
Math 7243-Machine Learning and Statistical Learning Theory – He Wang

Section 11 Convolutional Neural Network

• Convolution and pooling
• Convolutional Neural Network
• CNN examples

Ø Multi classes classification.

Example: hand-written digits taken from
US zip codes.

The MNIST (Modified National Institute of
Standards and Technology) data set of
handwritten numbers. It contains 60,000
training images and 10,000 testing images.

The black and white images from MNIST were normalized to fit into a 28x28 pixels.

Image Representation

Ø Multi-class classification: Image Classification

The features represent pixel values.

Relationship “Rabbit”

Ø Convolution Neural Networks (CNN)

CNNs are a specific type of neural networks that are generally composed of
convolution layers and pooling layers.

Typical CNN architecture

Ø Convolution layers: (generate feature maps.)

Mathematically, a convolution combines two matrices to make a third, by
taking the dot product of the smaller matrix with every block of the larger.

𝐴 ∗ 𝐵 !,# = %
$%&

'()

%
*%&

+()

𝐴!,$,#,*𝐵$,*

Suppose B is an 𝑚×𝑛 matrix.

The Stride of a Convolutional Filter. (Filter Step Size.)

=∗

1. Blurring (Reduces Noise)

Mean filter: The idea of mean filtering is simply to replace each pixel value in
an image with the mean (‘average’) value of its neighbors, including itself.

The median filter is normally used to reduce noise in an image, somewhat
like the mean filter. However, it often does a better job than the mean filter
of preserving useful detail in the image.

Ø Convolution examples
In image processing, this is used to create effects and extract information
from images.

=∗

2. Sharpening and Finding edges

=∗

Laplacian
Sharpen:

Edge detect:

Edge detect:

Gaussian filter:

4. Two dimensional Gaussian

1. Used to reduce image noise and reduce detail.
2. Center pixels weighted more.
3. One dimensional Gaussian smoothing of time series, signals

A continuous convolution product is defined as

Notice that: A separatable kernel:

5. Discrete Gaussian filter approximation:

Vertical Prewitt Edge Detector:

1. Vertical Edge Detection
2. Noise smoothing.

Similarly, one can consider the horizontal version.

1 0 −1
1 0 −1
1 0 −1

= −1 0 1
1
1
1

The Sobel operator:

1 0 −1
2 0 −2
1 0 −1

= −1 0 1
1
2
1

Simple Gaussian

Simple average

Finite derivative

Finite derivative

Edge detect:

More about edge detection:

Consider a single row or column of the image. Plotting intensity as a function of
position gives a signal.

Derivative operator is affected by noise.

Where is the edge?

By first derivative. Biggest change, derivative has maximum magnitude.
Or by second derivative. (zero)

Laplacian of Gaussian

Image gradient

The gradient of an image:

The gradient points in the direction of most rapid change in intensity

The gradient direction is given by:

The edge strength is given by the gradient magnitude

How discrete gradient?
By finite differences 𝑓(𝑥 + 1, 𝑦) – 𝑓(𝑥, 𝑦) and 𝑓(𝑥, 𝑦 + 1) – 𝑓(𝑥, 𝑦)

Edge detection by subtraction smoothed ≈

smoothed (5x5 Gaussian)

=−

original

Without smooth With Gaussian smooth

Laplacian of Gaussian

Ø Pooling layers. (Downsampling)

• Max (min) pooling checks if a low level feature is present and reports "yes" or
"no" for each region.

• Average pooling checks to what degree a low level feature is matched.

Convolutions In Neural Networks

• Successive convolution layers will find higher order features (collections of lower
order features)

• To group them efficiently it's common to start including pooling layers.
• A pooling layer down samples an image by taking the max, average, or min of a
𝑛×𝑚 set of pixels.

An Interactive Node-Link Visualization of Convolutional Neural Networks
https://adamharley.com/nn_vis

An interesting CNN network visualization projects:
https://poloclub.github.io/cnn-explainer/

https://www.cs.ryerson.ca/~aharley/vis/conv/
https://poloclub.github.io/cnn-explainer/

Ø Visualizing Deep Neural Networks

Filters in first layer of CNN are easy to visualize, while deeper ones are harder.
https://www.cs.ryerson.ca/~aharley/vis/conv/flat.htmlhttps://www.cs.ryerson.ca/~aharley/vis/conv/

https://www.cs.ryerson.ca/~aharley/vis/conv/flat.html
https://www.cs.ryerson.ca/~aharley/vis/conv/

Ø Convolutional Neural Networks.

Ø History and Examples:

• Can be traced to Neocognitron of Kunihiko Fukushima(1979)

• Yann LeCun combined convolutional neural networks with back

propagation (1989)

• Imposes shift invariance and locality on the weights

• Forward pass remains similar

• Backpropagation slightly changes – need to sum over the gradients from

all spatial positions

Ø LeNet.

The first successful applications of Convolutional Networks were developed by Yann
LeCun in 1990’s.

The most widely known CNN, LeNet5, was created by Yann LeCun in 1998 and
performed a robust classification of the MNIST dataset. It now serves as the
benchmark by which all other CNN architectures are compared.

The 28×28 MNIST data is padded with 0s to make each image 32×32. Yann's home
page describes LeNet5 with several demonstrations
http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html

AlexNet. 2012 The first work that popularized Convolutional Networks in Computer
Vision. (60 m parameters) with 17% top 5 error rate while the second place
winner had 26%.

ImageNet ILSVRC challenge Winners:

ZF Net. 2013

GoogLeNet.2014. (4m parameters)

ResNet 2015 (140m parameters)

https://www.kaggle.com/c/imagenet-object-localization-challenge/overview

The competition has passed to Kaggle since 2017:

In the mid 2000's, ImageNet was started as a project of Fei-Fei Li as Stanford
and comprises 14 million hand annotated images for algorithms to train and test
again. Since 2010, the ImageNet project has run a benchmark test for computer
vision.

Ø Computer vision

http://www.image-net.org/challenges/LSVRC/2014/
https://www.kaggle.com/c/imagenet-object-localization-challenge/overview

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

AlexNet was much deeper than LeNet5, with two fully connected layers of 4,096 nodes. It
also used ReLu as opposed to tanh for activation functions. Finally, to increase training
AlexNet included dropout layers, which turn off neurons at random forcing the graph to
learn the same concept in a redundant way.

Ø AlexNet(2012)

2

[Krizhevsky et al., 2012]

AlexNet (2012) Architecture

• 8 layers: first 5 convolutional, rest fully connected
• ReLU nonlinearity
• Local response normalization
• Max-pooling
• Dropout

Input

AlexNet Architecture diagrams

Layers
-Kernel sizes
-Strides
-# channels
-# kernels
-Max pooling

Ø ZF Net (2013)

• Very similar architecture to AlexNet, except for a few minor modifications.
• AlexNet trained on 15 million images, while ZF Net trained on only 1.3 million

images.
• Instead of using 11x11 sized filters in the first layer (which is what AlexNet

implemented), ZF Net used filters of size 7x7 and a decreased stride value. The
reasoning behind this modification is that a smaller filter size in the first conv
layer helps retain a lot of original pixel information in the input volume. A
filtering of size 11x11 proved to be skipping a lot of relevant information,
especially as this is the first conv layer.

• As the network grows, we also see a rise in the number of filters used.
• Used ReLUs for their activation functions, cross-entropy loss for the error

function, and trained using batch stochastic gradient descent.
• Trained on a GTX 580 GPU for twelve days.
• Developed a visualization technique named Deconvolutional Network, which

helps to examine different feature activations and their relation to the input
space. Called “deconvnet” because it maps features to pixels (the opposite of
what a convolutional layer does).

Ø GoogLeNet. 2014.

GoogLeNet is a type of convolutional neural network based on the Inception
architecture. It utilizes Inception modules, which allow the network to choose
between multiple convolutional filter sizes in each block. An Inception network stacks
these modules on top of each other, with occasional max-pooling layers with stride 2
to halve the resolution of the grid.

An Inception Module:

•Used 9 Inception modules in the whole architecture, with over 100 layers in total!

•No use of fully connected layers! They use an average pool instead, to go from a

7x7x1024 volume to a 1x1x1024 volume. This saves a huge number of parameters.

•Uses 12x fewer parameters than AlexNet.

•During testing, multiple crops of the same image were created, fed into the network, and

the softmax probabilities were averaged to give us the final solution.

•Dropout Regularization with dropout ratio = 0.7

•ReLU activation

•Utilized concepts from R-CNN for their detection model.

•There are updated versions to the Inception module (Versions 6 and 7).

•A softmax classifier with 1000 classes output similar to the main softmax classsifier.

•Trained on “a few high-end GPUs within a week”.

Main Points of GoogLeNet

Ø VGG (2014 runner up) [Simonyan-Zisserman’14]

• Deeper than AlexNet: 11-19 layers versus 8
• No local response normalization
• Number of filters multiplied by two every few layers
• Spatial extent of filters 3×3 in all layers
• Instead of 7×7 filters, use three layers of 3×3 filters

Gain intermediate nonlinearity
Impose a regularization on the 7×7 filters

Ø ResNet (2015) [HGRS-15]

• Solves problem by adding
• skip connections
• Very deep: 152 layers
• No dropout
• Stride
• Batch normalization

allowing the network to train a rough structure
before the new structure was trained.

Residual Block:

Microsoft Research

CIFAR-10 data set:
60,000 32x32 color images, 10 classes

https://www.nature.com/articles/s41598-019-53797-9

CNN-based segmentation approach (U-net)

More example:

https://arxiv.org/abs/1505.04597

https://arxiv.org/pdf/1705.03820.pdf

Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks

https://www.nature.com/articles/s41598-019-53797-9
https://arxiv.org/abs/1505.04597
https://arxiv.org/pdf/1705.03820.pdf

Up-sampling

Transpose Convolution

Transpose Convolution (Stride 2)

Transfer Learning?

• Filters learned in first layers of a network are transferable from one task to

another.

• When solving another problem, no need to retrain the lower layers, just

fine tune upper ones.

• Is this simply due to the large amount of images in ImageNet?

• Does solving many classification problems simultaneously result in

features that are more easily transferable?

For example, we could use the pretrained convolution weights of AlexNet, feeding
them into a new set of dense layers tuned to a new classification program.

Ø Using Pretrained CNN's:

• The high degree of redundancy in the convolutional layers of a CNN makes them
excellent candidates for transfer learning.

• In transfer learning, layers from a network trained on a certain task are reused
for a different task.

• It turns out that many low level visual features are roughly the same.

• Takeaway for your projects and beyond

Have some dataset of interest but it has smaller set of images.

1. Find a very large dataset that has similar data, train a big ConvNet there
2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of pretrained models, so you
don’t need to train your own.

Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/tensorflow/models
https://github.com/pytorch/vision

Further topics on CNN:

1. Localization with CNN’s
2. Object Detection with CNN’s
3. Semantic Segmentation

• Small but malicious perturbations can result in severe misclassification
• Malicious examples generalize across different architectures
• What is source of instability?
• Can we robustify network?

[Goodfellow et al., 2014]

Deep Learning may be fragile against noise!

Ø Disadvantages of CNN:

Raining weatherJ

Memory Requirements: A problem with CNNs is that the convolutional layers
require a huge amount of RAM. This is especially true during training, because
the reverse pass of backpropagation requires all the intermediate values
computed during the forward pass.

If training crashes because of an out-of-memory error, you can try reducing
the mini-batch size. Alternatively, you can try reducing dimensionality using a
stride, or removing a few layers. Or you can try using 16-bit floats instead of
32-bit floats. Or you could distribute the CNN across multiple devices.

Yann LeCun CVPR’15, invited talk: What’s wrong with deep learning?
One important piece: missing some theory!
http://techtalks.tv/talks/whats-wrong-with-deep-learning/61639/

https://cs231n.github.io/convolutional-networks/

References:

Stanford CS231n: Deep Learning for Computer Vision

https://deeplearning.mit.edu/

MIT Deep learning:

More references about Object Detection and Image Segmentation

FCN,
R-CNN,
Fast R-CNN,
Faster R-CNN,
YOLO

http://cs231n.stanford.edu/slides/2022/lecture_9_jiajun.pdf

http://techtalks.tv/talks/whats-wrong-with-deep-learning/61639/
https://cs231n.github.io/convolutional-networks/
https://deeplearning.mit.edu/
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.02640
http://cs231n.stanford.edu/slides/2022/lecture_9_jiajun.pdf

o MATLAB Resources:

1. Matlab Neural Network Toolbox:

https://www.mathworks.com/products/deep-learning.html

2. Matlab Pretrained Models:

https://www.mathworks.com/help/deeplearning/ug/classify-image-using-googlenet.html

3. Preprocessing
https://www.mathworks.com/help/deeplearning/deep-learning-data-management-and-preprocessing.html

4. Deep Learning Compression

https://www.mathworks.com/help/deeplearning/quantization.html

5. Deep Learning Applications

https://www.mathworks.com/help/deeplearning/deep-learning-applications.html

Extend deep learning workflows with computer vision, image processing, automated driving, signals, audio, text

analytics, and computational finance

https://www.mathworks.com/products/deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/classify-image-using-googlenet.html
https://www.mathworks.com/help/deeplearning/deep-learning-data-management-and-preprocessing.html
https://www.mathworks.com/help/deeplearning/quantization.html
https://www.mathworks.com/help/deeplearning/deep-learning-applications.html

