
Math 7243-Machine Learning and Statistical Learning Theory – He Wang

Artificial Neural Network - Algorithm

- Backpropagation

-Automatic differentiation/algorithmic differentiation

q Neural Network Model:

1. Data: 𝒟 = �⃗� ! , 𝑦 ! for 𝑖 = 1… 𝑛.

2. Model 𝒉𝚯(𝒙)

3. Cost Function 𝑱(𝚯)

4. Optimization

5. Prediction 𝒉#𝚯(𝒙)

Machine Learning Framework/Structure:

2𝚯 = argmin
𝚯

𝑱(𝚯)

Neural Network Model:

ℎ$ �⃗� ≔ 𝐹 % ∘ Θ % ∘ ⋯ ∘ 𝐹 & ∘ Θ & ∘ 𝐹 ' ∘ Θ '

Cost Functions :

𝐽 Θ =
1
𝑛 ℎ$ 𝑋 − �⃗� & =

1
𝑛B
!('

)

ℎ$ �⃗� ! − 𝑦 ! &

2. Cross-Entropy cost for classification

1. Mean Square Error for regression

𝐽 Θ = −
1
𝑛B
!('

)

B
*('

+

𝕀 𝑦 ! = 𝑘 ln ℎ$ �⃗� !
*

3. Hinge loss, 0–1 loss, …

𝐽 Θ := 𝐿 ℎ$ 𝑋 , �⃗� , where 𝐿 −,− is a metric.

For example:

Figure: Cross entropy (black, surface on top) and quadratic (red, bottom surface)
cost as a function of two weights (one at each layer) of a network with two layers,
𝜃' respectively on the first layer and 𝜃& on the second, output layer. (Glorot &
Bentio (2010))

Cost Function Example:

Optimization-Gradient Descent:

Θ,-' = Θ, − 𝛼∇𝐽(Θ,)

The key calculation is the gradient ∇𝐽 Θ

𝑑𝑓 𝑥
𝑑𝑥 = lim

.→0

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ

Derivative from Calculus:

• Numerical differentiation using finite difference approximations;

Computation Methods:

• Manually working out analytical derivatives and coding them directly;

• Derive analytic gradient, check your implementation with numerical gradient
to avoid redundant computations; (called automatic differentiation, also
called algorithmic differentiation), e.g., Back-propagation method.

Ø Back-propagation (Reverse auto-differentiation)

In 1986, (Learning representations by back-propagating errors, Nature, 323(9): 533-
536) D. E. Rumelhart popularized the idea of back propagation to compute
gradients. It is not a learning method, but a computational trick. It is actually a
simple implementation of chain rule of derivatives.

Goal: Minimize the loss function 𝐽(Θ)

BP algorithms as stochastic gradient descent algorithms (Robbins–Monro 1950;
Kiefer- Wolfowitz 1951) with Chain rules of Gradient maps. Implemented to run on
computers as early as 1970 by Seppo Linnainmaa.

We need to calculate ∇𝐽(Θ,), but not write the whole formula ∇𝐽 Θ .

Difficulty: Too much calculation/memory in formula ∇𝐽 Θ

Solution: Back-propagation

• Univariate Chain Rule

Ø The Chain Rules:

𝑑𝑓 𝑥 𝑡
𝑑𝑡 =

𝑑𝑓
𝑑𝑥
𝑑𝑥
𝑑𝑡

𝑑𝑓 �⃗� 𝑡
𝑑𝑡 =

𝜕𝑓
𝜕𝑥'

𝑑𝑥'
𝑑𝑡 + ⋯+

𝜕𝑓
𝜕𝑥)

𝑑𝑥)
𝑑𝑡

• Multivariate Chain Rule

𝜕𝑓 �⃗� 𝑡
𝜕𝑡!

=
𝜕𝑓
𝜕𝑥'

𝜕𝑥'
𝜕𝑡!

+⋯+
𝜕𝑓
𝜕𝑥)

𝜕𝑥)
𝜕𝑡!

ℝ → ℝ→ ℝ

ℝ → ℝ) → ℝ

ℝ1 → ℝ) → ℝ

𝜕𝐹
𝜕�⃗� : =

𝜕𝑓'
𝜕𝑥'

⋯
𝜕𝑓'
𝜕𝑥)

⋮ ⋱ ⋮
𝜕𝑓%
𝜕𝑥'

⋯
𝜕𝑓%
𝜕𝑥)

Chain Rule in Matrix Calculus Notation:

Use the numerator layout convention for the derivative of 𝐹(�⃗�)

The Chain Rule for 𝐹 = 𝐹 �⃗� 𝑡 :

𝜕𝐹
𝜕𝑡

=
𝜕𝐹
𝜕�⃗�

𝜕�⃗�
𝜕𝑡

More compositions 𝐹 = 𝐹 𝑧 �⃗� 𝑡 :

𝜕𝐹
𝜕𝑡

=
𝜕𝐹
𝜕𝑧

𝜕𝑧
𝜕�⃗�
𝜕�⃗�
𝜕𝑡

𝐹: ℝ) → ℝ%

ℝ1 → ℝ) → ℝ%

ℝ2 → ℝ1 → ℝ) → ℝ%

called Jacobian matrix.

Example: One layer neural network:

×

+

𝑧 = 𝑤𝑥 + 𝑏

𝑦 = 𝜎 𝑧 =
1

1 + 𝑒34

𝐿 𝑦 =
1
2 𝑦 − 𝑐 &

𝑥

𝑤

𝑏

𝜎 𝐿

Computational graphs
𝐿 𝑤, 𝑏 =

1
2
𝜎 𝑤𝑥 + 𝑏 − 𝑐 &

Computational Graphs

• Formalize computation as graphs

• Nodes indicate variables (scalar, vector, tensor or another variable)

• Operations are simple functions of one or more variables

• Our graph language comes with a set of allowable operations

https://www.deeplearningbook.org/contents/mlp.html Sec 6.5

𝑧 = 𝑓(𝑓(𝑓(𝑤)))

https://www.deeplearningbook.org/contents/mlp.html

𝜕𝐿
𝜕𝑤 =

𝜕
𝜕𝑤

1
2 𝜎 𝑤𝑥 + 𝑏 − 𝑡 & =

1
2
𝜕
𝜕𝑤 𝜎 𝑤𝑥 + 𝑏 − 𝑡 &

= 𝜎 𝑤𝑥 + 𝑏 − 𝑡
𝜕
𝜕𝑤 𝜎 𝑤𝑥 + 𝑏 − 𝑡

= 𝜎 𝑤𝑥 + 𝑏 − 𝑡 𝜎5 𝑤𝑥 + 𝑏
𝜕
𝜕𝑤

𝑤𝑥 + 𝑏

𝜕𝐿
𝜕𝑏 =

𝜕
𝜕𝑏

1
2 𝜎 𝑤𝑥 + 𝑏 − 𝑡 & =

1
2
𝜕
𝜕𝑤 𝜎 𝑤𝑥 + 𝑏 − 𝑡 &

= 𝜎 𝑤𝑥 + 𝑏 − 𝑡
𝜕
𝜕𝑏 𝜎 𝑤𝑥 + 𝑏 − 𝑡

= 𝜎 𝑤𝑥 + 𝑏 − 𝑡 𝜎5 𝑤𝑥 + 𝑏
𝜕
𝜕𝑏

𝑤𝑥 + 𝑏

𝜕𝐿
𝜕𝑏 =

𝑑𝐿
𝑑𝑦

𝑑𝑦
𝑑𝑧
𝜕𝑧
𝜕𝑏 = 𝜎 𝑤𝑥 + 𝑏 − 𝑡 𝜎′(𝑤𝑥 + 𝑏)

𝜕𝐿
𝜕𝑤 =

𝑑𝐿
𝑑𝑦

𝑑𝑦
𝑑𝑧

𝜕𝑧
𝜕𝑤 = 𝜎 𝑤𝑥 + 𝑏 − 𝑡 𝜎5 𝑤𝑥 + 𝑏 𝑥

Analytical Derivatives:

Disadvantages?

Efficient algorithmic differentiation :

• Computing the loss functions: • Computing the derivatives:

𝑧 = 𝑤𝑥 + 𝑏

𝑦 = 𝜎 𝑧 =
1

1 + 𝑒34

𝐿 𝑦 =
1
2
𝑦 − 𝑐 &

𝑑𝐿
𝑑𝑦

= 𝑦 − 𝑐

𝑑𝐿
𝑑𝑧

=
𝑑𝐿
𝑑𝑦

𝜎5 𝑧 =
𝑑𝐿
𝑑𝑦

𝜎 𝑧 1 − 𝜎 𝑧

𝜕𝐿
𝜕𝑤

=
𝑑𝐿
𝑑𝑧
𝑥

𝜕𝐿
𝜕𝑏 =

𝑑𝐿
𝑑𝑧

and

×

+

𝑥

𝑤

𝑏

𝜎 𝐿

Computing the loss functions:

Computing the derivatives:

𝑦 = 𝜎 𝑧𝑧 = 𝑤𝑥 + 𝑏 𝐿 𝑦 =
1
2
𝑦 − 𝑐 &

𝑑𝐿
𝑑𝑦 = 𝑦 − 𝑐

𝑑𝐿
𝑑𝑧 =

𝑑𝐿
𝑑𝑦 𝜎′(𝑧)

𝜕𝐿
𝜕𝑤 =

𝑑𝐿
𝑑𝑧 𝑥

𝜕𝐿
𝜕𝑏

=
𝑑𝐿
𝑑𝑧

The goal isn’t to obtain closed-form solutions for derivative.

The goal is to write a program that efficiently computes the derivatives.

Ø Computation Graphs

𝑧

𝑥

𝑤

𝑏

𝑦 𝐿

𝑦 = 𝜎 𝑧𝑧 = 𝑤𝑥 + 𝑏 𝐿 𝑦 =
1
2
𝑦 − 𝑐 &

𝑑𝐿
𝑑𝑦 = 𝑦 − 𝑐

𝑑𝐿
𝑑𝑧 =

𝑑𝐿
𝑑𝑦 𝜎′(𝑧)

𝜕𝐿
𝜕𝑤 =

𝑑𝐿
𝑑𝑧 𝑥

𝜕𝐿
𝜕𝑏

=
𝑑𝐿
𝑑𝑧

For example, data 𝑥 = 1, c = 1

In initial step 𝑤 = 0, 𝑏 = 0

𝑧 = 𝑓(𝑤, 𝑏)

𝑤

𝑏

𝑑𝐿
𝑑𝑧𝜕𝑧

𝜕𝑏

𝜕𝑧
𝜕𝑤

𝜕𝐿
𝜕𝑤 =

𝑑𝐿
𝑑𝑧

𝜕𝑧
𝜕𝑤

𝜕𝐿
𝜕𝑏 =

𝑑𝐿
𝑑𝑧
𝜕𝑧
𝜕𝑏

Chain Rule Again:

Sigmoid Gate:

𝑦 = 𝜎 𝑧 =
1

1 + 𝑒34

exp +1
1
𝑢

−1 ∗
𝑧 𝑦

• add gate: gradient distributor
• max gate: gradient router
• multiplication gate: gradient switcher (swap multiplier)
• copy gate: gradient adder

Other gates:

×

+

𝑥

𝑦

𝑠

𝑡

𝑚𝑎𝑥

𝑢 = 𝑥𝑦

𝑣 = max(𝑠, 𝑡)

𝑧 = 𝑢 + 𝑣

Another Example: 𝑓 𝑥', 𝑥& = ln 𝑥' + 𝑥'𝑥& − sin(𝑥&)

𝑣3' 𝑣'𝑥'

𝑥&

𝑣6

𝑣7𝑣0

𝑣& 𝑣8

̇𝑣! ≔
𝜕𝑣!
𝜕𝑥'

𝑣3' 𝑣'𝑥'

𝑥&

𝑣6

𝑣7𝑣0

𝑣& 𝑣8

j𝑣! ≔
𝜕𝑦
𝜕𝑣!

• Backpropagation: recursive application of the chain rule along a computational

graph to compute the gradients of all inputs/parameters/intermediates.

• Forward: compute result of an operation and save any intermediates needed

for gradient computation in memory.

• Backward: apply the chain rule to compute the gradient of the loss function

with respect to the inputs.

Backpropagation

A non-standard (error signal) notation

• Use �̅� to denote the derivative 9:
9;

, sometimes called the error signal.

• This emphasizes that the error signals are just values our program is

computing (rather than a mathematical operation).

Backpropagation algorithm:

Let 𝑣', . . . , 𝑣< be a topological ordering of the computation graph

Multivariate Chain Rule

𝑑𝑓 �⃗� 𝑡
𝑑𝑡 =

𝜕𝑓
𝜕𝑥'

𝑑𝑥'
𝑑𝑡 + ⋯+

𝜕𝑓
𝜕𝑥)

𝑑𝑥)
𝑑𝑡

ℝ → ℝ) → ℝ

𝑥'

𝑡

𝑥)

𝑥&
𝑓

⋮
⋮⋮

Chain Rule:

ℝ& → ℝ) → ℝ

𝑥'

𝑡'

𝑥)

𝑥&

𝑓

⋮
⋮

⋮

𝑡&

𝜕𝑓 �⃗� 𝑡
𝜕𝑡!

=
𝜕𝑓
𝜕𝑥'

𝜕𝑥'
𝜕𝑡!

+⋯+
𝜕𝑓
𝜕𝑥)

𝜕𝑥)
𝜕𝑡!

Chain Rule:

ℝ& → ℝ) → ℝ7

𝑥'

𝑡'

𝑥)

𝑥&
𝑓'

⋮ ⋮⋮

𝑡&

𝑓&

𝑓7

𝜕𝑓, �⃗� 𝑡
𝜕𝑡!

=
𝜕𝑓,
𝜕𝑥'

𝜕𝑥'
𝜕𝑡!

+⋯+
𝜕𝑓,
𝜕𝑥)

𝜕𝑥)
𝜕𝑡!

𝜕𝐹
𝜕𝑡

=
𝜕𝐹
𝜕�⃗�

𝜕�⃗�
𝜕𝑡

Chain Rule:

Or

𝑧'

𝑥

𝑤' 𝑏'

𝑦'

𝐿

𝐿 =B
!('

&
1
2 𝑦! −𝑐! &

𝑑𝐿
𝑑𝑦'

𝑑𝐿
𝑑𝑧'

=
𝑑𝐿
𝑑𝑦'

𝑑𝑦'
𝑑𝑧'

+
𝑑𝐿
𝑑𝑦&

𝑑𝑦&
𝑑𝑧'

𝜕𝐿
𝜕𝑤'

=
𝑑𝐿
𝑑𝑧'

𝑑𝑧'
𝑑𝑤'

𝑧&

𝑤&
𝑏&

𝑦&
𝑑𝐿
𝑑𝑦&𝑑𝑦&

𝑑𝑧&

𝑑𝑦'
𝑑𝑧'

𝑑𝑦'
𝑑𝑧&
𝑑𝑦&
𝑑𝑧'

𝑑𝑧'
𝑑𝑤'

𝑑𝑧&
𝑑𝑤&

Backprop as message passing:

Modularity: each node only has to know how to compute derivatives with respect to
its arguments, and doesn’t have to know anything about the rest of the graph.

𝑧 (𝑤, 𝑏)

𝑤

𝑏

𝜕𝐿
𝜕𝑧𝜕𝑧

𝜕𝑏

𝜕𝑧
𝜕𝑤

𝜕𝐿
𝜕𝑤 =

𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑤

𝜕𝐿
𝜕𝑏

=
𝜕𝐿
𝜕𝑧
𝜕𝑧
𝜕𝑏

Chain Rule Again (matrix notation)

𝑧

𝑤

𝑏

�⃗� 𝐿

𝜕𝐿
𝜕�⃗�

𝜕𝐿
𝜕𝑧 =

𝜕𝐿
𝜕�⃗�

𝜕�⃗�
𝜕𝑧

𝜕𝑧
𝜕𝑏

𝜕𝑧
𝜕𝑤

𝜕𝐿
𝜕𝑏

=
𝜕𝐿
𝜕𝑧
𝜕𝑧
𝜕𝑏

Matrix notation

�⃗�

Go back to Neural Network model:

𝐿

𝑧[!]

𝑧[%]
……

𝑧[']
�⃗�[!]

�⃗�[%]

𝑧[%] �⃗�[%] 𝐿

�⃗�[?] = 𝐹[?](𝑧[?])

�⃗�[']

𝑧[?-'] = 𝐺[?-'](�⃗�[?]) = 𝑊 ? �⃗� ? + 𝑏[?]

𝑧[']�⃗� …

Matrix Notation:

�⃗�[']

𝐺['] 𝐹['] 𝐹[%]

Model: ℎ$ �⃗� ≔ 𝐹 % ∘ G % ∘ ⋯ ∘ 𝐹 & ∘ G & ∘ 𝐹 ' ∘ G '

Cost: 𝐽 Θ := 𝐿 ℎ$ 𝑋 , �⃗� , where 𝐿 −,− is a metric.

We need to calculate three type of derivatives along the computational graph, then
use the backpropagation method:

𝜕𝐿
𝜕𝑧[%]

𝜕𝐹[!]

𝜕𝑧[!]

𝜕G[!]

𝜕�⃗�[!]

(1) Derivative of the metric function

(2) Derivative of the activation function

(3) Derivative of the linear function

𝜕𝐿
𝜕𝑧[%]

(1) Derivative for the metric function

2. Cross-Entropy cost for classification

1. Mean Square Error for regression

𝐽 z⃗ = −
1
𝑛B
!('

)

B
*('

+

𝕀 𝑦 ! = 𝑘 ln 𝑧!

𝐽 z⃗ =
1
𝑛
𝑧 − �⃗� &

3. Hinge loss, 0–1 loss, …

𝜕𝐹[!]

𝜕𝑧[!]
(2) Derivative of the activation function

𝑧[%] �⃗�[%] 𝐿

�⃗�[?] = 𝐹[?](𝑧[?])

�⃗�[']

𝑧[?-'] = 𝑊 ? �⃗� ? + 𝑏[?]

𝑧[']�⃗� …

𝑊[']

𝑏[']

𝑊[%]

𝑏[%]

Notation: �⃗�[0] ≔ �⃗� and 𝑧[%-'] = 𝐿

𝜕𝑧[?-']

𝜕�⃗�[?]
= 𝑊[?]

(3) Derivative of the linear function

𝑧[?-'] = 𝑊[?]�⃗�[?] + 𝑏[?]

𝜕𝐿
𝜕𝑊[?] =

𝜕𝐿
𝜕𝑧[?-']

𝜕𝑧[?-']

𝜕𝑊[?] = �⃗�
𝜕𝐿

𝜕𝑧[?-']

𝜕𝑧[?-']

𝜕𝑊[?] is an 𝑚×(𝑚×𝑑) matrix with
𝜕𝑧[?-']*
𝜕𝑤!,

? = p
𝑦, 𝑖𝑓 𝑘 = 𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Proposition:

𝑧!
[?-'] =B

,

𝑤!,
? 𝑦,

[?] + 𝑏!
[?]

𝜕𝐿
𝜕𝑏[?]

=
𝜕𝐿

𝜕𝑧[?-']
𝜕𝑧[?-']

𝜕𝑏[?]
=

𝜕𝐿
𝜕𝑧[?-']

𝜕𝑧[?-']

𝜕𝑊[?]

𝑧'𝑥'

𝑤''
[']

𝑏'
[']

𝑧&𝑥&

𝑤&'
[']

𝑏&
[']

𝑣' 𝑦'

𝐿

𝑣& 𝑦&

𝑤'&
[']

𝑤&&
[']

𝑤&'
[&]

𝑏&
[&]𝑤&&

[&]

𝑤''
[&]

𝑏'
[&]𝑤'&

[&]

Multilayer Perceptron (multiple outputs)

𝐿 =B
*

1
2 𝑦* −𝑐* &

Forward pass: Backward pass:

𝑧! =B
,

𝑤!,
' 𝑥, + 𝑏!

[']

ℎ! = 𝜎(𝑧!)

𝑦! =B
,

𝑤!,
& 𝑣, + 𝑏!

[&]

𝜕𝐿
𝜕𝑦!

𝜕𝐿
𝜕𝑣!

=B
*

𝜕𝐿
𝜕𝑦*

𝜕𝑦*
𝜕𝑣!

=B
*

𝜕𝐿
𝜕𝑦*

𝑤*!
&

𝜕𝐿

𝜕𝑤!,
& =

𝜕𝐿
𝜕𝑦!

𝜕𝑦!
𝜕𝑤!,

& =
𝜕𝐿
𝜕𝑦!

𝑣,

𝜕𝐿

𝜕𝑏!
& =

𝜕𝐿
𝜕𝑦!

𝜕𝑦!
𝜕𝑤!

& =
𝜕𝐿
𝜕𝑦!

𝜕𝐿
𝜕𝑧!

=
𝜕𝐿
𝜕𝑣!

𝜕𝑣!
𝜕𝑧!

=
𝜕𝐿
𝜕𝑣!

𝜎′(𝑧!)

𝜕𝐿

𝜕𝑤!,
' =

𝜕𝐿
𝜕𝑧!

𝜕𝑧!
𝜕𝑤!,

' =
𝜕𝐿
𝜕𝑧!

𝑥,

𝜕𝐿

𝜕𝑏!
' =

𝜕𝐿
𝜕𝑧!

𝜕𝑧!
𝜕𝑏!

' =
𝜕𝐿
𝜕𝑧!

𝜕𝐹
𝜕�⃗� : =

𝜕𝑓'
𝜕𝑥'

⋯
𝜕𝑓'
𝜕𝑥)

⋮ ⋱ ⋮
𝜕𝑓%
𝜕𝑥'

⋯
𝜕𝑓%
𝜕𝑥)

• Recall the numerator layout convention for the derivatives

𝐹: ℝ) → ℝ%

𝜕𝑓
𝜕�⃗� : =

𝜕𝑓'
𝜕𝑥'

⋯
𝜕𝑓'
𝜕𝑥)

𝑓: ℝ) → ℝ

• Using numerator layout: If 𝐹 �⃗� = 𝐴�⃗�, then @A
@C⃗
= 𝐴

• If 𝑓:ℝ%×) → ℝ, the derivative of 𝑓 is still defined to be

𝜕𝑓
𝜕𝑋 :=

𝜕𝑓
𝜕𝑥''

⋯
𝜕𝑓
𝜕𝑥')

⋮ ⋱ ⋮
𝜕𝑓
𝜕𝑥%'

⋯
𝜕𝑓
𝜕𝑥%)

Notations:

𝑧

𝑊[']

𝑏[']

�⃗� 𝐿�⃗�

Matrix Notation (numerator layout)

�⃗�

𝑊[&]

𝑏[&]

Forward pass: 𝑧 =𝑊[']�⃗� + 𝑏[']

�⃗� = 𝜎(𝑧)

�⃗� = 𝑊[&]�⃗� + 𝑏[&]

𝐿 =
1
2 �⃗� − 𝑐 &

ℝ9 ℝ% ℝ% ℝ1 ℝ

𝑧

𝑊['] 𝑏[']

�⃗� 𝐿

𝜕𝐿
𝜕𝑏[&]

=
𝜕𝐿
𝜕�⃗�

𝜕�⃗�
𝜕𝑏[&]

=
𝜕𝐿
𝜕�⃗�

𝜕𝐿
𝜕𝑊[&] =

𝜕𝐿
𝜕�⃗�

𝜕�⃗�
𝜕𝑊[&] = �⃗�

𝜕𝐿
𝜕�⃗�

�⃗� �⃗�

𝑊[&]
𝑏[&]

Backward pass: 𝜕𝐿
𝜕�⃗� = �⃗� − 𝑐

𝜕𝐿
𝜕𝑏[']

=
𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑏[']

=
𝜕𝐿
𝜕𝑧

𝜕𝐿
𝜕𝑊['] =

𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑊['] = �⃗�

𝜕𝐿
𝜕𝑧

𝜕𝐿
𝜕�⃗�

=
𝜕𝐿
𝜕�⃗�

𝜕�⃗�
𝜕�⃗�

=
𝜕𝐿
𝜕�⃗�

𝑊 &

𝜕𝐿
𝜕𝑧

=
𝜕𝐿
𝜕�⃗�

𝜕�⃗�
𝜕𝑧

=
𝜕𝐿
𝜕�⃗�

𝜎′(𝑧)

𝑧 =𝑊[']�⃗� + 𝑏[']

𝜕𝐿
𝜕𝑊['] =

𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑊[']

𝜕𝑧
𝜕𝑊[']

𝜕𝐿
𝜕𝑧 ≔

𝜕𝐿
𝜕𝑧'

…
𝜕𝐿
𝜕𝑧%

is an 𝑚×(𝑚×𝑑) matrix with
𝜕𝑧*
𝜕𝑤!,

' = p
𝑥, 𝑖𝑓 𝑘 = 𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Remark:

1×𝑚 matrix

1×𝑚×𝑑 matrix

𝜕𝐿
𝜕𝑊[!] =

𝜕𝐿
𝜕�⃗�

𝜕�⃗�
𝜕𝑊[!] = ⋯ = �⃗�

𝜕𝐿
𝜕�⃗�

Here, we avoid huge matrix(tensor) multiplications. When backpropagating
through a linear layer, using minibatches, we need to similar trick:
http://cs231n.stanford.edu/handouts/linear-backprop.pdf

http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Back-Propagation Algorithm for two-layer neural network:

1. Compute the function values 𝑧, �⃗�, �⃗� (in forward pass)

2. Compute the derivative values (in backward pass)

𝜕𝐿
𝜕𝑏[&]

=
𝜕𝐿
𝜕�⃗�

𝜕𝐿
𝜕𝑊[&] = �⃗�

𝜕𝐿
𝜕�⃗�

𝜕𝐿
𝜕�⃗� = �⃗� − 𝑐

𝜕𝐿
𝜕𝑏[']

=
𝜕𝐿
𝜕𝑧

𝜕𝐿
𝜕𝑊['] = �⃗�

𝜕𝐿
𝜕𝑧

𝜕𝐿
𝜕�⃗� =

𝜕𝐿
𝜕�⃗� 𝑊

&

𝜕𝐿
𝜕𝑧 =

𝜕𝐿
𝜕�⃗� 𝜎′(𝑧)

Here, 𝜎 can be
replaced by any
activation function.

𝑧[%] �⃗�[%] 𝐿

�⃗�[?] = 𝐹[?](𝑧[?])

�⃗�[']

𝑧[?-'] = 𝑊 ? �⃗� ? + 𝑏[?]

𝑧[']�⃗� …

𝑊[']

𝑏[']

𝑊[%]

𝑏[%]

Notation: �⃗�[0] ≔ �⃗� and 𝑧[%-'] = 𝐿

Back-Propagation for multi-layer neural network:

Back-Propagation Algorithm for multi-layer neural network:

1. Compute the values 𝑧 * and �⃗�[*] (in forward pass, for 𝑘 = 1,… ,𝑚)

2. Compute the derivative values (in backward pass)

For 𝑘 = 𝑚,… , 1, do

𝜕𝐿
𝜕𝑏[*]

=
𝜕𝐿
𝜕𝑧[*]

𝜕𝐿
𝜕𝑊['] = �⃗�[*]

𝜕𝐿
𝜕𝑧*

𝜕𝐿
𝜕�⃗�[*]

=
𝜕𝐿

𝜕𝑧[*-']
𝑊 *

𝜕𝐿
𝜕𝑧[*]

=
𝜕𝐿
𝜕�⃗�[*]

𝜎′(𝑧[*])

𝜕𝐿
𝜕�⃗�[%]

= 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑚𝑒𝑡𝑟𝑖𝑐

Here, 𝜎 can be
replaced by any
activation function.

Machine learning frameworks like MATLAB, TensorFlow, PyTorch, and MxNet
combine

(1) automatic differentiation via backprop (Backpropagation)

(2) automatic compilation of matrix multiplies to GPUs for fast compute,

(3) built-in functions and learning examples that make it easy to write and train

neural networks. Mostly use Python as the front-end interface.

These frameworks make it easy to train deep neural networks and get good
performance and scalability, even for people who do not understand the
principles behind their operation. This is a major driving force behind the deep
learning revolution!

Machine learning frameworks

Question: “Why do we have to write the backward pass when frameworks in
the real world, such as TensorFlow, compute them for you automatically?”

Answer: Problems might surface related to underlying gradients when
debugging your model (e.g. vanishing or exploding gradients)

https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b

Similar questions: Why do we learn math computations of models like ridge,
lasso, logistics, LDA/QDA, SVM, etc. as they already built in sk-learn,
statsmodels, MATLAB, R, etc.?

https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b

Backpropagation is used to train the overwhelming majority of neural nets
today. Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

The relationship between forward mode and backward mode is analogous
to the relationship between left-multiplying versus right-multiplying a
sequence of matrices, such as

𝐴𝐵𝐶𝐷

References:

Lecture Notes: Google Search: “Backpropagation lecture notes”

• http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf

• https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec06.pdf

• https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture20-backprop.pdf

• https://www.cs.cornell.edu/courses/cs4787/2019sp/notes/lecture12.pdf

• https://www.cs.princeton.edu/~rlivni/cos511/lectures/lect16.pdf

Books: [Murphy 1] Sec 13.3
[Bishop]Section 5.3
[G. Strang] Linear Algebra and learning from data. SecVII.3

• http://6.869.csail.mit.edu/fa17/lecture/lecture6deepnets.pdf

https://www.deeplearningbook.org/contents/mlp.htmlDeep Learning:

http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture04.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec06.pdf
https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture20-backprop.pdf
https://www.cs.cornell.edu/courses/cs4787/2019sp/notes/lecture12.pdf
https://www.cs.princeton.edu/~rlivni/cos511/lectures/lect16.pdf
http://6.869.csail.mit.edu/fa17/lecture/lecture6deepnets.pdf
https://www.deeplearningbook.org/contents/mlp.html

More notes:

• http://cs231n.stanford.edu/handouts/linear-backprop.pdf

• https://cs229.stanford.edu/notes2020spring/cs229-notes-deep_learning.pdf

• https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf

https://www.jmlr.org/papers/volume18/17-468/17-468.pdf

• Automatic Differentiation in Machine Learning: a Survey

(Including 200 references.)A Survey Paper:

http://cs231n.stanford.edu/handouts/linear-backprop.pdf
https://cs229.stanford.edu/notes2020spring/cs229-notes-deep_learning.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://www.jmlr.org/papers/volume18/17-468/17-468.pdf

