LMath 7243-Machine Learning and Statistical Learning Theory — He Wang

Section 10 Artificial Neural Network

* Background

* Perceptron

* Neural Network
* Backpropagation
e Algorithms

(J Human Neural Networks v.s. Artificial Neural Networks

\ - -~

o — = » —— — -

\ll

Human Neural Networks was introduced
in 1943 by neurophysiologist Warren
McCulloch and mathematician Walter
Pitts to model neurons in the brain using
electrical circuits.

TTe——

Artificial Neural Networks are a series of
algorithms that mimic the operations of a human
brain to recognize relationships between vast
amounts of data. It's a very broad term that
encompasses any form of Deep Learning model.

* Neurons

A biological Neuron

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

An artificial Neuron

Impulses carried away
from cell body

Z(wo

9@

axon from a neuron Sar—
woL(

This image by Felipe Perucho

is licensed under CC-BY 3.

cell body

f (Z WiT; + b)
jz:unxi+—b ’

output axon

activation
function

(1 Activation functions:

Activation function example: Heaviside step function

! 0 ifz<O
f(z) = step(x) = _
0.5+ 1 ifz Z 0

5 o5 O] 0.5 1

» More Activation Functions:

Sigmoid Tanh ReLU Leaky ReLU
1 e —e %
9(z) = —— g(z) = g(z) = max(0,z) g(2z) = max(ez,2)
14+e% e* +e *
with e < 1
1+ 1+ 14 1+
- 0 1 -0 1

Piecewise Linear, Gaussian, etc.

In 1957 Frank Rosenblatt
designed and invented the
perceptron which is a type of
| 2 = neural network. A neural
- Frank Rosenblatt (psychologist). ekl : . network acts like your brain; the
S brain contains billions of cells
called neurons that are
connected together in a
network. The perceptron
\ s connects a web of points where
The perceptron is based around a M. . simple decisions are made,
linear threshold unit (LTU) | TR ' i tometogeherine
\ -‘ - ‘ larger program to solve more
; complex problems.

» Perceptron

1}

—(X2

Mark | Perceptron machine

The New Yorker, December 6,1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been
built, but which has been successfully simulated on the I.B.M. 704. Talk
with Dr. Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is
one of the two men who developed the prodigy; the other man is Dr.
Marshall C. Yovits, of the Ofhice of Naval Research, in Washington. Dr.
Rosenblatt defined the perceptron as the first non-biological object which
will achieve an organization o its external environment in a meaningful
way. It interacts with its environment, forming concepts that have not
been made ready for it by a human agent. If a triangle is held up, the
perceptron's eye picks up the image & conveys it along a random
succession of lines to the response units, where the image is registered. It
can tell the difference betw. a cat and a dog, although it wouldn't be able
to tell whether the dog was to theleft or right of the cat. Right now it is of
no practical use, Dr. Rosenblatt conceded, but he said that one day it

might be useful to send one into outer space to take in impressions for us.

https://www.newyorker.com/magazine/1958/12/06/rival-2

https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

Remark: The 704 at that time was thus regarded as "pretty much the only computer that could handle
complex math”. ($2M, 30,000lb) A current PC should be 100,000 times faster than IBM 704.

https://www.newyorker.com/magazine/1958/12/06/rival-2
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

» Perceptron
Training Data: D = (¥, y®)fori=1.. n.

Assumptions:
* Binary classification (i.e. y € {—1, +1})

 Datais linearly separable, i.e., there exists a hyperplane that separates all the
sample points in class A from classes B.

Classifier:
h(2) = f(0T%) =sign(W- %+ b) =
—1, ifw-x+b<0

b] 1
b %y
Notations: 6 = | .!|, x=]| . |orx = [. ‘
. : %,

Wg. Xd

Remark: If the label space is {0,1}, the classifier is the threshold function, i.e.,
f (2) is the step function.

= Decision Boundary: Hyperplane H = {¥ € R4*1 | 6T% = 0}

or: H={X€RY |wyx; +-wyxy+b=0}

orrH={Xx e R*|[W'X+b=0}

(@) + ¢ (@)
O o)
o © "
(@) 7 ¢
@
(@)
@ @
@) (@)
® @

Property: W is orthogonal to the hyperplane H.

Back to notation with x5 = 1

(ol

tﬂ
=
[l

Suppose y) € {—1, +1}, we have

y@D (4T #D) > 0 = ¥Dclassified correctly.

v

Perceptron Algorithm 67% =0

Of 11X =
Suppose y € {—1,+1}, o © e
O o)
, 0
h: (%) = sign(67'x) © ©
o 7 “
@
o
o o
o o
Learn from step t to step t + 1 ¢ o

If ¥© is correctly classified, i.e., y — hy(¥Y) = 0, then move on.
if (D, y® = —1)is misclassified, i.e., y® — hy(¥D) = -2, then b4, = 0, — a ¥O

If (®, y@ = 1) is misclassified, i.e.,, y® — hg(#®) = 2, then 6,,; = 6, + a ¥?

» Training the Perceptron
D= (xW,yD)fori=1..n
Start with initial 6 = 0
Fori=1,..,n
Repeat 6"¢* := 6 + a (y(") — hg (9?("))) x®

The perceptron updates its weights only on misclassified points.

def perceptron sgd(X, Y):
w = np.zeros(len(X[0])) #Initialize the weight vector for the perceptron with zeros
eta =1 #Set the learning rate to 1
epochs = 20 #Set the number of epochs

for t in range(epochs):
for i, X in enumerate(X):
if (np.dot(X[i], w)*Y[i]) <= 0:
w=w+ eta*X[1]*Y[1i]

return w

w= perceptron_sgd (X,y)
print(w)

The perceptron is a form of stochastic gradient decent on the loss function

J(8) = _Z (y® — e (30)) (72D

i=1

Remark:

We consider the online learning setting for the perceptron. The
algorithm has to make predictions continuously even while it's learning.

Specifically, the algorithm first sees ¥(1) and is asked to predict what it
thinks y(1 is. After making its prediction, the true value of y(1) is revealed
to the algorithm and the algorithm may use this information to perform

some learning. The algorithm then see ¥® and keep going.

In the online learning setting, we are interested in the total number of
errors made by the algorithm during this process.

It models applications in which the algorithm has to make predictions even
while it’s still learning.

Convergence Theorem (Block, 1962, and Novikoff, 1962).

Suppose inputs are scaled to live within the unit sphere.

A separating hyperplane is defined by unit vector 6

Y = min |§T9?(i)| is the distance from hyperplane to the closed point.

Then, the Perceptron algorithm makes at most y_12 mistakes.

Unit circle

When the data is separable, there are many solutions and which one is
found depends on the starting value.

The finite number of steps can be large, practically, if the gap is small the
time to find it is large.

When the data are not separable, the algorithm does not converge, and
instead falls into a cycle.

Video illustration for perceptron:
https://www.youtube.com/watch?v=xpJHhHWR4DQ

Proof of convergence theorem.
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html

https://www.youtube.com/watch?v=xpJHhHwR4DQ
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html

Perceptron’s Dark Time:

Famous example of a simple non-linearly separable data set, the XOR problem

Axxx Oooo
X o ©O
x X
X
(@) X
o X %
© o X x X
o ©O X
>

(Book “Perceptrons: an introduction to computational geometry” - by Marvin
Minsky, founder of the MIT Al Lab, and Seymour Papert, director of the lab):

Although now unsurprising (no linear classier can solve xor) the exceptions for the
perceptron were high and when this problem was uncovered in 1969, it leads most
researchers to abandon neural networks in favor of functional and logical methods.

Neural Network Time Line: 1957 ----- > 1969 ----- > 1980 ----- > 1997 ----- > 2010 ----- > 2020 ----- >7?

Some Interesting Documentary:

Frank Rosenblatt https://www.youtube.com/watch?v=cNxadbrN al

The Thinking Machine - MIT 1961 https://www.youtube.com/watch?v=5YBIrc-6G-0
or a short version https://youtu.be/aygSMgK3BEM
e Marvin Minsky

https://openvault.wgbh.org/catalog/V EC93438EE8A747989743A3987DD21409

Yann LeCun: https://www.youtube.com/watch?v=FwFduRA L6Q

Vapnik https://www.fi.edu/laureates/vladimir-vapnik

Computer for Apollo (1965) https://www.youtube.com/watch?v=ndvmFlg1WmE

https://www.youtube.com/watch?v=cNxadbrN_aI
https://www.youtube.com/watch?v=5YBIrc-6G-0
https://youtu.be/aygSMgK3BEM
https://www.youtube.com/watch?v=FwFduRA_L6Q
https://www.fi.edu/laureates/vladimir-vapnik
https://openvault.wgbh.org/catalog/V_EC93438EE8A747989743A3987DD21409
https://www.youtube.com/watch?v=ndvmFlg1WmE

O Two Layers Perceptron/Neural Network

A X
X Oooo
X X oO
x X
X
o X
o X %
O o X x X
o ©O X
>

v 4

A

*= House price example

size O

bedrooms O
Zip Code O
Ave income O

0@

Price

1000 -

800 [~

700 -

600 -

500 -

1 Il 1 1 1 Il

500 1000 1500 2000 2500 3000 3500 4000 4500

5000

= Fully-connected neural networks

@ @

Representational power

In theory, can represent any function. Assuming non-trivial non-linearity

— Bengio 2009,
http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
— Bengio, Courville, Goodfellowbook

http://www.deeplearningbook.org/contents/mlip.html
— Simple visual proof by M. Neilsen

http://neuralnetworksanddeeplearning.com/chap4.html
— D. Mackay book

http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

But issue is efficiency: very wide two layers vs narrow deep model?

In practice, more layers helps.

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.deeplearningbook.org/contents/mlp.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

= Multi-layers Neural Networks (Deep Neural Network.)

\ \ 9/
\\\ \«\\‘ 4’,' \ N\ /I/.
)\\,‘ //Q -\\ ' I. ‘\\\\" ,(//“ \v?'l/- \ '
'i\'A'/b . \\\\§ /l', 74 ‘\;‘ ‘v ,\ 4 A\“'

'\V
~ "" “‘: :;”'/\ . 0,\'\ \w,\\‘ b‘l> av\
& \ so \"0'&
.I " \'0/. . ‘A \V '&‘ IS

' N \._ N, /
o' ‘ \',,,," \\\ ',é,"' "\o '/,.0,\\'\"0"‘\
4 '

} ‘\\ //b

Input Hidden Hidden Hidden Hidden Output
Layer Layer 1 Layer 2 Layer 3 Layer 3 Layer

] Classification:

 Multi-class

’\‘* '0
. "’ \'A'f '
0 @

IA 'A ‘ \'A\

Input Hidden Hidden Hidden Hidden Output
Layer Layer 1 Layer 2 Layer 3 Layer 3 Layer

Summary:

» Back-propagation (Reverse autodifferention)

In 1986, (Learning representations by back-propagating errors, Nature, 323(9): 533-
536) D. E. Rumelhart popularized the idea of back propagation to compute
gradients. It is not a learning method, but a computational trick. It is actually a
simple implementation of chain rule of derivatives.

BP algorithms as stochastic gradient descent algorithms (Robbins—Monro
1950; Kiefer- Wolfowitz 1951) with Chain rules of Gradient maps

Goal: Minimize the loss function |

Need to calculate the gradient.

» The Chain Rule:

Neural Network Coding:

1. MATLAB Neural Network (Deep Learning Toolbox).

https://www.mathworks.com/products/deep-learning.html

2. Python TensorFlow: https://www.tensorflow.org/ (TensorBoard visualization)

Keras on TensorFlow: https://keras.io/examples/

3. Python PyTorch: https://pytorch.org/

4. R https://www.r-project.org/. (neuralnet library)

https://www.mathworks.com/products/deep-learning.html
https://keras.io/examples/
https://www.tensorflow.org/
https://pytorch.org/
https://www.r-project.org/

MATLAB example:

layers = [
featurelnputLayer(20)
fullyConnectedLayer(30)
reluLayer
fullyConnectedLayer(15)
reluLayer
fullyConnectedLayer(3)
softmaxLayer
classificationlLayer];

Python Example

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([

layers.Dense(units=4, activation="relu’, input_shape=[2]),
layers.Dense(units=3, activation="relu’),

layers.Dense(units=1),

1)

R Example

library(neuralnet)

model = neuralnet(
Species~Sepal.Length+Sepal Width+Petal.Length+Petal Width,
data=train_data,
hidden=c(4,2),
linear.output = FALSE
)

Hidden

Inputs » Hidden

Error: 1.002914 Steps: 2695

O Network Design and Model Management

MATLAB Deep Learning Toolbox

4\ Deep Network Designer - (0 X
DESIGNER (%)
L = A = v/
" 3 & Zoomin g :1 V
New Fit (& ZoomOut Auto Analyze Export
to View Arrange - -
NETWORK B8UILD NAVIGATE LAYOUT | ANAL EXPORT -
Layer Library Designer Data Training O | v Properties
Input type Image
—
v INPUT = s Output type Classification
imagelnputLayer — Number of layers 144
- Number of connections 170
@ image3dinputLayer -
—_
——
ﬂ sequencelnputLayer
E featurelnputLayer w———
roilnputLayer
—_—— -
» CONVOLUTION AND F CONNECTED o e e
@ convolution1dLayer —— -
convolution2dLayer
p———
@ convolution3dLayer -
— e —
@ groupedConvolution2dLayer I S -
ﬁ transposedConv2dLayer [ep———
@ transposedConv3dLayer SIN EES W v Overview
g fullyConnectedLayer .~
e — L
v SEQUENCE ———— _.::
= £
n IstmLayer - Y
s
- - !
——— —
14 >l

(] TensorBoard:

< C {} @& tensorboard.dev

TensorBoard.dev SCALARS

[] Show data download links Q loss

Ignore outliers in chart scaling

Tags matching /loss/
Tooltip sorting method: default v

loss

Smoothing

Horizontal Axis

STEP RELATIVE WALL

) | - —o

. 0 200k 400k 600k 800k
uns —

HH— R
Write a regex to filter runs
() cnn_dailymail_v002 eval
O glue_v002_proportional
O pretrain PREVIOUS PAGE
() squad_v010_allanswers

. cnn_dailymail_v002/rouge1 cnn_dailymail _v002/rouge2
(O super_glue_v102_proportional tag: eval/cnn_dailymail_v002/rouge1 tag: eval/cnn_dailymail_v002/rouge2
O wmt15_enfr_v003 42 19.5
wmt16_enro_v003

40 18.5

() wmt_t2t_ende_v003
TOGGLE ALL RUNS 7 ' 1757

experiment EVNO346IT0iYbmeaWmoNCQ 36 16.5

720k 760k 520k 560k 6l

00k 640k 680k 720k 760K

» Dropout and Batch Normalization

1. Dropout layer can help correct overfitting. We randomly drop out some
fraction of a layer's input units every step of training. The weight patterns
tend to be more robust.

2. Batch Normalization is something like scikit-
learn's StandardScaler or MinMaxScaler.

Batch normalization layer looks at each batch as it comes in, first normalizing
the batch with its own mean and standard deviation, and then also putting the
data on a new scale with two trainable rescaling parameters.

Batch normalization, in effect, performs a kind of coordinated rescaling of its
inputs.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([

layers.Dense(units=4, activation="relu’, input_shape=[2]),
layers.Dropout(0.3),

layers.BatchNormalization(),

layers.Dense(units=3, activation="relu’),
layers.Dropout(0.3),

layers.BatchNormalization(),

layers.Dense(units=1),

1)

Hidden

Hidden

Inputs

x0

» Early Stopping

from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import layers, callbacks

early_stopping = EarlyStopping(
min_delta=0.001,
patience=20,

nhg
restore_best_weights=True,

These parameters say: "If there hasn't been at least an improvement of 0.001 in the validation loss over the
previous 20 epochs, then stop the training and keep the best model you found.”

It can sometimes be hard to tell if the validation loss is rising due to overfitting or just due to random batch
variation. The parameters allow us to set some allowances around when to stop.

model.compile(loss="sparse_categorical _crossentropy",
optimizer="sgd",
metrics=["accuracy"])

history = model.fit(X_train, y_train, epochs=30,
validation_data=(X_valid, y_valid))

import pandas as pd

pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1)

plt.show()
10
/fc———\, i - B
0.8 - ! ! ! !
0.6 1 — loss
~—— sparse_categorical_accuracy
— val_loss
0.4 - val_sparse_categorical_accuracy
0.2 1
0.0 Ll Ll Ll Ll] Ll

A visual proof that neural nets can compute any function

http://neuralnetworksanddeeplearning.com/chap4.html

Play with neural network:

http://playground.tensorflow.org/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Online book about neural network:

http://neuralnetworksanddeeplearning.com/chap3.html

MIT Introduction to Deep Learning | 6.5191
https://www.youtube.com/watch?v=5tvmMX8r OM

http://playground.tensorflow.org/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://neuralnetworksanddeeplearning.com/chap3.html
https://www.youtube.com/watch?v=5tvmMX8r_OM
http://neuralnetworksanddeeplearning.com/chap4.html

o MATLAB Resources:

1. Matlab Neural Network Toolbox:

https://www.mathworks.com/products/deep-learning.html

2. Matlab Examples:

https://www.mathworks.com/help/deeplearning/examples.html?category=getting-started-with-deep-learning-toolbox

3. Get Started with Deep Learning Toolbox

https://www.mathworks.com/help/deeplearning/getting-started-with-deep-learning-toolbox.html

For example:

https://www.mathworks.com/help/deeplearning/gs/create-simple-image-classification-network-using-deep-network-designer.html

https://www.mathworks.com/products/deep-learning.html
https://www.mathworks.com/help/deeplearning/examples.html?category=getting-started-with-deep-learning-toolbox
https://www.mathworks.com/help/deeplearning/getting-started-with-deep-learning-toolbox.html
https://www.mathworks.com/help/deeplearning/gs/create-simple-image-classification-network-using-deep-network-designer.html

