
Math 7243-Machine Learning and Statistical Learning Theory – He Wang

Section 13. Support vector machines and kernel methods

• Support Vector Machines

• Lagrange multiplier (KKT theorem)

• Regularization

• Kernel Methods

Ø Support Vector Machines (SVM)

SVM was Developed at AT&T Bell Laboratories by Vladimir Vapnik with colleagues
in 1994.

• Support vector machine is one of the most popular machine learning

methodologies.
• Empirically successful, with well developed theory.

• One of the best off-the-shelf methods.
• We mainly address classification.

Simple SVM performs as well as Multilayer Convolutional Neural Networks which
need careful tuning (LeNets) (Second dark era for NN: 2000s)

MNIST Dataset Test Error: SVM vs. CNN

LeCun et al. 1998

SVM v.s. CNN:

Ø Support Vector Machines (SVM) for binary classificaSon. (Max-Margin Classifier)

Assume the datasets are linearly separable.

• The optimal separating hyperplane that is

farthest from the training observations.

• The separating hyperplane such that the

minimum distance of any training point to

the hyperplane is the largest.

• Creates the widest gap between the two classes.

• Points on the boundary hyperplane, those with smallest distance to the max

margin hyperplane, are called support vectors. They support the maximal margin

hyperplane in the sense vector that if these points were moved slightly then the

maximal margin hyperplane would move as well.

Maximal margin hyperplane:

• Note that margin M > 0 is the half of the width of the strip separaSng the

two classes.

• The eventual soluSon, the max margin hyperplane is determined by the

support vectors.

• If 𝑥(") on the correct side of the trip varies, the soluSon would remain

same.

• The max margin hyperplane may vary a lot when the support vectors vary.

(high variance)

Ø SVM setup:

𝐷 = �⃗� " , 𝑦 " , 𝑖 = 1, …𝑛Binary Classification Data: 𝑦 " ∈ −1, 1 ,

Goal: Find a linear classifier:

Assume the datasets are linearly separable.

ℎ �⃗� = .
1, 𝑖𝑓 𝑤 ⋅ �⃗� + 𝑏 ≥ 0

−1, 𝑖𝑓 𝑤 ⋅ �⃗� + 𝑏 < 0

ℎ �⃗� = sign �⃗�$�⃗� = sign(𝑤 ⋅ �⃗� + 𝑏)

Notations: �⃗� =

𝑏
𝑤%
⋮
𝑤&

�⃗� =

1
𝑥%
⋮
𝑥&

or �⃗� =
𝑥%
⋮
𝑥&

+

−

Decision Boundary: Hyperplane 𝑯

𝑤$�⃗� + 𝑏 = 0

or:

or:
𝑤%𝑥% +⋯𝑤&𝑥& + 𝑏 = 0

𝑤+

−

𝑥%

𝑥'

�⃗�$�⃗� = 0

Property:

𝑤 is orthogonal to the hyperplane 𝐻.

Reason:
Any two points �⃗� and �⃗�(on hyperplane,

𝑤$�⃗� + 𝑏 = 0

𝑤$�⃗�′ + 𝑏 = 0

So, 𝑤 ⋅ �⃗� − �⃗�(= 0.

Margin: = m𝑖𝑛
%)")*

𝑑𝑖𝑠𝑡(�⃗� " , 𝐻)

+

IniKal Goal: Find hyperplane parameters 𝑤 and 𝑏 such that for all 1 ≤ 𝑖 ≤ 𝑛

𝑦(") = .
1, 𝑖𝑓 𝑤 ⋅ �⃗�(") + 𝑏 ≥ 0

−1, 𝑖𝑓 𝑤 ⋅ �⃗�(") + 𝑏 < 0

Equivalently, find 𝑤 and 𝑏 such that for all 1 ≤ 𝑖 ≤ 𝑛

𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 > 0 (I)

There are many different hyperplanes 𝐻 = �⃗� 𝑤$�⃗� + 𝑏 = 0}.

Question: What is the best separating hyperplane?

Updated SVM Goal: Find hyperplane with largest margin

max
+,-

Margin:= max
+,-

m𝑖𝑛
%)")*

𝑑𝑖𝑠𝑡(�⃗� " , 𝐻) (II)

Find 𝑤 and 𝑏 such that (I) and

Ø Maximal margin hyperplane (Hard-margin SVM classifier)

Property: The distance 𝛾(") between �⃗� "

and 𝐻 is

𝛾("): = 𝑑𝑖𝑠𝑡(�⃗� " , 𝐻)

𝛾(")
w
𝑤 '�⃗� "

= 𝑦(")
1
𝑤

𝑤 ⋅ �⃗� " + 𝑏

𝐻

Proof: For posiSve point �⃗� " , 𝑦 " = 1 ,

𝑤$ �⃗� " − 𝛾(")
w
𝑤 ' + 𝑏 = 0

𝑤

Solve 𝛾(") we have

𝛾(") =
1
𝑤 𝑤 ⋅ �⃗� " + 𝑏

Similarly for negative label points, we have 𝛾(") = − %
+

𝑤 ⋅ �⃗� " + 𝑏 .

SVM Goal: Find 𝑤 and 𝑏 such that 𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 > 0 for all 1 ≤ 𝑖 ≤ 𝑛
and max

+,-
m𝑖𝑛
%)")*

𝑑𝑖𝑠𝑡(�⃗� " , 𝐻)

Equivalently, find 𝑤 and 𝑏

max
+,-

m𝑖𝑛
%)")*

𝑦(") %
+

𝑤 ⋅ �⃗� " + 𝑏 such that 𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 > 0

Equivalently, find 𝑤 and 𝑏

max
+,-

%
+

m𝑖𝑛
%)")*

𝑦(") 𝑤 ⋅ �⃗� " + 𝑏 such that 𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 > 0

For the same hyperplane 𝐻 = �⃗� 𝑤$�⃗� + 𝑏 = 0}, we can scale 𝑤 and 𝑏 anyway
we want. So, we choose a ‘smart’ scale such that 𝜆 = 1, i.e., margin= %

+

Denote 𝜆:= m𝑖𝑛
%)")*

𝑦(") 𝑤 ⋅ �⃗� " + 𝑏 . Equivalently, find 𝑤 and 𝑏

max
+,-

%
+

𝜆 such that 𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 ≥ 𝜆

Equivalently, find 𝑤 and 𝑏

max
+,-

%
+

such that 𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 ≥ 1

Equivalently, find 𝑤 and 𝑏

max
+,-

%
+ ! such that 1 − 𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 ≥ 0

Equivalently, find 𝑤 and 𝑏

min
+,-

𝑤$𝑤 such that 1 − 𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 ≤ 0

The objecSve is a quadra'c term, and the constraints are all linear, which is called
a quadraSc opSmizaSon problem. h,ps://en.wikipedia.org/wiki/Quadra8c_programming
It has a unique soluSon whenever a separaSng hyper plane exists

https://en.wikipedia.org/wiki/Quadratic_programming

𝑤+

−

1
𝑤

• The constraints 𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 ≥ 1
for all 𝑖 are equivalent to margin= %

+

Remarks:

• The max-margin separating hyperplane,
and two margin hyperplanes are:

𝐻 = �⃗� 𝑤 ⋅ �⃗� + 𝑏 = 0}

𝐻. = �⃗� 𝑤 ⋅ �⃗� + 𝑏 = 1}

𝐻/ = �⃗� 𝑤 ⋅ �⃗� + 𝑏 = −1} 𝐻
𝐻/

𝐻.

• For optimal 𝑤, 𝑏, the support vectors (�⃗� " , 𝑦(")) satisfy

𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 = 1

Ø OpKmizaKon with Constraints.

Example: Consider the optimization problem

Maximize(Minimize) 𝑓(𝑥, 𝑦) subject to 𝑔 𝑥, 𝑦 = 𝑐

Following J. Lagrange (1736–1813),

we can to define Lagrangian

𝐿 𝑥, 𝑦, 𝜆 : = 𝑓 𝑥, 𝑦 − 𝜆𝑔 𝑥, 𝑦

and calculate gradients

∇0,1,2 𝐿 = 0

Ø OpKmizaKon with Constraints.

Define Lagrangian:

OpKmizaKon QuesKon (⭐):

Optimize min
+

𝑓(𝑤)

such that 𝑔" 𝑤 ≤ 0 𝑎𝑛𝑑 ℎ3 𝑤 = 0 for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛

𝐿 𝑤, �⃗�, 𝛽 ≔ 𝑓 𝑤 +]
"4%

5

𝛼"𝑔" 𝑤 +]
34%

*

𝛽3ℎ3 𝑤

Here, �⃗� 𝑎𝑛𝑑 𝛽 are Lagrange multipliers

Ø Karush(1939)–Kuhn–Tucker (1951) Theorem

Karush-Kuhn-Tucker (KKT) conditions:

• Suppose 𝑓 𝑤 and 𝑔" 𝑤 are convex.
• Suppose ℎ3 𝑤 are affine.
• Suppose there exists 𝑤6 such that 𝑔" 𝑤6 < 0 for all 1 ≤ 𝑖 ≤ 𝑛.

Under the above assumpSons, the previous opSmizaSon quesSon (⭐) has a
soluSon 𝑤∗ if and only if there exist 𝑤∗, �⃗�∗, 𝛽∗ saSsfying the following

𝑔" 𝑤 ≤ 0 for 1 ≤ 𝑖 ≤ 𝑚

ℎ3 𝑤 = 0 for 1 ≤ 𝑗 ≤ 𝑛

∇+ 𝐿 𝑤, �⃗�,∗ 𝛽∗ = 0

�⃗�"
∗ ≥ 0

𝛼"∗𝑔" 𝑤∗ = 0 for 1 ≤ 𝑖 ≤ 𝑚 (complementary slackness)

ApplicaKon to SVM opKmizaKon: find 𝑤 and 𝑏

min
+,-

%
'
𝑤$𝑤 such that 1 − 𝑦 " 𝑤$�⃗� " + 𝑏 ≤ 0 for 1 ≤ 𝑖 ≤ 𝑛

Define Lagrangian:

𝐿 𝑤, 𝑏, �⃗� ≔
1
2
𝑤$𝑤 +]

"4%

*

𝛼" 1 − 𝑦 " 𝑤$�⃗� " + 𝑏

By KKT conditions:

• ∇+ 𝐿 = 0 implies

• ∇- 𝐿 = 0 implies

w =]
"4%

*

𝛼"𝑦 " �⃗� "

]
"4%

*

𝛼"𝑦 " = 0

• 1 − 𝑦 " 𝑤$�⃗� " + 𝑏 ≤ 0

• 𝛼" ≥ 0

• 𝛼" 1 − 𝑦 " 𝑤$�⃗� " + 𝑏 = 0

𝑤+

−
o If 𝛼" > 0, then 𝑦 " 𝑤$�⃗� " + 𝑏 = 1

o If 𝑦 " 𝑤$�⃗� " + 𝑏 > 1, then,	𝛼" = 0

So, �⃗� " is a support vector.

So, if �⃗� " is away from boundary,
then we don’t use those points.

From complementary slackness condition

Only support vectors maYer!

𝐿 𝑤, 𝑏, �⃗� ≔
1
2𝑤

$𝑤 +]
"4%

*

𝛼" 1 − 𝑦 " 𝑤$�⃗� " + 𝑏

Plug the condition formulas back to the Lagrangian,

=]
"4%

*

𝛼" −
1
2]
",34%

*

𝑦 " 𝑦 3 𝛼"𝛼3 �⃗� " , �⃗� 3 =:𝐹(�⃗�)

=
1
2𝑤

$𝑤 +]
"4%

*

𝛼" − 𝑤$𝑤

The new quesSon is to opSmize the dual Lagrangian 𝐹(�⃗�) with constraints:

max
8

𝐹(�⃗�) subject to]
"4%

*

𝛼"𝑦 " = 0 and 𝛼" ≥ 0

There is a Sequential minimal optimization (SMO) algorithm for solving this quadratic
programing problem. (1998 by John Platt)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf

𝑏 = 1 − 𝑤$ �⃗� 9 = 1 −]
"4%

*

𝛼"𝑦(") �⃗� " , �⃗� 9

From the distance formula, the intersection term can be calculated by one
support vector (�⃗�(9), y(9) = 1)

After finding optimal 𝛼", we can plug back to find optimal 𝑤.

𝑏 = −
m𝑖𝑛
";1(#)4%

𝑤$ �⃗�(") + m𝑎𝑥
";1(#)4/%

𝑤$ �⃗�(")

2

Or we want to start with original data in computaSon formula:

Or we want to use all support vectors �⃗� 9 , y 9 | 𝑠 ∈ 𝑆 and take average
for numerically stable soluSon:

𝑏 =
1
|𝑆|]

9∈<

𝑦(9) − 𝑤$ �⃗� 9 =
1
|𝑆|]

9∈<

𝑦(9) −]
"4%

*

𝛼" 𝑦(") �⃗� " , �⃗� 9

Ø Prediction:

𝑓 �⃗� = 𝑤$�⃗� + 𝑏 =]
"4%

*

𝛼" 𝑦(") �⃗� " , �⃗� + 𝑏

• Only involves inner product of the input data �⃗� " , 𝑦 " , 𝑖 = 1, …𝑛 !
• 𝛼" = 0 except for support vectors. So the formula can also be written as

After we have the optimal model (parameters) 𝑤$, 𝑏, we can make
predictions for a test data point �⃗� :

𝑓 �⃗� =]
"∈<

𝛼" 𝑦(") �⃗� " , �⃗� + 𝑏

where 𝑆 is the set of indices of support vectors.

SensiKvity to feature scales

Outlier:

Ø Non-separable cases:

• In general, the two classes are usually not separable by any hyperplane.

• Even if they are, the max margin may not be desirable because of its high

variance, and thus possible over-fit.

• The generalizaSon of the maximal margin classier to the non-separable case is

known as the support vector classifier.

• Use a so]-margin in place of the max margin.

• So]-margin classier (support vector classier) allow some violaSon of the

margin: some can be on the wrong side of the margin (in the river) or even

wrong side of the hyperplane.

If the datasets are not linearly separable, or we want SVM less sensitive to outliers.

Ø Non-separable cases: (Soft-margin SVM classifier)

Soft-margin SVM optimization: find 𝑤 and 𝑏

such that 1 − 𝜉" − 𝑦 " 𝑤$�⃗� " + 𝑏 ≤ 0 for 1 ≤ 𝑖 ≤ 𝑛

min
+,-

1
2𝑤

$𝑤 + 𝐶]
"4%

*

𝜉"

Here, for each training point, we introduce 𝜉" ≥ 0, which is called a slack variable.

𝜉": = .
0 for data points on or inside the correct margin boundary

|𝑦 " − 𝑓(𝑥("))| for other points, where 𝑓 �⃗� " = 𝑤 ⋅ �⃗�(") + 𝑏

• 0 < 𝜉" < 1 for data points inside the margin, but on the correct side of the
decision boundary.

• 𝜉" = 1 for data points on the decision boundary.
• 𝜉" > 1 for data points will be misclassified.

The classification constraints 𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 ≥ 1 will be replaced by

𝑦 " 𝑤 ⋅ �⃗� " + 𝑏 ≥ 1 − 𝜉"

Now we maximize the margin while so]ly penalizing points that lie on the
wrong side of the margin boundary (So]-margin SVM opKmizaKon)

such that 1 − 𝜉" − 𝑦 " 𝑤$�⃗� " + 𝑏 ≤ 0 for 1 ≤ 𝑖 ≤ 𝑛

min
+,-

1
2𝑤

$𝑤 + 𝐶]
"4%

*

𝜉"

Similarly as hard-margin SVM, we use Lagrangian and KKT to simplify the
optimization question to be

max
8

𝐹 �⃗� ≔]
"4%

*

𝛼" −
1
2]
",34%

*

𝑦 " 𝑦 3 𝛼"𝛼3 �⃗� " , �⃗� 3

subject to

]
"4%

*

𝛼"𝑦 " = 0

and 0 ≤ 𝛼" ≤ 𝐶 for 1 ≤ 𝑖 ≤ 𝑛

• The hyperparameter 𝐶 > 0 controls the trade-off between the slack variable
penalty and the margin.

• If 𝐶 → ∞, it recover the hard-margin SVM.

𝑏 = 1 −]
"4%

*

𝛼"𝑦(") �⃗� " , �⃗� 9

The intersection term can be calculated by one support vector (�⃗�(9), y(9) = 1)
with 0 ≤ 𝛼"≤ 𝐶 and 𝜉" = 0

Or we want to use set of support vectors �⃗� 9 , y 9 | 𝑠 ∈ 𝑀 with 0 ≤ 𝛼"≤
𝐶 and 𝜉" = 0, and take average for numerically stable solution:

𝑏 =
1
|𝑀|]

9∈=

𝑦(9) −]
"4%

*

𝛼" 𝑦(") �⃗� " , �⃗� 9

Ø The kernel method

For any linear method (e.g., linear regression,
logisScs regression, LDA), we can easily
generalize it to non-linear method by
introducing new variables (features).

𝑧% = 𝑥%, 𝑧' = 𝑥',

𝑧> = 𝑥%?, 𝑧@ = 𝑥'?, 𝑧A = 𝑥%'𝑥', 𝑧B= 𝑥%𝑥'' , …

For example,

𝑧?= 𝑥%', 𝑧C = 𝑥'', 𝑧D = 𝑥%𝑥',

Formally, we can consider this procedure as defining a feature map:

𝜙: ℝr → ℝs

�⃗� → 𝜙(�⃗�)

The difficulty is that dimension 𝐷 is very large or even infinite.

For example, using polynomial of degree m, there are 𝐷~𝑂(𝑑5) parameters.

For a relatively easy question, if 𝑑 = 100 and 𝑚 = 4, there are about
𝑑C ≈ 4 million parameters!

QuesKon: How to solve the difficulty?

Answer: The kernel method (trick).

Suppose there is a machine learning model, in the optimization of the cost and the

prediction formula, only inner products of the data points are involved: �⃗�("), �⃗�(3) ,

or �⃗�("), �⃗� for prediction for �⃗� .

After we applied the feature map,

𝜙: ℝ& → ℝE

all calculaSons will be replaced by 𝜙 �⃗� ∈ ℝE. (Very large dimension)

We assume that all calculaSons only involve inner products

𝜙(�⃗�(")), 𝜙(�⃗�(3)) or 𝜙(�⃗�(")), 𝜙(�⃗�)

Define it as the Kernel function:

𝐾 �⃗� { , �⃗� | ≔ 𝜙(�⃗�({)), 𝜙(�⃗�(|))

Example: (quadratic)

For �⃗� and 𝑧 ∈ ℝ?, consider the quadratic feature map:

𝜙 �⃗� ≔

𝑥%𝑥%
𝑥%𝑥'
𝑥%𝑥?
𝑥'𝑥%
𝑥'𝑥'
𝑥'𝑥?
𝑥?𝑥%
𝑥?𝑥'
𝑥?𝑥?

∈ ℝ?!

The kernel funcKon:

𝐾 �⃗�, 𝑧 ≔ 𝜙 �⃗� , 𝜙 𝑧 =]
"4%

&

]
34%

&

𝑥"𝑥3𝑧"𝑧3

=]
"4%

&

𝑥"𝑧"]
34%

&

𝑥3𝑧3 =]
"4%

&

𝑥"𝑧"

'

= �⃗�$𝑧 '

𝑓 �⃗� =]
"4%

*

𝛼" 𝑦(") �⃗� " , �⃗� + 𝑏

𝑏 = 1 −]
"4%

*

𝛼"𝑦(") �⃗� " , �⃗� 9

Recall that in hard-margin SVM,

max
8

]
"4%

*

𝛼" −
1
2]
",34%

*

𝑦 " 𝑦 3 𝛼"𝛼3 �⃗� " , �⃗� 3

]
"4%

*

𝛼"𝑦 " = 0 and 𝛼" ≥ 0 for 1 ≤ 𝑖 ≤ 𝑛

PredicKon:

subject to

]
"4%

*

𝛼" 𝑦 " 𝐾(�⃗� " , �⃗�) + 𝑏 = 0

Boundary:Data in ℝ' Feature space ℝ?

Ø Kernel Functions

1. QuadraKc Kernel

𝐾 �⃗�, 𝑧 : = �⃗�!𝑧 + 𝑐 "

What is the feature map 𝜙: ℝ& → ℝE ?

For �⃗� and 𝑧 ∈ ℝ&, define kernel function:

𝜙 �⃗� ≔

𝑥%𝑥%
⋮

𝑥%𝑥&
⋮

𝑥&𝑥&
2𝑐 𝑥%
⋮
2𝑐 𝑥?
𝑐

∈ ℝ&!.&.%

Do we need the feature map 𝜙?

2. Polynomial Kernel

𝐾 �⃗�, 𝑧 : = �⃗�!𝑧 + 𝑐 #

For �⃗� and 𝑧 ∈ ℝ&, define degree 𝑛 polynomial kernel funcSon:

3. Sigmoid Kernel

𝐾 �⃗�, 𝑧 ≔ tanh(𝜂�⃗�!𝑧 + 𝑐)

For �⃗� and 𝑧 ∈ ℝ&, define Sigmoid kernel function:

where tanh 𝑡 = F%/F&%

F%.F&%

4. Gaussian Kernel

𝐾 �⃗�, 𝑧 ≔ exp −
�⃗� − 𝑧 "

2𝜎"

For �⃗� and 𝑧 ∈ ℝ&, define Gaussian kernel function:

Remark:

• If 𝜎 is very small, then overfilng. If 𝜎 is very large, then underfilng

• What is the feature map 𝜙: ℝ& → ℝE ?

Example of two classes in two dimensions showing contours of
constant 𝑓(�⃗�) obtained from a support vector machine having a
Gaussian kernel function. Also shown are the decision boundary, the
margin boundaries, and the support vectors.

Example: SVM with kernel trick

https://scikit-learn.org/stable/modules/svm.html#svm

scikit-learn

https://scikit-learn.org/stable/modules/svm.html#kernel-functions

• SVM:

• Kernel FuncSons:

https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html

How to show a map is a feature maps?

Theorem: (Mercer 1909)

Let 𝐾: ℝ&× ℝ& → ℝ& be a binary map.

The map 𝐾 is a kernel function if and only if for any finite sequence

{�⃗� % , … , �⃗� 5 }, the matrix

𝑀 =
⋮

⋯ 𝐾 �⃗� " , �⃗� 3 ⋯
⋮

is symmetric and positive semi-definite.

Proof:
“⟹”

If 𝐾 is a kernel funcSon, then there exists a map 𝜙:ℝ& → ℝE such that

𝐾 �⃗� " , �⃗� 3 = 𝜙(�⃗�(")), 𝜙(�⃗�(3))

First, 𝐾 �⃗� " , �⃗� 3 = 𝐾 �⃗� 3 , �⃗� " by the property of inner product.

Second, the quadratic form

𝑧$𝑀𝑧 =]
",3

&

𝑧" 𝜙(�⃗�(")), 𝜙(�⃗�(3)) 𝑧3 =]
",3

&

𝑧"𝜙(�⃗�(")), 𝜙(�⃗�(3))𝑧3

=]
"4%

&

𝑧"𝜙(�⃗�(")) ,]
34%

&

𝑧3𝜙(�⃗�(3)) =]
"4%

&

𝑧"𝜙(�⃗� ")

'

≥ 0

𝑀 defined by inner product this way is called the Gram matrix.

“ ⟸ ”

Consider 𝜙 0⃗ (−) ≔ 𝐾 −, �⃗� , which is map from ℝ* 𝑡𝑜 ℝ.

Let ℱ ≔ Span 𝜙 0⃗ �⃗� ∈ ℝ*} be a subspace of the funcSon space 𝐶(ℝ*, ℝ)

Claim 1. 𝜙 0⃗ defines a map from ℝ* to ℱ.

Suppose 𝐾 is a binary map such that 𝑀 = 𝐾 �⃗� " , �⃗� 3 satisfies the properties.

Claim 2. ℱ is an inner product space with

𝜙 0⃗ , 𝜙 H⃗ ℱ
≔𝐾(�⃗�, 𝑧)

How to construct feature maps?

Theorem:

If 𝐾% 𝑎𝑛𝑑 𝐾' are kernel functions, then the following are also kernel functions.

• 𝐾(�⃗�, 𝑧): = 𝑎𝐾%(�⃗�, 𝑧) + 𝑏𝐾'(�⃗�, 𝑧), where 𝑎, 𝑏 ≥ 0

• 𝐾(�⃗�, 𝑧): = 𝐾%(�⃗�, 𝑧)𝐾'(�⃗�, 𝑧)

• 𝐾 �⃗�, 𝑧 ≔ 𝐾% 𝑓 �⃗� , 𝑓 𝑧 , where f is a funcSon from ℝ& → ℝ=

• 𝐾 �⃗�, 𝑧 ≔ 𝑃 𝐾% �⃗�, 𝑧 , where 𝑃(𝑡) is a polynomial with non-negaSve coeffects.

• 𝐾 �⃗�, 𝑧 ≔ exp 𝐾% �⃗�, 𝑧

• 𝐾 �⃗�, 𝑧 ≔ �⃗�$𝑆𝑧, where 𝑆 is a symmetric posiSve semidefinite matrix.

• 𝐾 �⃗�, 𝑧 ≔ 𝑓(�⃗�)𝐾% �⃗�, 𝑧 𝑓(𝑧) , where 𝑓:ℝ& → ℝ is any funcSon.

Support Vector Machine can also be used as a regression method, maintaining
all the main features that characterize the algorithm (maximal margin).

First of all, because output is a real number it becomes very difficult to predict
the information at hand, which has infinite possibilities.

In the case of regression, a margin of tolerance (epsilon) is set in approximation
to the SVM which would have already requested from the problem.

But besides this fact, there is also a more complicated reason, the algorithm is
more complicated therefore to be taken in consideration.

However, the main idea is always the same: to minimize error, individualizing the
hyperplane which maximizes the margin, keeping in mind that part of the error is
tolerated.

Ø Support Vector Machine - Regression (SVR)

Support Vector Machine - Regression (SVR)

Linear SVR

Non-linear SVR

The kernel functions transform the data into a higher dimensional feature
space to make it possible to perform the linear separation.

Ø Apply Kernel Methods to Linear Regressions:

ℎ �⃗� = �⃗�$�⃗�

If the mean of the data matrix 𝑋 is zero, Ridge regression cost funcSon:

𝐽J"&KF(�⃗�): = 𝑋�⃗� − �⃗�
$
𝑋�⃗� − �⃗� + 𝜆�⃗�$�⃗�

Data:

Model:

𝐷 = �⃗� " , 𝑦 " | 𝑖 = 1, …𝑛

The optimal solution is

�⃗� = 𝑋$𝑋 + λ𝐼 /%𝑋$�⃗�

Define �⃗� = 𝑋$𝛽 for some new parameter vector 𝛽 ∈ ℝ*, called dual parameters

�⃗� = 𝑋$𝛽 = �⃗� % … �⃗� *
𝛽%
⋮
𝛽*

=]
"4%

*

𝛽" �⃗� "

The dual model for linear regression is

ℎ �⃗� = �⃗�$�⃗� = �⃗�, �⃗� =]
"4%

*

𝛽" �⃗� , �⃗� "

SoluKons of 𝛽 for opKmizing the cost funcKon:

𝛽 = 𝑋𝑋$ + 𝜆𝐼 /% �⃗�

Here, 𝑋𝑋$ =
⋮

⋯ �⃗�(") , �⃗� 3 ⋯
⋮

Now you can apply the kernel tricks to the dual linear model.

The cost funcKon

𝐽J"&KF(𝛽):= 𝑋𝑋$𝛽 − �⃗�
$
𝑋𝑋$𝛽 − �⃗� + 𝜆𝛽$𝑋𝑋$𝛽

References:

• Chapter 7 in Pattern Recognition and Machine Learning by Chris Bishop.

• Chapter 9 An introduction to Statistical Learning by James, Witten, Hastie, Tibshirani

• Chapter 12 The elements of Statistical Learning, by Hastie, Tibshirani, Friedman

• https://see.stanford.edu/materials/aimlcs229/cs229-notes3.pdf

https://see.stanford.edu/materials/aimlcs229/cs229-notes3.pdf

