
Math 7243-Machine Learning and Statistical Learning Theory – He Wang

Section 10 Artificial Neural Network

• Background
• Perceptron
• Neural Network
• Backpropaga3on
• Algorithms 



Human Neural Networks was introduced 
in 1943 by neurophysiologist Warren 
McCulloch and mathematician Walter 
Pitts to model neurons in the brain using 
electrical circuits.

Artificial Neural Networks are a series of 
algorithms that mimic the operations of a human 
brain to recognize relationships between vast 
amounts of data. It's a very broad term that 
encompasses any form of Deep Learning model.

q Human Neural Networks v.s. Artificial Neural Networks



A biological Neuron

An artificial Neuron

• Neurons



Activation function example: Heaviside step function 

q Ac9va9on func9ons:



Ø More Activation Functions: 

Piecewise Linear, Gaussian, etc.



Ø Perceptron

The perceptron is based around a 
linear threshold unit (LTU)

Mark I Perceptron machine

- Frank Rosenblatt (psychologist).



https://www.newyorker.com/magazine/1958/12/06/rival-2

h?ps://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

Remark: The 704 at that time was thus regarded as "pretty much the only computer that could handle 
complex math”. ($2M, 30,000lb)  A current PC should be 100,000 times faster than IBM 704.

https://www.newyorker.com/magazine/1958/12/06/rival-2
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon


Ø Perceptron

• Binary classification (i.e. 𝑦(") ∈ {−1,+1} )

• Data is linearly separable, i.e., there exists a hyperplane that separates all the 
sample points in class A from classes B. 

Assumptions: 

ℎ �⃗� = 𝑓 �⃗�$�⃗� = sign 𝑤 ⋅ �⃗� + 𝑏 = 6
1, 𝑖𝑓 𝑤 ⋅ �⃗� + 𝑏 ≥ 0

−1, 𝑖𝑓 𝑤 ⋅ �⃗� + 𝑏 < 0

Training Data:  𝒟 = �⃗� " , 𝑦 " for 𝑖 = 1… 𝑛.
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Remark: If the label space is 0,1 , the classifier is the threshold function, i.e., 
𝑓 (𝑧) is the step function.

§ Decision Boundary: Hyperplane 𝑯 = {�⃗� ∈ ℝ𝒅(𝟏 | �⃗�$�⃗� = 0}

or: 𝑯 = {�⃗� ∈ ℝ𝒅 |𝑤%𝑥% +⋯𝑤&𝑥& + 𝑏 = 0 }

or: 𝑯 = {�⃗� ∈ ℝ𝒅 𝑤$�⃗� + 𝑏 = 0



Property: 𝑤 is orthogonal to the hyperplane 𝐻.

Back to notation with 𝑥* = 1



𝑦 " (�⃗�$ �⃗�(")) > 0 ⟺ �⃗�(")classified correctly.

Suppose 𝑦(") ∈ {−1,+1}, we have

�⃗�$�⃗� = 0



Suppose 𝑦(") ∈ {−1,+1},  

ℎ+ �⃗� = sign �⃗�+$�⃗�

Learn from step 𝑡 to step 𝑡 + 1

• If �⃗�(") is correctly classified, i.e., 𝑦 " − ℎ, �⃗� " = 0, then move on. 

• If (�⃗�("), 𝑦 " = −1) is  misclassified, i.e.,  𝑦 " − ℎ, �⃗� " = −2, then �⃗�+(% ≔ �⃗�+ − 𝛼 �⃗� "

• If (�⃗�("), 𝑦 " = 1) is  misclassified, i.e.,  𝑦 " − ℎ, �⃗� " = 2, then �⃗�+(% ≔ �⃗�+ + 𝛼 �⃗� "

Perceptron Algorithm
�⃗�+(%$ �⃗� = 0

�⃗�+$�⃗� = 0



Ø Training the Perceptron

Start with initial �⃗� = 0

For 𝑖 = 1, … , 𝑛

Repeat �⃗�-./+ ∶= �⃗� + 𝛼 𝑦 " − ℎ, �⃗� " �⃗�(")

𝒟 = �⃗� " , 𝑦 " for 𝑖 = 1… 𝑛.

The perceptron updates its weights only on misclassified points.



The perceptron is a form of stochastic gradient decent on the loss function 

𝐽 �⃗� = −P
"0%

-

𝑦 " − ℎ, �⃗� " (�⃗�$�⃗�("))



We consider the online learning setting for the perceptron. The 
algorithm  has to make predictions continuously even while it's learning.

Specifically, the algorithm first sees �⃗�(%) and is asked to predict what it 
thinks 𝑦(%) is. After making its prediction, the true value of 𝑦(%) is revealed 
to the algorithm and the algorithm may use this information to perform 
some learning. The algorithm then see �⃗�(1) and keep going.  

In the online learning setting, we are interested in the total number of 
errors made by the algorithm during this process. 

It models applications in which the algorithm has to make predictions even 
while it’s still learning.

Remark: 



Convergence Theorem (Block, 1962, and Novikoff, 1962). 

Then, the Perceptron algorithm makes at most %
2!

mistakes.

Suppose inputs are scaled to live within the unit sphere.  

A separating hyperplane is defined by unit vector �⃗�

𝛾 = min |�⃗�$�⃗�(")| is the distance from hyperplane to the closed point. 
𝒟



• When the data is separable, there are many solu3ons and which one is 
found depends on the star3ng value.

• The finite number of steps can be large, prac3cally, if the gap is small the 
3me to find it is large.

• When the data are not separable, the algorithm does not converge, and 
instead falls into a cycle. 

https://www.youtube.com/watch?v=xpJHhHwR4DQ
• Video illustration for perceptron: 

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html
• Proof of convergence theorem.

https://www.youtube.com/watch?v=xpJHhHwR4DQ
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html


Famous example of a simple non-linearly separable data set, the XOR problem

Although now unsurprising (no linear classier can solve xor) the exceptions for the 
perceptron were high and when this problem was uncovered in 1969, it leads most 
researchers to abandon neural networks in favor of functional and logical methods.

Perceptron’s Dark Time: 

(Book “Perceptrons: an introduc6on to computa6onal geometry” - by Marvin 
Minsky, founder of the MIT AI Lab, and Seymour Papert, director of the lab):

Neural Network Time Line: 1957 -----> 1969 -----> 1980 -----> 1997 -----> 2010 -----> 2020 ----->?  



Some Interesting Documentary: 

• Frank Rosenblatt https://www.youtube.com/watch?v=cNxadbrN_aI

• The Thinking Machine - MIT 1961 https://www.youtube.com/watch?v=5YBIrc-6G-0
or a short version https://youtu.be/aygSMgK3BEM

• Yann LeCun: https://www.youtube.com/watch?v=FwFduRA_L6Q

• Vapnik https://www.fi.edu/laureates/vladimir-vapnik

• Marvin Minsky 
https://openvault.wgbh.org/catalog/V_EC93438EE8A747989743A3987DD21409

• Computer for Apollo (1965) hips://www.youtube.com/watch?v=ndvmFlg1WmE

https://www.youtube.com/watch?v=cNxadbrN_aI
https://www.youtube.com/watch?v=5YBIrc-6G-0
https://youtu.be/aygSMgK3BEM
https://www.youtube.com/watch?v=FwFduRA_L6Q
https://www.fi.edu/laureates/vladimir-vapnik
https://openvault.wgbh.org/catalog/V_EC93438EE8A747989743A3987DD21409
https://www.youtube.com/watch?v=ndvmFlg1WmE


q Two Layers Perceptron/Neural Network 





§ House price example

size

# bedrooms

Zip Code

Ave income

Price



§ Fully-connected neural networks



In theory, can represent any function. Assuming non-trivial non-linearity

– Bengio 2009, 
http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
– Bengio, Courville, Goodfellowbook
http://www.deeplearningbook.org/contents/mlp.html
– Simple visual proof by M. Neilsen
http://neuralnetworksanddeeplearning.com/chap4.html
– D. Mackay book 
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

But issue is efficiency: very wide two layers vs narrow deep model?

In practice, more layers helps.

Representational power

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.deeplearningbook.org/contents/mlp.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf


§ Multi-layers Neural Networks (Deep Neural Network.)         



q Classification:

• Binary:

• Mul9-class



Summary:



Ø Back-propagation (Reverse autodifferention)

In 1986, (Learning representations by back-propagating errors, Nature, 323(9): 533-
536) D. E. Rumelhart popularized the idea of  back propagation to compute 
gradients. It is not a learning method, but a computational trick. It is actually a 
simple implementation of chain rule of derivatives. 

Goal: Minimize the loss function 𝐽

Need to calculate the gradient.

BP algorithms as stochastic gradient descent algorithms (Robbins–Monro
1950; Kiefer- Wolfowitz 1951) with Chain rules of Gradient maps



Ø The Chain Rule: 



Neural Network Coding: 

1. MATLAB Neural Network (Deep Learning Toolbox). 

https://www.mathworks.com/products/deep-learning.html

Keras on TensorFlow: https://keras.io/examples/

2. Python TensorFlow: https://www.tensorflow.org/ (TensorBoard visualization)

3. Python PyTorch: https://pytorch.org/

4. R https://www.r-project.org/. (neuralnet library) 

https://www.mathworks.com/products/deep-learning.html
https://keras.io/examples/
https://www.tensorflow.org/
https://pytorch.org/
https://www.r-project.org/


layers = [ 
featureInputLayer(20) 
fullyConnectedLayer(30) 
reluLayer
fullyConnectedLayer(15) 
reluLayer
fullyConnectedLayer(3) 
softmaxLayer
classificationLayer];

MATLAB example:

from tensorflow import keras
from tensorflow.keras import layers 

model = keras.Sequential([ 
# the hidden ReLU layers
layers.Dense(units=4, activation='relu', input_shape=[2]), 
layers.Dense(units=3, activation='relu’), 
# the linear output layer 
layers.Dense(units=1), 

])

Python Example



library(neuralnet)

model = neuralnet( 
Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,

data=train_data, 
hidden=c(4,2), 
linear.output = FALSE 
)

R Example



q Network Design and Model Management

MATLAB Deep Learning Toolbox



q TensorBoard:



Ø Dropout and Batch Normaliza9on

1. Dropout layer can help correct overfitting. We randomly drop out some 
fraction of a layer's input units every step of training. The weight patterns 
tend to be more robust. 

2. Batch Normalization is something like scikit-
learn's StandardScaler or MinMaxScaler.

Batch normalization layer looks at each batch as it comes in, first normalizing 
the batch with its own mean and standard deviation, and then also putting the 
data on a new scale with two trainable rescaling parameters. 

Batch normalization, in effect, performs a kind of coordinated rescaling of its 
inputs.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html


from tensorflow import keras
from tensorflow.keras import layers 

model = keras.Sequential([ 
# the hidden ReLU layers
layers.Dense(units=4, activation='relu', input_shape=[2]),
layers.Dropout(0.3), # apply 30% dropout to the next layer
layers.BatchNormalization(), 
layers.Dense(units=3, activation='relu’), 
layers.Dropout(0.3), # apply 30% dropout to the next layer
layers.BatchNormalization(), 
# the linear output layer 
layers.Dense(units=1), 

])



Ø Early Stopping

from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import layers, callbacks 

early_stopping = EarlyStopping( 
min_delta=0.001, # minimium amount of change to count as an improvement
patience=20, # how many epochs to wait before stopping
restore_best_weights=True, 

)

These parameters say: "If there hasn't been at least an improvement of 0.001 in the validation loss over the 
previous 20 epochs, then stop the training and keep the best model you found.”
It can sometimes be hard to tell if the validation loss is rising due to overfitting or just due to random batch 
variation. The parameters allow us to set some allowances around when to stop.

model.compile(loss="sparse_categorical_crossentropy",
opUmizer="sgd",
metrics=["accuracy"])

history = model.fit(X_train, y_train, epochs=30,
validation_data=(X_valid, y_valid))



import pandas as pd

pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1)

plt.show()



http://playground.tensorflow.org/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

http://neuralnetworksanddeeplearning.com/chap3.html

https://www.youtube.com/watch?v=5tvmMX8r_OM

http://neuralnetworksanddeeplearning.com/chap4.html

A visual proof that neural nets can compute any func3on

Play with neural network:

Online book about neural network:

MIT Introduction to Deep Learning | 6.S191 

http://playground.tensorflow.org/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://neuralnetworksanddeeplearning.com/chap3.html
https://www.youtube.com/watch?v=5tvmMX8r_OM
http://neuralnetworksanddeeplearning.com/chap4.html


o MATLAB Resources: 

1. Matlab Neural Network Toolbox:

https://www.mathworks.com/products/deep-learning.html

2. Matlab Examples:

https://www.mathworks.com/help/deeplearning/examples.html?category=getting-started-with-deep-learning-toolbox

https://www.mathworks.com/help/deeplearning/getting-started-with-deep-learning-toolbox.html

3. Get Started with Deep Learning Toolbox

h8ps://www.mathworks.com/help/deeplearning/gs/create-simple-image-classifica:on-network-using-deep-network-designer.html

For example: 

https://www.mathworks.com/products/deep-learning.html
https://www.mathworks.com/help/deeplearning/examples.html?category=getting-started-with-deep-learning-toolbox
https://www.mathworks.com/help/deeplearning/getting-started-with-deep-learning-toolbox.html
https://www.mathworks.com/help/deeplearning/gs/create-simple-image-classification-network-using-deep-network-designer.html

