in 1986
Hits Number of hits in 1986
HmRun Number of home runs in 1986
Runs Number of runs in 1986
RBI Number of runs batted in in 1986
Walks Number of walks in 1986
Years Number of years in the major leagues
CAtBat Number of times at bat during his career
CHits Number of hits during his career

CHmRun Number of home runs during his career
CRuns Number of runs during his career
CRBI Number of runs batted in during his career
CWalks Number of walks during his career
PutOuts Number of put outs in 1986
Assists Number of assists in 1986
Errors Number of errors in 1986
Salary 1987 annual salary on opening day in thousands of 
dollars

Ø Regression trees (A case study):



• Predictors/Inputs/Covariates:

1. Years (the number of years that he has played in the major leagues)

2. Hits (the number of hits that he made in the previous year).  

Preparing data: remove the observations with missing data and log-transformed 
the Salary (preventing heavy right-skewness) 

• Response/Outputs: Salary.  

A regression tree for predicting the log salary of a baseball player, based on the 
number of years that he has played in the major leagues and the number of hits that 
he made in the previous year. 



• The number in each terminal node (leaf) is the mean of the response for the 
observations that fall there. 

In the example, the two internal nodes are indexed by Year < 4.5 and Hits < 117.5.

• The lines connecting nodes are called branches. 
• Trees are typically drawn upside down. 

In the example, the tree has two internal nodes and three terminal nodes, or 
leaves. 

• At a given internal node, 
the label of the form 𝑋! < 𝑡" indicates the left-hand branch is from that split, 
the right-hand branch corresponds to 𝑋! ≥ 𝑡".

• Each internal node represents a splitting.  



The three-region partition for the Hitters data set from the regression tree illustrated in the tree figure. 

On Regions 𝑅#, 𝑅$, 𝑅%, the mean-log-salary are 5.11,  6 and 6.74. 

1,000𝑒&.#() = $165,174; 1000𝑒&.*** = $402,834, 𝑎𝑛𝑑 1,000𝑒+.),( = $845, 346.

Region partitions from trees

Our prediction for any players in 𝑅#, 𝑅$ and 𝑅% are, respectively 



• Trees involve a series of splitting of the data, each time by one variable. 

• The series of actions taken place sequentially creates a tree-like results. 

• As in tree figure, the terminal nodes are the three indexed by the 
numbers, which represent the regions 𝑅#, 𝑅$ 𝑎𝑛𝑑 𝑅%. These regions 
constitute the final partition of the data. 

1. Run the splitting according to input values sequentially, and obtain final 
partition of the data in regions 𝑅#, … , 𝑅-.  

2. For any new observation with covariates �⃗� in region 𝑅", we predict its 
response by the average of the responses of the data points in region 𝑅".  

Two step towards prediction: 



Ø How to split? 

Suppose we wish to partition a region 𝑅. In other words, we wish to separate the 
data in region 𝑅 into two parts, data 𝑅# 𝑎𝑛𝑑 𝑅$, according to input values.

Question: What would be the optimal or efficient split in some sense? 

Only two flexibility in the split: 

1. Choice of the input variable to split.

2. The cut point of the split of that chose input.  

Imagine that this is the final split of 𝑅: 𝑅# 𝑎𝑛𝑑 𝑅$ would be leaves. We would 
use the mean response of data in 𝑅# 𝑎𝑛𝑑 𝑅$ to predict the response of any 
new/old observations.

We wish our choice of 𝑅# 𝑎𝑛𝑑 𝑅$ would be optimal in the sense of achieving 
minimum prediction error on the training data in region 𝑅.



Ø Recursive binary splitting

A greedy algorithm (greedy means it is optimal at the current step): 

1. For 𝑗 = 1, … , 𝑝 and all real value cutpoint 𝑠, 

• let 𝑅# 𝑗, 𝑠 = �⃗� ∈ 𝑅 | 𝑥! < 𝑠 and 𝑅$ 𝑗, 𝑠 = {�⃗� ∈ 𝑅 | 𝑥! ≥ 𝑠}. 

• let C𝑦# 𝑎𝑛𝑑 C𝑦$ be the mean response of all observations in 𝑅# 𝑗, 𝑠 and 𝑅$ 𝑗, 𝑠 . 

𝑅𝑆𝑆./0 = F
1∈3!(!,6)

𝑦1 − C𝑦# $ + F
1∈3"(!,6)

𝑦1 − C𝑦$ $

3. Choose the split which has the smallest prediction error.  This split is the optimal 

one, denoted as 𝑅# 𝑎𝑛𝑑 𝑅$. 

4. Continue the split till the final partition.

2. Consider the following RSS prediction error: 



Top Left: A tree corresponding to the partition in the 
top right panel.  

Top right: The output of recursive binary splitting on 
a two-dimensional example.

Right: A perspective plot of the prediction surface
corresponding to that tree. 



Example: A partition of two-dimensional feature space that could not result 
from recursive binary splitting. 



Ø When to stop the splitting?

• If too many steps of splitting: many leaves, too complex model, small bias but 
large variance, may overfit.

• If too few steps of splitting: few leaves, too simple model, large bias but small 
variance, may underfit. 

One natural idea: When splitting 𝑅 into 𝑅# and 𝑅$, consider the RSS before the split  

𝑅𝑆𝑆89: − 𝑅𝑆𝑆./0

𝑅𝑆𝑆89: =F
1∈3

𝑦1 − C𝑦 $

With the optimal split, the reduction of RSS  

We can pre-choose a threshold, ℎ, and decide the worthiness of the split. 

• If the reduction is smaller than ℎ, we do not do it, and stop right there; then 𝑅 is 
one terminal node (a leave).

• If the reduction is greater than ℎ, we make the split, and continue with next step. 



• The idea is seemingly reasonable, but is too near-sighted.
• Only look at the effect of the current split.
• It is possible that even if the current split is not effective, the future splits 

could be effective and, maybe, very effective. 

Ø Tree pruning 

1. Grow a very large tree 𝑇(.

2. Prune the tree back to obtain a subtree.

3. Objective: find the subtree that has the best test error.

4. Use cross-validation to examine the test errors for a sequence (parametrized 

by 𝛼) of subtrees during the growth/pruning, instead of all possible subtrees 

which is too large a model space. 



Ø Cost complexity pruning (weakest link pruning) 

• Let 𝑇( be the original (large) tree. 
• Let 𝑇 be any subtree. 
• Use |𝑇(| and |𝑇| to denote their numbers of terminal nodes, which represent 

complexity. 

Consider “Loss + Penalty”: F
;<#

|>|

F
1∈3#

𝑦1 − C𝑦; $ + 𝛼|𝑇|

Here, 𝑅; are the terminal nodes of the subtree 𝑇, and 𝛼 is tuning parameter. 

Denote the minimized subtree as 𝑇? .

• If 𝛼 = 0, no penalty the optimal tree is the original 𝑇(.
• If 𝛼 = ∞, the tree has no split at all. The predictor is just the mean C𝑦.
• The larger the 𝛼, the more penalty for model complexity. 

• Use cross-validation to find the best 𝛼 to minimize the test error. 
• There exists efficient algorithm to compute the entire sequence of 𝑇 next.



Ø The Algorithm for (Building a Regression Tree) 

1. Use recursive binary splitting to grow a large tree on the training data, 
stopping only when each terminal node has fewer than some minimum 
number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a 
sequence of best subtrees, as a function of 𝛼. 

3. Use K-fold cross-validation to determine best 𝛼. That is, divide the training 
observations into 𝐾 folds. For each 𝑘 = 1,… , 𝐾

(a) Repeat Steps 1 and 2 on all but the 𝑘-th fold of the training data.
(b) Evaluate the mean squared prediction error on the data in the left-out 
𝑘-th fold, as a function of 𝛼.
(c) Average the results for each value of 𝛼, and pick 𝛼 to minimize the 
average error.

4.    Return the subtree from Step 2 that corresponds to the chosen value of 𝛼. 



• Regression tree analysis for the 
Hitters data. 

• The unpruned tree that results 
from top-down greedy splitting 
on the training data is shown. 

Example:



• Regression tree analysis for the Hitters data. 
• The training, cross-validation, and test MSE are shown as a function of the number of 

terminal nodes in the pruned tree. 
• The CV error is a reasonable approximation of the test error
• Standard error bands are displayed. 
• The minimum cross-validation error occurs at a tree size of three, (as in the beginning.)



Ø Classification trees 

• Regression has numerical responses; and classification has qualitative responses.

• Recall that for regression trees, we chose to obtain the greatest reduction of RSS. 

RSS is using sum of squares to measure the error.

• We predict that each observation belongs to the most commonly occurring class 

of training observations in the region to which it belongs. 

• For classification trees, one can follow the same line of procedure as that of 

regression trees, but using different error measurements (e.g., classification error 

rate, Gini index, entropy) that are more appropriate for classification.   



Classification error rates 

• For a region 𝑅, let 𝑝" be the percentage of observations in this region that 

belong to class 𝑘.

• We assign any new observation �⃗� in region 𝑅 as from the class with largest 𝑝", 

which is the  called the most commonly occurring class in training data. 



Ø The impurity measure 

1. The classification error rate (for a region 𝑅) is

2. The Gini index is

3. The cross-entropy is

𝐸 = 1 −max
"
𝑝"

𝐺 = F
"<#

@

𝑝"(1 − 𝑝")

𝐷 = −F
"<#

@

𝑝" log(𝑝")

The following three approaches are commonly used when pruning the tree.  



• If 𝑅 is nearly pure, most of the observations are from one class, then the Gini-
index and cross-entropy would take smaller values than classification error rate. 

𝑝# = 0.5, 0.25, 0.25 ⟹ 𝐸 = 0.5; 𝐺 = 0.625; 𝐷 = 1.0397

𝑝$ = 0.5, 0.4; 0.1 ⟹ 𝐸 = 0.5; 𝐺 = 0.580; 𝐷 = 0.9433

• Gini-index and cross-entropy are more sensitive to node purity. A small value 
indicates that a node contains predominantly observations from a single class.

• To evaluate the quality of a particular split, the Gini-index and cross-entropy are 
more popularly used as error measurement criteria than classification error rate. 
(𝐸 can't distinguish 𝑝# and 𝑝$ above, while G, D are more informative for 𝑝$ )

• The classification error rate is preferable if only prediction accuracy of the 
final pruned tree is the goal.

For example, in a region R with 3 classes:





Ø A case study: Heart data.

1.age
2.sex
3.chest pain type (4 values)
4.resting blood pressure
5.serum cholestoral in mg/dl
6.fasting blood sugar > 120 mg/dl
7.resting electrocardiographic results (values 0,1,2)
8.maximum heart rate achieved
9.exercise induced angina
10.oldpeak = ST depression induced by exercise relative to rest
11.the slope of the peak exercise ST segment
12.number of major vessels (0-3) colored by flourosopy
13.thal: 3 = normal; 6 = fixed defect; 7 = reversable defect 

Outputs: AHD: atherosclerotic heart disease.

Predictors/Inputs



An unpruned tree. 



Cross-validation error, training, 
and test error, for different sizes 
of the pruned tree. 

The pruned tree corresponding to 
the minimal cross-validation error.



Ø Trees vs. Linear models

For a regression model:

• Linear model assumes

• Regression trees assume

ℎ �⃗� = �⃗�>�⃗� = 𝜃( + 𝜃#𝑥# +⋯+ 𝜃:𝑥:

𝑦 = ℎ �⃗� + 𝜖

ℎ �⃗� = F
;<#

A

𝑐; 𝕝(�⃗� ∈ 𝑅;)

If the underlying relation is close to linear, linear model is better. 
Otherwise, regression trees are generally better. 



Here the true decision boundary is non-linear. Here a linear model is unable to capture the 
true decision boundary (left), whereas a decision tree is successful (right). 

A two-dimensional classification example in which the true decision boundary is linear, and is 
indicated by the shaded regions. A classical approach that assumes a linear boundary (left) will 
outperform a decision tree that performs splits parallel to the axes (right). 



Advantages of Trees 

• Trees are very easy to explain to people. In fact, they are even easier to explain 
than linear regression!

• Some people believe that decision trees more closely mirror human decision-
making than do the regression and classification approaches seen in previous 
chapters.

• Trees can be displayed graphically, and are easily interpreted even by a non-
expert (especially if they are small).

• Trees can easily handle qualitative predictors without the need to create 
dummy variables.

Disadvantages of Trees 

• Trees generally do not have the same level of predictive accuracy as some of the 
other regression and classification approaches seen in this book.

• Trees can be very non-robust. In other words, a small change in the data can cause 
a large change in the final estimated tree. 

o However, by aggregating many decision trees, using methods like bagging, random 
forests, and boosting, the predictive performance of trees can be substantially 
improved. We introduce these concepts next.



Ø Bagging (Bootstrap Aggregating) 

o Bagging is a general averaging technique to reduce variance of a learning 
method.

o Decision tree is generally a high variance method. (Apply the method based 
on different data based on same sampling scheme would lead to very 
different result.)

o Average of i.i.d. random variables would have a reduced variance B
"

.
.

Model 𝑦1 = ℎ �⃗�1 + 𝜖1 for 𝑖 = 1,2, … , 𝑛

Suppose a statistical learning method gives  bℎ based on the training data 
�⃗� 1 , 𝑦 1 for 𝑖 = 1… 𝑛. For example,   

• Linear model:  bℎ �⃗� = �⃗�>�⃗�

• 𝐾-NN:  bℎ �⃗� = ∑!<#
./@ C𝑦! with least distance to 𝐾-cluster partition.

• Decision tree: bℎ �⃗� = ∑!<#
- C𝑦3$ with rectangular partition. 



Ø The procedure of Bagging.

Data �⃗� 1 , 𝑦 1 for 𝑖 = 1… 𝑛 and a learning method  bℎ

• Draw a bootstrap sample from the data, and compute bℎ#∗ based on this set 
of bootstrap sample. 

• Draw another bootstrap sample from the data, and compute bℎ$∗ based on this 
set of bootstrap sample. 

• Repeat 𝐵 times, obtain bℎ#∗ , … , bℎE∗

• Produce the learning method with bagging as 

bℎFGHH1.H =
1
𝐵F
1<#

E

bℎ1∗

• …



1. Bagging is general-purpose.

2. It works best for high variance low bias learning methods.

3. When the trees are grown deep, and are not pruned, each individual tree has 

high variance, but low bias.

4. Averaging these trees reduces the variance.

5. If the response is qualitative, we can take the majority vote (not averaging) of 

the predicted class based on all learning methods based on bootstrap samples.

Ø Remarks on Bagging method.



Ø Out-of-Bag (OOB) Error Estimation 

• Estimation of test error for the bagged model.

• For each bootstrap sample, observation 𝑖 is bootstrap sampled with probability 

1 − #
.

.
≈ 1/𝑒.

• For each bootstrap sample, the number of observations not taken into this bootstrap 

sample is 𝑛 1 − #
.

.
≈ 𝑛/𝑒. These are referred to as out-of-bag (OOB) observations.

• For totally 𝐵 bootstrap samples, about 𝐵/𝑒 times, the bootstrap sample does not 

contain observation 𝑖.

• For each observation 𝑧1 = �⃗� 1 , 𝑦 1 , construct its bagged predictor by averaging (for 

regression) or taking majority vote (for classification) of only those trees corresponding 

to bootstrap samples in which 𝑧1 did not appear, denoted as bℎI1∗ (�⃗� 1 )



o The OOB Mean Squares Error (MSE) is 

o The OOB classification error is 

• The resulting OOB error is a valid estimate of the test error for the bagged 
model, since the response for each observation is predicted using only the 
trees that were fit not using that observation. 

• It can be shown that with 𝐵 sufficiently large, OOB error is virtually equivalent 
to leave-one-out cross-validation error. 

F
1<#

.

𝑦(1) − bℎI1∗ �⃗� 1
$

F
1<#

.

𝐼 𝑦(1) ∉ bℎI1∗ �⃗� 1



Bagging and random forest results for the Heart data. The test error (black and orange) is shown 
as a function of 𝐵, the number of bootstrapped training sets used. Random forests were applied 
with 𝑚 = 𝑝 . The dashed line indicates the test error resulting from a single classification tree. 
The green and blue traces show the OOB error, which in this case is considerably lower. 



Ø Variable importance measures 

• Bagging improves prediction accuracy at the expense of interpretability.

• An overall summary of the importance of each predictor using the RSS (for 

bagging regression trees) or the Gini index (for bagging classification trees).

• Bagging regression trees, we can record the total amount that the RSS is 

decreased due to splits over a given predictor, averaged over all 𝐵 trees.

• A large value indicates an important predictor.

• Bagging classification trees, we can add up the total amount that the Gini index 

is decreased by splits over a given predictor, averaged over all 𝐵 trees. 



• A variable importance plot for the Heart data. 
• Variable importance is computed using the mean decrease in Gini index, and expressed 

relative to the maximum.  



Ø Motivation of Random Forest 

An average of 𝐵 i.i.d random variables, each with variance 𝜎$, has variance #
E
𝜎$

v Question: What if not independent but correlated identical random variables? 

• If the variables are simply i.d. (identically distributed but not necessarily 
independent) with positive pairwise correlation 𝜌, the variance of the average is 

𝜌𝜎$ +
1 − 𝜌
𝐵 𝜎$

• The idea of random forests is to improve the variance reduction of bagging by 
reducing the correlation between trees, without increasing the variance too 
much. 

• When building these decision trees, each time a split in a tree is considered, a 
random sample of 𝒎 predictors is chosen as split candidates from the full set 
of 𝑝 predictors. Typically, 𝑚 ≈ 𝑝.

Random forests is the same as bagging decision trees, except ... 



Ø Random Forest (improved bagging tree method  ) 

• Goal: Avoid all trees are too similar to each other.

• Too similar trees are too highly correlated, average highly correlated trees cannot 

achieve large amount of variance reduction. Extreme case: If all trees are the same, 

average of them is still the same one.

• Every step of random forest , the split is constrained on a small number 𝑚 and 

randomly selected inputs.

• Random forest produces less correlated trees.

• Random forest reduces to bagging if 𝑚 = 𝑝.

• Averaging uncorrelated or low-correlated trees can achieve large amount of 

variance reduction.



Bagging and random forest results for the Heart data. The test error (black and orange) is shown 
as a function of 𝐵, the number of bootstrapped training sets used. Random forests were applied 
with 𝑚 = 𝑝 . The dashed line indicates the test error resulting from a single classification tree. 
The green and blue traces show the OOB error, which in this case is considerably lower. 



Results from random forests for the 15-class gene expression data set with 𝑝 = 500
predictors. The test error is displayed as a function of the number of trees. Each colored 
line corresponds to a different value of m, the number of predictors available for splitting 
at each interior tree node. Random forests (𝑚 < 𝑝) lead to a slight improvement over 
bagging (𝑚 = 𝑝). A single classification tree has an error rate of 45.7%.



Ø Boosting

• General purpose for improving learning methods by combining many 

weaker learners in attempt to produce a strong learner.

• Like bagging, boosting involves combining a large number of weaker 

learners.

• The weaker learners are created sequentially (no bootstrap involved).

• Bagging create large variance and possibly overfit bootstrap learners and try 

to reduce their variance by averaging.

• Boosting create weak learners sequentially and slowly (to avoid overfit).  



Ø Algorithm: Boosting for Regression Trees 

1. Set bℎ(�⃗�) = 0 and 𝑟1 = 𝑦1 for all 𝑖 in the training set. 

2. For 𝑏 = 1, 2, . . . , 𝐵, repeat: 

• Fit a tree bℎF with 𝑑 splits (𝑑 + 1 terminal nodes) to the training data (𝑋, 𝑟).

• Update bℎ by adding in a shrunken version of the new tree:

bℎ(�⃗�) = bℎ(�⃗�) + 𝜆bℎF(�⃗�)

• Update the residuals,

𝑟1 = 𝑟1 − 𝜆bℎF(𝑥1)

3. Output the boosted model,

bℎ �⃗� = F
F<#

E

𝜆bℎF(�⃗�)



Boosting has three tuning parameters: 

1. The number of trees B. Unlike bagging and random forests, boosting can 
overfit if B is too large, although this overfitting tends to occur slowly if at 
all. We use cross-validation to select B. 

2. The shrinkage parameter 𝜆, a small positive number.

3. The number 𝑑 of splits in each tree, which controls the complexity of the 
boosted ensemble.



Results from performing boosting and random forests on the 15-class gene expression 
data set in order to predict cancer versus normal. The test error is displayed as a 
function of the number of trees. For the two boosted models, 𝜆 = 0.01. Depth-1 
trees slightly outperform depth-2 trees, and both outperform the random forest, 
although the standard errors are around 0.02, making none of these differences 
significant. The test error rate for a single tree is 24%.



Ø Adaboost

1. Initialize the data weights {𝑤1} by setting w1
(#) = 1/𝑁 for i = 1,… , 𝑁. 

2. For 𝑚 = 1,… ,𝑀:

(a) Fit a classifier 𝑓;(𝑐) to the training data by minimizing the weighted 
error function 

𝐽; =F
1<#

J

𝑤1(;) 𝕝(𝑓; �⃗� 1 ≠ 𝑦(1)

(b) Evaluate the quantities 
𝜖; =

∑1<#J 𝑤1(;) 𝕝(𝑓; �⃗� 1 ≠ 𝑦(1)

∑1<#J 𝑤1(;)

and then use these to evaluate 
𝛼; = log

1 − 𝜖;
𝜖;

(c) Update the data weights 
𝑤1
(;K#) = 𝑤1

;K# exp 𝛼;𝕝 𝑓; �⃗� 1 ≠ 𝑦 1

3. Make prediction by 

𝐹A �⃗� = sign F
;<#

A

𝛼;𝑓; �⃗� .



Each figure shows the number 𝑚 of base learners trained so far, along with
the decision boundary of the most recent base learner (dashed black line) and the
combined decision boundary of the ensemble (solid green line). Each data point is
depicted by a circle whose radius indicates the weight assigned to that data point
when training the most recently added base learner. Thus, for instance, we see that
points that are misclassified by the 𝑚 = 1 base learner are given greater weight
when training 𝑡ℎ𝑒 𝑚 = 2 base learner.  



Summary: Statistical view of boosting methods 

Boosting methods have three important properties that contribute to their success:

1. They fit (by coordinate descent) an additive model in a flexible set of basis functions.

2. They use a suitable loss function for the fitting process.

3. They regularize by forward stagewise fitting; with shrinkage this mimics an 𝐿# (Lasso) 

penalty on the weights.


