
Math 7243-Machine Learning and Statistical Learning Theory – He Wang

Section 10      k-Nearest Neighborhoods 

1. k-NN regression
2. k-NN classification
3. The curse of dimensionality 



Ø 𝒌-Nearest Neighbors regression.

𝑘-NN regression is one of the simplest and best-known non-parametric methods.

Given a value for 𝑘 and a prediction point 𝑥!, kNN regression first identifies the 𝑘
training observations that are closest to 𝑥!, represented by 𝒩!. It then estimates 
ℎ(𝑥!) using the average of all the training responses in 𝒩!
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Assumption: Similar Inputs have similar outputs.

Training error=



𝑘=1 𝑘=9

• When  𝑘 = 1, the kNN fit perfectly interpolates the training observations, and 
consequently takes the form of a step function. 

• When  𝑘 = 9, the kNN fit still is a step function, but averaging over nine 
observations results in much smaller regions of constant prediction, and 
consequently a smoother fit. 

• In general, the optimal value for 𝑘 will depend on the bias-variance tradeoff.



Assumption:
Similar Inputs have similar labels.
Classification rule:
For a test input 𝒙 , assign the 
most common label amongst its 
𝑘 most similar training inputs.

Ø 𝒌-NN Classification.

• Let 𝑆" be the subset of the data set 𝐷 such that 

• The k-NN classifier ℎ �⃗� is defined as 

ℎ �⃗� = mode ( 𝑦&& (�⃗�&& , 𝑦&&) ∈ 𝑆"})

where mode(⋅) means to select the label of the highest occurrence.
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1. 𝑆" = 𝑘
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Data: 𝐷 = {(�⃗� % , 𝑦 % )}, 𝑖 = 1…𝑛



• Under the assumption, k-NN classifier maximizes the conditional probability
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where 𝕝 is the indicator function.

• The k-NN classifier ℎ �⃗� ≈ argmax 𝑃 𝑦 �⃗�), which is the Bayes optimal classifier.
𝑦

• The zero-one loss function: 
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This loss function returns the error rate on this data set.

The Bayes optimal error is 𝜖1 = 1 − 𝑃 𝑦∗ �⃗�)





Theorem: (Cover and Hart 1967) 
As 𝑛 → ∞, the 1-NN error is no more than twice the error of the Bayes 
Optimal classifier. (Similar guarantees hold for k>1)
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Proof:

Let �⃗�33 be the nearest neighbor of our test point �⃗�4.  

As 𝑛 → ∞, 𝑑𝑖𝑠𝑡(�⃗�33, �⃗�4) → 0.  



Ø Distance function (Metric space ℝ𝒏)

The k-nearest neighbor classifier fundamentally relies on a distance metric. 

The better that metric reflects label similarity, the better the classified will be. 

The most common choice is the Minkowski distance. 
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Non-parametric methods do not make explicit assumptions about the functional form of 
ℎ �⃗� . Instead, they seek an estimate of ℎ �⃗� that gets as close to the data points as possible 
without being too rough or wiggly.

Advantage over parametric approaches: by avoiding the assumption of a particular 
functional form for ℎ �⃗� , they have the potential to accurately fit a wider range of possible 
shapes for ℎ �⃗� .

Disadvantage of non-parametric approaches: since they do not reduce the problem of 
estimating ℎ �⃗� to a small number of parameters, a very large number of observations (far
more than is typically needed for a parametric approach) is required in order to obtain an 
accurate estimate for ℎ �⃗� .

K-NN method is an example of non-parametric method. 

For k-NN method, 
1. It may be computationally hard to find the k-nearest neighbors for a large 

amount of data of high dimension. It must store and search through the 
entire training set in order to classify a single test point. 

2. Geometry in higher dimensions often behaves counter-intuitively.



Ø Bad News: Curse of dimensionality

The 𝑘 nearest neighbors classifier assume that similar points share similar labels. 

However, in high dimensional spaces, points that are drawn from a probability 
distribution, tend to never be close together.

Distances between points

Draw 𝑛 points uniformly at random within the unit 
cube 𝐷 = 0,1 6. 

Investigate how much space the k nearest neighbors of 
a test point inside this cube. 

Considering the k nearest neighbors of such a test point.

Let 𝑙 be the edge length of the smallest hyper-cube that contains all k-nearest 
neighbor of a test point.
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𝑑 𝑙
2 0.1

10 0.63
100 0.955

1000 0.9954

Suppose n=1000 and k=10, 

So as 𝑑 large enough, almost the entire space is 
needed to find the 10-NN.

This breaks down the k-NN assumptions.

Distance between two randomly drawn data points �⃗� and �⃗� increases drastically 
with their dimensionality.

𝑑𝑖𝑠𝑡 �⃗�, �⃗� = 𝑥. − 𝑦. 9 +⋯+ 𝑥6 − 𝑦6 9



The histogram plots show the distributions of all pairwise distances between 
randomly distributed points within 𝑑-dimensional unit squares. 

As the dimensions 𝑑 grows, all distances concentrate within a very small range.



Ø Distances to hyperplanes

Two random data points in 𝐷 = 0,1 6, the distance between datapoints is

dist �⃗�, �⃗� = 𝑥. − 𝑦. 9 +⋯+ 𝑥6 − 𝑦6 9

The distance to the red hyperplane remains unchanged as a third dimension is added.  

Distance between data points �⃗� and �⃗� increases from 0,1 9 to 0,1 :

The reason is that the normal of the hyperplane is orthogonal to the new dimension.



As distances between pairwise points become very large in high dimensional 
spaces, distances to hyperplanes become relatively tiny.

We use hyperplanes between concentrations of different classes for classification.



Data may lie in low dimensional subspace or on sub-manifolds. 

The true dimensionality of the data can be much lower than its ambient space. 

For example, human faces are a typical example of an intrinsically low 
dimensional data set. Although an image of a face may require 18 million pixels, a 
person may be able to describe this person with less than 50 attributes (e.g. 
male/female, blond/dark hair, ...) along which faces vary. 

Ø Good News: Data with low dimensional structure.

Use geodesic rather than Euclidean distances in manifold learning.

Methods:  
1. Principal component analysis.   2. Manifold Learning.     3. Topological data analysis 




