
Math 7243-Machine Learning and Statistical Learning Theory – He Wang

Section 12 Recurrent Neural Network

• Recurrent Neural Network
• Computational Graph and backpropagation
• Applications of RNN
• Long Short Term Memory (LSTM)

Ø Types of Artificial Neural Networks

Artificial neural networks provide a powerful set of classifiers
since for any input shape dim(X) and any output shape dim(Y)
we have many deep architectures that may allows us to fit the
network to the problem at hand.

The challenge of course is filling in the middle for each of these
cases, while taking into consideration training time, data
composition and computational power. The appeal of neural
networks is that it's very easy to set a problem up computational
power alone will solve it.

Sometimes, this is the case as with the MNIST data set and the
perceptron networks. But often a clever solution requires more
complex architecture than just densely connected layers.

Modern artificial neural networks can be sorted into three broad categories
based on their structure:

Feed forward networks: A trained feed forward network acts like a function,
taking in a set of data at one end and returning a new set of data at the other.
Feed forward networks are the most common type, they take an input,
process it through a series of operations, and return some output.

Feed forward networks can be labeling or regression, but they can also be
generative networks (returning more data) or unsupervised, returning a
dimensional reduction, clustering or other description of the data. However, once
trained the weights 𝜃 are fixed for all prediction.

Recurrent neural networks: Trained recurrent networks are stateful. That is, RNN's
take data and return an output but the remember the last M pieces of data sent
through in an internal state. (We will study RNN in this lecture.)

Symmetrically Connected Networks: A trained SCN is a densely connected
network with an update rule. For any initial value of the nodes, the function
“updates”, moving at each step towards a “lower energy state”. The result is
achieved when updating no longer changes the state.

Zoo of common architectures: https://www.asimovinstitute.org/author/fjodorvanveen/

https://www.asimovinstitute.org/author/fjodorvanveen/

Ø Recurrent Neural Networks (RNN)

In RNN, each of the neurons in hidden layers receives an input with a specific
delay in time. It allow previous outputs to be used as inputs while having
hidden states. (RNN usually has a short-term memory. Long-term memory is
also used in some research problems.)

A RNN can take in a series of inputs and produce a series of outputs, as in predicting
time series data like stock prices or traffic across a network.

Recurrent Neural Networks: Process Sequences (for sequence data.)

Image
Captioning

Sentiment
Classification

Machine
Translation

Video
classification
on frame level

Vanilla
Neural
Networks

A baseball player
throws a ball

• Sequential Processing of Non-Sequence Data.

1. Classify images by taking a series of “glimpses”

• Machine Translation:

• Word prediction:

2. Generate images one piece at a time.

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

A recurrent node is often represented in “wrapped” form. RNN’s are used extensively
in time series prediction and natural language processing.

Usually want to predict
a vector at some time
steps

A recurrent neural network has state variables that can be changed at runtime and that
persist between prediction runs.

For example, in text prediction an RNN may predict one word at a time while
"remembering" its previous predictions.

State variables
ℎ!

𝑓" : Function with parameters 𝑊.

RNN new hidden state

�⃗�! ∶ input vector at some time step.

Sequence of vectors �⃗� by applying a recurrence formula at every time step:

=
ℎ!

ℎ+ = 𝑓,(ℎ+-., �⃗�+)

RNN output

𝑦! = 𝑔"!" (ℎ!)

𝑔" : Function with parameters 𝑊#$.

Notice: the same function and the same set
of parameters are used at every time step.

State space equations in feedback dynamical systems.

Vanilla Recurrent Neural Networks

The state consists of a single “hidden” vector h:

Or 𝑦! = softmax (𝑊#$ℎ!)

ℎ! = 𝑓"(ℎ!%&, 𝑥!)

ℎ! = tanh(𝑊##ℎ!%& +𝑊'#𝑥!)

𝑦! = 𝑊#$ℎ!

ℎ!

RNN: Computational Graph

Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

Loss function:

RNN: Computational Graph: Many to One

RNN: Computational Graph: One to Many

Sequence to Sequence: Many-to-one + one-to-many

A basic example: Character-level Language Model

Vocabulary: {h,e,l,o}
Example training sequence: “hello”

one-hot vector:

At test-time sample characters one at a time, feed back to model

Forward through entire sequence to compute loss, then backward through entire
sequence to compute gradient.

Backpropagation through time

To train an RNN, we unroll it to the the number of steps we require to match out input
data shape and then perform standard autodiff backpropagation with input vector and
output vector.

Truncated Backpropagation through time

Run forward and backward through chunks of the
sequence instead of whole sequence

Carry hidden states forward in time
forever, but only backpropagate for some
smaller number of steps

https://gist.github.com/karpathy/d4dee566867f8291f086

1. From Scratch: Minimal character-level language model with a Vanilla
Recurrent Neural Network, in Python/numpy. (112 lines of Python)

model = keras.Sequential()
Add an Embedding layer expecting input vocab of size 1000, and
output embedding dimension of size 64.
model.add(layers.Embedding(input_dim=1000, output_dim=64))

Add a LSTM layer with 128 internal units.
model.add(layers.LSTM(128))

Add a Fully-connected RNN layer with 128 internal units.
model.add(layers.SimpleRNN(128))

Add a Dense layer with 10 units.
model.add(layers.Dense(10))

model.summary()

2. By tensorflow and keras

https://www.tensorflow.org/guide/keras/rnn

Code for RNN:

https://gist.github.com/karpathy/d4dee566867f8291f086
https://www.tensorflow.org/guide/keras/rnn

Sentiment Classification Example

model = tf.keras.Sequential([
encoder,
tf.keras.layers.Embedding(

input_dim=len(encoder.get_vocabulary()),
output_dim=64,
Use masking to handle the variable sequence lengths
mask_zero=True),

tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1)

])

inputSize = 1;
embeddingDimension = 50;
numHiddenUnits = 64;
numWords = enc.NumWords;
numClasses = numel(categories(YTrain));

layers = [... sequenceInputLayer(inputSize)
wordEmbeddingLayer(embeddingDimension,numWords)
bilstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]

TensorFlow

MATLAB

The Sonnets

By William Shakespeare

Application: Text generation:

ℎ!

at first:

train more

train more

train more

Application: Generated C code

The Stacks Project: open source algebraic geometry textbook (7531 pages now.)

https://stacks.math.columbia.edu/

Application: book/paper generation:

https://stacks.math.columbia.edu/

RNN generated algebraic geometry:

https://thatsmathematics.com/mathgen/

Randomly generated mathematics research papers (in 1 second!)

https://thatsmathematics.com/mathgen/

RNN Advantages:

• Can process any length input

• Computation for step 𝑡 can (in theory) use information from many steps back

• Model size doesn’t increase for longer input

• Same weights applied on every timestep, so there is symmetry in how inputs

are processed.

RNN Disadvantages:

• Recurrent computation is slow

• In practice, difficult to access information from many steps back

Remarks on RNN

Figure from Karpathy et a, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015.

Application: Image Captioning

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Visual Question Answering

Agrawal et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2015

Image Captioning: Example Results

https://github.com/karpathy/neuraltalk2

https://github.com/karpathy/neuraltalk2

https://github.com/karpathy/neuraltalk2

Image Captioning: Failure Cases

https://github.com/karpathy/neuraltalk2

More Applications: 1. Picture Generation
2. Music Generation
3. Tweet sentiment classification
4. Machine Translation
5. Trajectory Prediction for Self-Driving Cars
6. Environmental Modeling
7. Weather prediction
8. Air quality prediction (lab4)
9. Stock prediction
10. Visual Language Navigation:
11. Visual Dialog: Conversations about images
12. …

Recurrent networks are designed to predict not just one, but a whole series of events
while incorporating their previous predictions into future ones. They can analyze time
series data like stock prices, network trac, or team performance and produce an
arbitrary amount of new data. RNN's can work locally on large sequences, and so can
take in a much wider variety of data.

In addition, being stateful, they can interact with humans: You can ask them to predict
the 10 most likely next words in a sentence (or notes in a song) and have a human pick
the best one over and over. By training the network on different genres, new works in
old styles can be co-composed.

Generative Pre-trained Transformer (GPT)

https://openai.com/research/gpt-4

GPT is a multimodal large language model created by OpenAI.

Conservative estimates
place the cost of one
training run of GPT-3
at $4.6 million.

human?

https://arxiv.org/pdf/2303.08774.pdf

https://openai.com/research/gpt-4
https://arxiv.org/pdf/2303.08774.pdf

Go back to RNN Training:

Standard Vanilla RNN Gradient Flow

q Technical Problem in Gradient Descent- Backpropagation

Standard Vanilla RNN Forward Function:

Vanilla RNN Gradient Flow- Backward Gradient

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions
on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013

𝜕ℎ!
𝜕ℎ!%&

= tanh(𝑊##ℎ!%& +𝑊'#𝑥! 𝑊##

y)

Vanilla RNN Gradient Flow-Backpropagation

𝜕𝐿
𝜕𝑊 =

𝜕𝐿&
𝜕𝑊 +

𝜕𝐿*
𝜕𝑊 +⋯+

𝜕𝐿+
𝜕𝑊

Total Cost: 𝐿 = 𝐿& + 𝐿* +⋯+ 𝐿+

𝜕𝐿!
𝜕𝑊 =

𝜕𝐿!
𝜕ℎ!

𝜕ℎ!
𝜕ℎ!%&

⋯
𝜕ℎ*
𝜕ℎ&

𝜕ℎ&
𝜕𝑊

𝜕ℎ!
𝜕ℎ!%&

= tanh(𝑊##ℎ!%& +𝑊'#𝑥! 𝑊## Tanh((z) = 1 − tanh*(z)

1. Largest singular value > 1: Exploding gradients

Gradient clipping: Scale gradient if its norm is too big

Change RNN architecture, e.g., Long Short Term Memory (LSTM), Gated
recurrent units (GRUs)

2. Largest singular value < 1: Vanishing gradients

Computing gradient of ℎ, involves many factors of 𝑊 (and repeated tanh). The main
challenge with RNN's is that training is highly susceptible to gradient explosion and
vanishing, because recurrent nodes lead to highly nonlinear networks.

Explosion and Vanishing of Gradients

Long Short Term Memory (LSTM)

Standard Vanilla RNN LSTM

ℎ! = tanh(𝑊##ℎ!%& +𝑊'#𝑥!)

= tanh 𝑊 ℎ!%&
𝑥!

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

vector from
below (x)

Ø Long Short Term Memory (LSTM). [Hochreiter et al., 1997]

𝑓: Forget gate, Whether to erase cell. (forget irrelevant information)
𝑖: Input gate, whether to write to cell. (store relevant information from current input)
𝑔: Gate gate, How much to write to cell.
𝑜: Output gate, How much to reveal cell. (Return a filtered version of the cell state.)

Gates are a way to optionally let information through. They are composed out of a
sigmoid neural net layer and a pointwise multiplication operation.

The long term memory 𝑐! is a vector whose length is the same as the output.

Backpropagation from 𝑐! 𝑡𝑜 𝑐!%& only
elementwise multiplication by 𝑓, no
matrix multiply by 𝑊.

In the diagram, the product and sum are the
component wise product and sum.

We only need to stipulate how to update the long term memory 𝑐' . We allow the long term memory to
“forget” by making at the first multiplication, and to then store new information in the memory, by
adding on a masked (non-liner) term dependent on the input 𝑥' , and the previous output ℎ'().

• The gradient contains the 𝑓 gate’s vector of activations: allows better control

of gradients values, using suitable parameter updates of the forget gate 𝑓.

• The 𝑓, 𝑖, 𝑔, 𝑎𝑛𝑑 𝑜 𝑔𝑎𝑡𝑒𝑠 better balance of gradient values.

• The LSTM architecture makes it easier for the RNN to preserve information over many

timesteps, e.g. if the f = 1 and the i = 0, then the information of that cell is preserved

indefinitely.

• By contrast, it’s harder for vanilla RNN to learn a recurrent weight matrix 𝑊# that

preserves info in hidden state.

• LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it does

provide an easier way for the model to learn long-distance dependencies

Remarks:

Uninterrupted gradient flow.

Similar to ResNet.

In between: Srivastava et al, “Highway Networks”, ICML DL Workshop 2015

Deep RNN Network:

1. Multilayer RNN:

2. LSTM

tf.keras.layers.LSTM(num_units))

Gated recurrent units (GRU) [Learning phrase representations using RNN
encoder-decoder for statistical machine translation, Cho et al. 2014]

LSTM's are stronger than GRU’s: https://arxiv.org/abs/1805.0490856

GRU is a simplified version of LSTM.

Gated recurrent units (GRU)

https://arxiv.org/abs/1805.0490856
https://arxiv.org/abs/1805.0490856

• RNN is flexible in architectures.

• Vanilla RNNs are simple but don’t work very well.

• Common to use LSTM or GRU: their additive interactions improve gradient flow

o Backward flow of gradients in RNN can explode or vanish.

o Exploding is controlled with gradient clipping.

o Vanishing is controlled with additive interactions

• Better/simpler architectures are a hot topic of current research.

• Better understanding (both theoretical and empirical) is needed.

Summary:

References:

https://www.youtube.com/watch?v=5tvmMX8r_OM

• MIT Introduction to Deep Learning | 6.S191

http://cs231n.stanford.edu/ (Main resource for this lecture)

• Stanford CS231n: Convolutional Neural Networks for Visual Recognition

• Book: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

https://github.com/ageron/handson-ml2

https://tipthederiver.github.io/Math-7243-2020/index.html

• Nate Bade’s notes:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• Understanding LSTM Networks

https://www.youtube.com/watch?v=5tvmMX8r_OM
http://cs231n.stanford.edu/
https://github.com/ageron/handson-ml2
https://tipthederiver.github.io/Math-7243-2020/index.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Multiple Object Recognition with Visual Attention
Jimmy Ba, Volodymyr Mnih, Koray Kavukcuoglu
https://arxiv.org/abs/1412.7755

DRAW: A Recurrent Neural Network For Image Generation
Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, Daan Wierstra
https://arxiv.org/abs/1502.04623

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Understanding LSTM Networks

DL book RNN chapter
http://www.deeplearningbook.org/contents/rnn.html

https://arxiv.org/abs/1412.7755
https://arxiv.org/abs/1502.04623
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.deeplearningbook.org/contents/rnn.html

