[Math 7243-Machine Learning and Statistical Learning Theory — He Wang

Section 11 Convolutional Neural Network

e Convolution and pooling
e Convolutional Neural Network
* CNN examples



» Multi classes classification. Image Representation
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28 x 28
784 pixels

The black and white images from MNIST were normalized to fit into a 28x28 pixels.

Example: hand-written digits taken from

US zip codes.
training images and 10,000 testing images.

handwritten numbers. It contains 60,000

The MNIST (Modified National Institute of
Standards and Technology) data set of



» Multi-class classification: Image Classification

“Dog”

“Cat”
“Rabbit”

The features represent pixel values.
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» Convolution Neural Networks (CNN)

CNNs are a specific type of neural networks that are generally composed of
convolution layers and pooling layers.

Typical CNN architecture

Fully Connected
Layers

Output

Convolution
Input image Pooling Layers
put Imag Layers g Lay




» Convolution layers: (generate feature maps.)

Mathematically, a convolution combines two matrices to make a third, by
taking the dot product of the smaller matrix with every block of the larger.

Suppose B is an mXn matrix.
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The Stride of a Convolutional Filter. (Filter Step Size.)



» Convolution examples

In image processing, this is used to create effects and extract information

from images.

1. Blurring (Reduces Noise)

Mean filter: The idea of mean filtering is simply to replace each pixel value in
an image with the mean (‘average’) value of its neighbors, including itself.
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The median filter is normally used to reduce noise in an image, somewhat
like the mean filter. However, it often does a better job than the mean filter

of preserving useful detail in the image.




2. Sharpening and Finding edges
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Taylor Series expansion

Pt h) = F)+hf () 4 () + " (0)+ O()

+ [ flx—=h)=f(x)—hf'(x)+ ;hz f(x)— %h“ M (x)+ ()(114)1

f(x+h)+ f(x—h) =2f(x)+h*f"(x) + O(h*)

f(x—h)—-2f(x)+ f(x+h)

7 = f"(x)+0(1)
Central difference approx
1 (-2 |1 .
to second derivative




A continuous convolution product is defined as

(Fra)t)= [ flt~m)ar

Gaussian filter:

1. Used to reduce image noise and reduce detail. StDev = 3

2. Center pixels weighted more.
3. One dimensional Gaussian smoothing of time series, signals

1 _a
g(w) = —— ¢ o
V2T - o
StDev = 10
4. Two dimensional Gaussian
1 B :c2+y2
9(z,y) = — -e

2o



5. Discrete Gaussian filter approximation:
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Notice that: A separatable kernel:
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. . White Grey Convolution
Vertical Prewitt Edge Detector:
5 5 500N
5 5 5 S0NON0
5 5 5 F0NON0 * 1 8
. . 1 0 e
1. Vertical Edge Detection 5 5 500 0 i B
2. Noise smoothing. 5 5 5/0 0 0
5 5 5/0 0 0

White Grey Black
Similarly, one can consider the horizontal version.
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More about edge detection:
Where is the edge?

By first derivative. Biggest change, derivative has maximum magnitude.
Or by second derivative. (zero)

Consider a single row or column of the image. Plotting intensity as a function of
position gives a signal.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Derivative operator is affected by noise.



Signal

Kernel

Convolution

Differentiation
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Laplacian of Gaussian
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Image gradient

The gradient of an image: Vf — [%7 g_f]
Loy

The gradient points in the direction of most rapid change in intensity
_ [9f
V=[50 |

The gradient direction is given by:

The edge strength is given by the gradient magnitude

2 2
VAl = /(D + D)

How discrete gradient?
By finite differences f(x +1,y) - f(x,y)and f(x,y+1)- f(x,y)




Without smooth With Gaussian smooth

Edge detection by subtraction smoothed =~ Laplacian of Gaussian
V2f = f + f

T Ox2 Oy?

original smoothed (5x5 Gaussian)



» Pooling layers. (Downsampling)
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* Max (min) pooling checks if a low level feature is present and reports "yes" or
"no" for each region.
* Average pooling checks to what degree a low level feature is matched.
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Convolutions In Neural Networks

Convolution
RelLu
Layers

-

Convolution
RelLu
Layers

Pooling

» Successive convolution layers will find higher order features (collections of lower
order features)

* To group them efficiently it's common to start including pooling layers.

* A pooling layer down samples an image by taking the max, average, or min of a
nXm set of pixels.



fc_3 fc_4

Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution | /—M
(5 X 5) kerr-rel Max-Pooling (5 X 5) kerr-1el Max-Pooling (with
valid padding 2x2) valid padding (2x2) ‘

/O dropout)

K_MK'M

INPUT nl channels nl channels n2 channels n2 channels || E ' 9
(28 x 28 x 1) (24 x24 xnl) (12x 12 xn1) (8x8xn2) (4x4xn2) | OUTPUT

n3 units

. tensorflow as tf

def generate _model():
model = tf.keras.Sequential([
# first convolutional layer
tf .keras.layers.Conv2D(32, filter_size=3, activation='relu’}),
tf.keras.layers.MaxPool2D(pool_size=2, strides=2),

# second convolutional layer

tf .keras.layers.Conv2D(64, filter size=3, activation='relu’),
tf.keras.layers.MaxPool2D(poocl_size=2, strides=2),

# fully connected classifier

tf .keras.layers.Flatten(),

tf.keras.layers.Dense(1024, activation='relu’),
tf.keras.layers.Dense(10, activation=‘softmax’) # 10 outputs

1)
return model




An interesting CNN network visualization projects:
https://poloclub.github.io/cnn-explainer/

An Interactive Node-Link Visualization of Convolutional Neural Networks
https://adamharley.com/nn vis



https://www.cs.ryerson.ca/~aharley/vis/conv/
https://poloclub.github.io/cnn-explainer/

» Visualizing Deep Neural Networks

Filters in first layer of CNN are easy to visualize, while deeper ones are harder.

https://www.cs.ryerson.ca/~aharley/vis/conv https://www.cs.ryerson.ca/~aharley/vis/conv/flat.html
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https://www.cs.ryerson.ca/~aharley/vis/conv/flat.html
https://www.cs.ryerson.ca/~aharley/vis/conv/

> Convolutional Neural Networks.

» History and Examples:

* Can be traced to Neocognitron of Kunihiko Fukushima(1979)

* Yann LeCun combined convolutional neural networks with back
propagation (1989)

* Imposes shift invariance and locality on the weights

* Forward pass remains similar

* Backpropagation slightly changes — need to sum over the gradients from

all spatial positions



> LeNet.

The first successful applications of Convolutional Networks were developed by Yann
LeCun in 1990’s.

The most widely known CNN, LeNet5, was created by Yann LeCun in 1998 and
performed a robust classification of the MNIST dataset. It now serves as the
benchmark by which all other CNN architectures are compared.

The 28%28 MNIST data is padded with Os to make each image 32X32. Yann's home
page describes LeNet5 with several demonstrations
http://yann.lecun.com/exdb/lenet/index.html

C3:f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28

32x32 S2: f. maps

6@14x14

Cs:layer Fg:layer OUTPUT

|
‘ Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection


http://yann.lecun.com/exdb/lenet/index.html

Activation Maps
In Input | 32x32 1
C1 Conv | 28x28 | bxb 1 tanh 6
S2 Ave 14x14 | 2x2 2 tanh 6
C3 Conv | 10x10 | 5x5 1 tanh 16
S4 Ave 5x5 2%2 2 tanh 16
Ch Conv | 1x1 5x5 1 tanh 120
F6 Dense | 84 tanh
Out Dense | 10




» Computer vision

In the mid 2000's, ImageNet was started as a project of Fei-Fei Li as Stanford
and comprises 14 million hand annotated images for algorithms to train and test
again. Since 2010, the ImageNet project has run a benchmark test for computer
vision.

ImageNet ILSVRC challenge Winners:

AlexNet. 2012 The first work that popularized Convolutional Networks in Computer
Vision. (60 m parameters) with 17% top 5 error rate while the second place
winner had 26%.

ZF Net. 2013
GoogleNet.2014. (4m parameters)

ResNet 2015 (140m parameters)

The competition has passed to Kaggle since 2017:

https://www.kaggle.com/c/imagenet-object-localization-challenge/overview



http://www.image-net.org/challenges/LSVRC/2014/
https://www.kaggle.com/c/imagenet-object-localization-challenge/overview
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» AlexNet(2012) [Krizhevsky et al., 2012]
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Figure 3: 96 convolutional kernels of size
11x 11 x 3 learned by the first convolutional
layer on the 224 x 224 X 3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU 2

AlexNet was much deeper than LeNet5, with two fully connected layers of 4,096 nodes. It
also used RelLu as opposed to tanh for activation functions. Finally, to increase training

AlexNet included dropout layers, which turn off neurons at random forcing the graph to
learn the same concept in a redundant way.



AlexNet (2012) Architecture

e 8 layers: first 5 convolutional, rest fully connected
* RelLU nonlinearity

* Local response normalization

* Max-pooling

Dropout

s 3-_ K 4
- s 2048 Joag \dense
13 \ 13
AN
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ITEE : 13 dense | |dense
1000
192 192 128 Max | L
. 2048 2048
| = pooling
pooling pooling

48



AlexNet Architecture diagrams

Layers
-Kernel sizes
-Strides

-# channels
-# kernels
-Max pooling

params

307K

35K

AlexNet

223M




> ZF Net (2013)

e Very similar architecture to AlexNet, except for a few minor modifications.

* AlexNet trained on 15 million images, while ZF Net trained on only 1.3 million
images.

* Instead of using 11x11 sized filters in the first layer (which is what AlexNet
implemented), ZF Net used filters of size 7x7 and a decreased stride value. The
reasoning behind this modification is that a smaller filter size in the first conv
layer helps retain a lot of original pixel information in the input volume. A
filtering of size 11x11 proved to be skipping a lot of relevant information,
especially as this is the first conv layer.

* As the network grows, we also see a rise in the number of filters used.

* Used RelUs for their activation functions, cross-entropy loss for the error
function, and trained using batch stochastic gradient descent.

* Trained on a GTX 580 GPU for twelve days.

* Developed a visualization technigue named Deconvolutional Network, which
helps to examine different feature activations and their relation to the input
space. Called “deconvnet” because it maps features to pixels (the opposite of
what a convolutional layer does).



» GoogleNet. 2014.

GooglLeNet is a type of convolutional neural network based on the Inception
architecture. It utilizes Inception modules, which allow the network to choose
between multiple convolutional filter sizes in each block. An Inception network stacks
these modules on top of each other, with occasional max-pooling layers with stride 2
to halve the resolution of the grid.

patch size/

output

F3x3

F5x5

pool

type oiride ] depth F1x1 et #3x3 s #5x5 i params ops
convolution TXT/2 112x112x64 1 27K 34M
max pool 3x3/2 56 x 56 X 64 0

convolution 3x3/1 56 x56x192 2 64 192 112K 360M
max pool 3x3/2 28x28x192 0

inception (3a) 28x28x256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28x28x480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14x14x480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 3M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 7TXTx832 0

inception (5a) TXTxX832 2 256 160 320 32 128 128 1072K 54M
inception (5b) TxTx1024 2 384 192 384 48 128 128 1388K 71IM
avg pool TXT/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K IM
softmax 1x1x1000 0
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An Inception Module:

Stack of 64 feature maps Convolution i
1x1x16

32x32x16

Convolution
3x3x32
Padding = same,
stride=1

32x32x32

32x32x64

Max pooling

3x3, padding = e

same, stride = 1

32x32x112 (112 = 16+32+64)

32x32x64



Main Points of GooglLeNet

*Used 9 Inception modules in the whole architecture, with over 100 layers in total!
*No use of fully connected layers! They use an average pool instead, to go from a
7x7%x1024 volume to a 1x1x1024 volume. This saves a huge number of parameters.
*Uses 12x fewer parameters than AlexNet.

*During testing, multiple crops of the same image were created, fed into the network, and
the softmax probabilities were averaged to give us the final solution.

*Dropout Regularization with dropout ratio = 0.7

*RelU activation

*Utilized concepts from R-CNN for their detection model.

*There are updated versions to the Inception module (Versions 6 and 7).

*A softmax classifier with 1000 classes output similar to the main softmax classsifier.

*Trained on “a few high-end GPUs within a week”.



» VGG (2014 runner up) [Simonyan-Zisserman’14]

* Deeper than AlexNet: 11-19 layers versus 8
* No local response normalization
* Number of filters multiplied by two every few layers
e Spatial extent of filters 3xX3 in all layers
* Instead of 7X7 filters, use three layers of 3x3 filters
Gain intermediate nonlinearity
Impose a regularization on the 7X7 filters

> 28 x 28 x 512 (XTx512
= x 14 % 512
P PRax19x D12 1 1x1x4096 1x1x1000
= ‘

ﬂ convolution+ReLU

( 1 max pooling
)

fully connected+ReLLU

| softmax




VGG-19 34-layer plain 34-layer residual

> ResNet (2015) [HGRS-15] g ——

i
 Solves problem by adding ml ot o i |
e skip connections .l == ¢ = i
« Very deep: 152 layers . el e e
* No dropout l [ :é:: }
e Stride s Cmmma] O
 Batch normalization i~ — — .
— i
[ m«{mm ] 0
Residual Block: | e e } [
X —- o] |
[(Hemsm ] [(wews ] |
weight layer — ——
F(x) lrelu == : S -
s -
weight layer idenitity { ::E: ; i
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F(x) +x —
N — —— <
[ m«{w.su | e
allowing the network to train a rough structure — el
before the new structure was trained. (o] |
. T
e e




CIFAR-10 data set:

60,000 32x32 color images, 10 classes

Simply stacking layers?

train error (%)

20,

10}

CIFAR-10

56-layer

0 1 2

* Plain nets: stacking 3x3 conv layers...

3
iter. (led)

4

20

10

Here are the classes in the dataset, as well as 10 random images from each:

airplane %yx V..=‘E
automobile Eiﬂih‘
bird =' ﬂ:\ '!‘
«  EEGHNEEEs P
e PSS N RS
w  EESASBN R
roo I R 21 O L B
horse -.mn-nmnm
S -~ ] T ) P
e o e I R R

test error (%)

56-layer

* 56-layer net has higher training error and test error than 20-layer net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Microsoft Research



CIFAR-10 experiments

CIFAR-10 plain nets CIFAR-10 ResNets
20 ............. 20... ¢
ResNet-20
ResNet-32
Pt —Ee
— ResNet.36
e 44-layer —ReaNet 11 -~
_ - b -layer
< 32-layer 2 N\ g y
: Y 20-layer R -layer
A o . WA 44-layer
S plain-2 Ny FEE § 56-layer
plain-3] Vi e/ ) ¥
:piaénf* \" solid: test 110-layer
plain-3 ) N .
% NS ) B 3 dashed: train % 1 2 - 4 5 6

3 4 3 -
iter. (led) iter. (1e4)

Deep ResNets can be trained without difficulties
Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



More example:

CNN-based segmentation approach (U-net)

https://arxiv.org/abs/1505.04597

Input tile L L Segmentation

] 1 L i et R > > >
‘ ot 4 4 *
] o i > »> » 2
—» convolution (3x3)
* s12 4 f
1 N N > > > . - 4 copy and crop
v 1024 B 4 up-convolution (2x2)

= > » g vy Max pooling (2x2)

https://www.nature.com/articles/s41598-019-53797-9

Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks

https://arxiv.org/pdf/1705.03820.pdf



https://www.nature.com/articles/s41598-019-53797-9
https://arxiv.org/abs/1505.04597
https://arxiv.org/pdf/1705.03820.pdf

Up-sampling
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Transpose Convolution

Input Kernel

011 Transposed 011

2] 3 Conv 2|3
Output
0|0 0] 1 0
=100 =+ 213 0] 2 + 0 4
4 |16 6 12




Transpose Convolution (Stride 2)
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Transfer Learning?

* Filters learned in first layers of a network are transferable from one task to

another.

* When solving another problem, no need to retrain the lower layers, just
fine tune upper ones.

* |s this simply due to the large amount of images in ImageNet?

* Does solving many classification problems simultaneously result in

features that are more easily transferable?

For example, we could use the pretrained convolution weights of AlexNet, feeding
them into a new set of dense layers tuned to a new classification program.



» Using Pretrained CNN's:

* The high degree of redundancy in the convolutional layers of a CNN makes them
excellent candidates for transfer learning.
* Intransfer learning, layers from a network trained on a certain task are reused

for a different task.
* It turns out that many low level visual features are roughly the same.
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Transfer Learning with CNNs

1. Train on Imagenet

;

Conv-512
Conv-512

MaxPool
Conv-512

Conv-256
Conv-256

More specific

More generic

/

FC-C

MaxPool
Conv-512

MaxPool

MaxPool

MaxPool

MaxPool

3

2. Small Dataset (C classes)

Reinitialize
this and train

> Freeze these

Donahue et al, "DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, "CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops

2014

FC-C

MaxPool

Conv-512

MaxPool
Conv-512

MaxPool

Conv-256

MaxPool
Conv-128

MaxPool

3. Bigger dataset

Train these

With bigger
dataset, train
more layers

> Freeze these

Lower learning rate
when finetuning;
1/10 of original LR
is good starting

J

point



« Takeaway for your projects and beyond

Have some dataset of interest but it has smaller set of images.

1. Find a very large dataset that has similar data, train a big ConvNet there
2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of pretrained models, so you
don’t need to train your own.

Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision



https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/tensorflow/models
https://github.com/pytorch/vision

Further topics on CNN:

1. Localization with CNN’s
2. Object Detection with CNN’s
3. Semantic Segmentation

Output:
taxi: (x|, yl,wl, hl)
person: (X2,y2, w2, h2)
person: (x3,y3, w3, h3)




» Disadvantages of CNN:

Deep Learning may be fragile against noise!

+ .007 x
& sign(VJ(9,,)) esign(V,J (0, z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[Goodfellow et al., 2014]

* Small but malicious perturbations can result in severe misclassification
* Malicious examples generalize across different architectures

* What is source of instability?

e Can we robustify network?



Memory Requirements: A problem with CNNs is that the convolutional layers
require a huge amount of RAM. This is especially true during training, because
the reverse pass of backpropagation requires all the intermediate values
computed during the forward pass.

If training crashes because of an out-of-memory error, you can try reducing
the mini-batch size. Alternatively, you can try reducing dimensionality using a
stride, or removing a few layers. Or you can try using 16-bit floats instead of
32-bit floats. Or you could distribute the CNN across multiple devices.



Yann LeCun CVPR’15, invited talk: What’s wrong with deep learning?
One important piece: missing some theory!

http://techtalks.tv/talks/whats-wrong-with-deep-learning/61639/

References:

Stanford CS231n: Deep Learning for Computer Vision

https://cs231n.github.io/convolutional-networks/

MIT Deep learning:
https://deeplearning.mit.edu/

More references about Object Detection and Image Segmentation

http://cs231n.stanford.edu/slides/2022/lecture 9 jiajun.pdf

FCN,
R-CNN
Fast R-CNN,

Faster R-CNN,
YOLO



http://techtalks.tv/talks/whats-wrong-with-deep-learning/61639/
https://cs231n.github.io/convolutional-networks/
https://deeplearning.mit.edu/
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.02640
http://cs231n.stanford.edu/slides/2022/lecture_9_jiajun.pdf

o MATLAB Resources:

1. Matlab Neural Network Toolbox:

https://www.mathworks.com/products/deep-learning.html

2. Matlab Pretrained Models:

https://www.mathworks.com/help/deeplearning/ug/classify-image-using-googlenet.html

3. Preprocessing
https://www.mathworks.com/help/deeplearning/deep-learning-data-management-and-preprocessing.html

4. Deep Learning Compression

https://www.mathworks.com/help/deeplearning/quantization.html

5. Deep Learning Applications

https://www.mathworks.com/help/deeplearning/deep-learning-applications.html

Extend deep learning workflows with computer vision, image processing, automated driving, signals, audio, text

analytics, and computational finance


https://www.mathworks.com/products/deep-learning.html
https://www.mathworks.com/help/deeplearning/ug/classify-image-using-googlenet.html
https://www.mathworks.com/help/deeplearning/deep-learning-data-management-and-preprocessing.html
https://www.mathworks.com/help/deeplearning/quantization.html
https://www.mathworks.com/help/deeplearning/deep-learning-applications.html

