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1. Discrete Dynamical Systems

Google’s PageRank Algorithm Consider a mini-web with only three pages: Page1, Page2, Page3.
Initially, there is an equal number of surfers on each page. The initial probability distribution vector is

~x0 =

1/3
1/3
1/3


After 1 minute, some people will move onto different pages with a probability distribution vector ~x1, as in
the following diagram

They way can be described by a transformation matrix

A =

0.7 0.1 0.2
0.2 0.4 0.2
0.1 0.5 0.6


And we have

~x1 = A~x0

After another 1 minute, some people will move onto different pages with a probability distribution vector
~x2, such that

~x2 = A~x1 = A2~x0
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After t minutes, probability distribution vector is

~xt = At~x0

Example 1. There is a bicycle sharing company in MA. Records indicate that, on average, 10% of the
customers taking a bicycle in downtown go to Cambridge and 30% go to suburbs. Customers boarding
in Cambridge have a 30% chance of going to downtown and a 30% chance of going to the suburbs, while
suburban customers choose downtown 40% of the time and Cambridge 30% of the time. The owner of the
bicycle sharing company is interested in knowing where the bicycle will end up, on average.

A =

0.6 0.3 0.4
0.1 0.4 0.3
0.3 0.3 0.3



2. Dynamical Systems and Eigenvectors.

Consider a sequence of linear transformations, called a dynamical system,

~x(t+ 1) = A~x(t) with ~x(0) = ~x0

for t = 0, 1, 2, ... Each vector ~x(t) is called a state vector. Suppose we know the initial vector ~x(0) = ~x0.
We wish to find each state ~x(t):

~x(0)
A−−→ ~x(1)

A−−→ ~x(2)
A−−→ · · · A−−→ ~x(t)

A−−→ ~x(t+ 1)
A−−→ · · ·

That is

~x(t) = At~x(0) = At~x0

Remark: Suppose A has a eigenbasis ~b1, . . . ,~bn with eigenvalues λ1, . . . , λn. Suppose ~x0 = c1~b1 + c2~b2 +

· · ·+ cn~bn. Then,

~x(t) = At~x0

= c1A
t~b1 + · · · cnAt~bn

= c1λ
t
1
~b1 + · · · cnλtn~bn

Remark: Let A be a 2 × 2 matrix The endpoints of state vectors ~x(0), ~x(1), · · · , ~x(t), . . . , form the
discrete trajectory of the system. A phase portrait of the dynamical system shows trajectories for
various initial states.

PageRank Example:

A =

0.7 0.1 0.2
0.2 0.4 0.2
0.1 0.5 0.6

 and ~x0 =

1/3
1/3
1/3


Example 2. Find explicit formulas for At.

Example 3. Find explicit formulas for At~x0

Example 4. Find lim
t→∞

At

Example 5. Find lim
t→∞

At~x0
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3. Markov Chains

Equilibria for regular transition matrices:

Let us start with some terminologies:

Definition 6. • A matrix A is said to be non-negative if each entry of matrix A is not
negative.
• A matrix A is said to be positive if each entry of matrix A is positive.
• A non-negative matrix A is said to be regular (or primitive, or eventually positive) if the

matrix Am is positive for some integer m > 0.
• A non-negative matrix A is called irreducible if for any i, j there is a k = k(i, j) such that

(Ak)ij > 0.

If a matrix A is regular, then it is irreducible.

Example 7. The matrices

[
1 1
1 1

]
is positive.

The matrices

[
0 1
1 1

]
and

[
1 1
1 0

]
are primitive.

A =

[
0 1
1 0

]
is irreducible but not regular.

The matrices

[
1 1
0 1

]
and

[
1 0
1 1

]
are not irreducible.

Example 8. The powers of non-negative matrices are non-negative.

Definition 9. • A vector ~x ∈ Rn is said to be a distribution vector if its entries are non-
negative and the sum is 1.
• A square matrix A is said to be a transition matrix (or column stochastic matrix) if all its

columns are distributions vectors.

Lemma 10. If A is a transition matrix and ~x a distribution vector, then A~x is a distribution vector.

Lemma 11. A and AT have the same characteristic polynomial.

Proof. fA(t) = det(A− λI) = det(A− λI)T = det(AT − λI) = fAT (t) �

Notice that A and AT may have different eigenvectors.

Lemma 12. Suppose B is an n× n positive matrix such that the sum of each row is 1. Then,

• λ = 1 is an eigenvalue of A with algebraic multiplicity 1.
• Consider an eigenvector ~v of A with positive entries. Show that the associated eigenvalue is less
than or equal to 1.
• Show that absolute value of the eigenvalue is less than or equal to 1.
• -1 is not an eigenvalue of A.
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Proof. (1) Let ~u =


1
1
...
1

. Then B~v = ~v. So, 1 is an eigenvalue of A.

(2) Suppose A~v = λ~v. Suppose vi is the largest entry of ~v. Then the i-th entry of A~v is

λvi =
n∑

j=1

aijvj ≤
n∑

j=1

aijvi = vi

n∑
j=1

aij = vi.

Hence λ ≤ 1.
(3) Suppose A~v = λ~v. Suppose |vi| is the largest entry of ~v in absolute values. Then the absolute
value of i-th entry of A~v is

|λ||vi| = |
n∑

j=1

aijvj| ≤
n∑

j=1

aij|vj| ≤
n∑

j=1

aij|vi| = |vi|
n∑

j=1

aij = |vi|.

Hence |λ| ≤ 1.
(4) From (3) λ = 1 or −1 is an eigenvalue of A if and only if those two equalities holds. (Here we

need positive matrix.) That is ~v =


c
c
...
c

 = c


1
1
...
1

 for some non-zero c. We already know that A~v = ~v.

So the eigenvalue is λ = 1 and the algebraic multiplicity is 1.
�

By the above two lemmas, we have proved the special case of Perron-Frobenius Theorem.

Theorem 13 (Perron-Frobenius Theorem (special case for transition matrix)). If A is a positive,
column stochastic matrix, then:

• 1 is an eigenvalue of multiplicity one.
• 1 is the largest eigenvalue: all the other eigenvalues have absolute value smaller than 1.
• the eigenvectors corresponding to the eigenvalue 1 have either only positive entries or only
negative entries. In particular, for the eigenvalue 1 there exists a unique eigenvector with the
sum of its entries equal to 1.

Theorem 14. Let A be a regular, transition n× n matrix.
1. There exists exactly one distribution vector ~x ∈ Rn such that

A~x = ~x

which is called equilibrium distribution for A denoted as ~xequ.
2. If ~x0 is any distribution vector in Rn, then

lim
m→∞

(Am~x0) = ~xequ

3. The columns of limn→∞(An) are all ~xequ, that is

lim
m→∞

(Am) = [~xequ ~xequ . . . ~xequ]
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Proof. (1) Am is a positive stochastic matrix. We also know that if λ is an eigenvalue of A, then λm

is an eigenvalue of Am. By above theorem, λ = 1 is an eigenvalue of multiplicity one, and 1 is the
largest eigenvalue.

(2) Suppose A is diagonalizable with eigenvalues λ1 = 1 > ... > λn. Suppose ~x0 = c1~b1 + c2~b2 + · · ·+
cn~bn. Then,

Am~x0 = c1A
m~b1 + · · · cnAm~bn = c1λ

m
1
~b1 + · · · cnλmn~bn

So,

lim
m→∞

(Am~x0) = c1~b1

We know that ~b1 is an eigenvector of A with eigenvalue 1. Hence lim
m→∞

(Am~x0) = ~xequ.

In general, using Jordan decomposition A = PJP−1, where P = [~b1, ...,~bn] and

J =


1 0 · · · 0
0 Jn2(λ2) · · · 0
...

...
. . .

...
0 0 · · · Jnm(λm)


Hence, AmP = PJm.

[Jni
(λi)]

k =


λki

(
k
1

)
λk−1i

(
k
2

)
λk−2i · · ·

(
k

ni−1

)
λk−ni+1
i

0 λki
(
k
1

)
λk−1i · · ·

(
k

ni−2

)
λk−ni+2
i

...
...

. . . . . .
...

0 0 · · · λki
(
k
1

)
λk−1i

0 0 · · · 0 λki

 ,
Claim: If |λi| < 0, then lim

m→∞
(Jm)([Jni

(λi)]
k) = 0.

Hence,

lim
m→∞

(Jm) =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0



Suppose ~x0 = [~b1 ... ~bn]


c1
c2
...
cn

 = P~c

lim
m→∞

(Jm)Am~x0 = lim
m→∞

(Jm)AmP~c = lim
m→∞

(Jm)PJm~c = c1~b1.

(3) By (2),
lim

m→∞
(Am) = lim

m→∞
(Am~e1 A

m~e2 · · · Am~en) = [~xequ ~xequ . . . ~xequ]

�

Markov Chains (1906) can be used to study real word questions like PageRank of a webpage as used by
Google, automatic speech recognition systems, probabilistic forecasting, cruise control systems in motor
vehicles, queues or lines of customers arriving at an airport/train station/..., currency exchange rates,
animal population dynamics, music, etc.

Convention in Probability: all vectors are transposed if you read some probability books about Markov
chains.

A stochastic matrix P comes from a stochastic process {X0, ..., Xn} with values in {1, ..., n}.

pij = P (Xt+1 = i | Xt = j)
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4. Perron-Frobenius Theorem

Example 15. (Ranking of Players) The results of a round tournament be represented by the following
matrix.

A =


0.5 1 1 0 1 1
0 0.5 0 1 1 0
0 1 0.5 1 0 1
1 0 0 0.5 0 0
0 0 1 1 0.5 1
0 1 0 1 0 0.5



Here ai,j = 1 represents player i win v.s. player j; and ai,j = 0 represents player i loss v.s. player j.

How to rank those 6 players from the results?

Suppose before the game, all ranked 1, represented by ranking vector ~r0 =


1
1
1
1
1
1

 After the tournament, the

ranking is ~r1 = A~r0 =


4.5000
2.5000
3.5000
1.5000
3.5000
2.5000

 . The rank is P1 > P5 = P3 > P2 = P6 > P4.

Consider the strength of the opponents, we calculate ~r2 = A~r1 =


14.2500
6.2500
8.2500
5.2500
9.2500
5.2500

 , and ~r3 = A~r2 =


36.1250
17.6250
20.8750
16.8750
23.3750
14.1250

 .
Now we can see the rank: P1 > P5 > P3 > P2 > P4 > P6.

The eigenvalues of A are 2.7261; 0.0028; 0.1303+1.3750i; 0.1303−1.3750i; 0.0052+1.0451i; 0.0052−1.0451i;

λ = 2.7261 is the largest eigenvalue with eigenvector


0.2721
0.1372
0.1689
0.1222
0.1831
0.1165

. This vector is almost the same as ~r≥10

divided by the sum of the entries.

Let A be a real matrix.

Proposition 16. If A is irreducible, then I + T is primitive.
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Proof.

(A+ I)n = I + nA+

(
n

2

)
A2 +

(
n

3

)
A3 + · · ·

will eventually have positive entries in all positions. �

The statement

Theorem 17 (Perron-Frobenius Theorem). Let A be an irreducible non-negative matrix.

• A has a positive (real) eigenvalue λmax such that all other eigenvalues of A satisfy |λ| ≤ λmax

• λmax has algebraic multiplicity 1 with a positive eigenvector ~x.
• Any non-negative eigenvector is a multiple of ~x.
• If A is primitive, then all other eigenvalues of A satisfy |λ| < λmax

This theorem was first proved for positive matrices by Oskar Perron (1880-1975) in 1907 and extended by
Ferdinand Georg Frobenius (1849-1917) to non-negative irreducible matrices in 1912.

The spectrum of a square matrix A, denoted by σ(A), is the set of all eigenvalues of A. The spectral
radius of A, denoted by ρ(A), is the maximum eigenvalue of A in absolute value.

Theorem 18. Suppose A is a primitive matrix, with spectral radius λ. Then λ is a simple root of
the characteristic polynomial which is strictly greater than the absolute value of any other root, and
λ has strictly positive eigenvectors.

Proof. Let S = {~v ≥ 0 | ||~v|| :=
∑n

i=1 v
2
i = 1}. Define maps f : S → S and g : S → S by

f(~x) =
~xA

||~xA||
and g(~x) =

A~x

||A~x||
These maps are well-defined and continuous.
By Brouwers Fixed Point Theorem, each map has a fixed point ~v such that f(~v) = ~v, and g(~u) = ~u.
That is

~vA

||~vA||
= ~v and

A~u

||A~u||
= ~u

The vector ~v0 must be a nonnegative eigenvector of A for some positive eigenvalue λ.
Because a power of A is positive, the eigenvector must be positive.
Let ~u be a positive right eigenvector such that A~u = λ~u. Let D be the diagonal matrix whose
diagonal entries come from ~u, i.e. dii = ui. Define the matrix

P = (
1

λ
)D−1AD.

P is still primitive. The column vector with every entry equal to 1 is an eigenvector of P with
eigenvalue 1. Therefore every row sum of P is 1, and P is stochastic.
The theorem follows from our theorem for primitive transition matrix. �

Remark on this proof.

5. Powers of a primitive matrix.

Let A be a primitive matrix. By the Perron-Frobenius theorem, let λmax be its maximal eigenvalue.
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Let ~u be a (right-handed) positive eigenvector of A with eigenvalue λmax, so A~u = λmax~u.

Let ~v be the left-handed eigenvector vector such that ~vTA = λmax~v and ~v · ~u = 1.

Theorem 19. Suppose A is primitive, with maximal eigenvalue λmax, left eigenvector ~u and right
eigenvector ~v such that ~v · ~u = 1, then

lim
k→∞

(
1

λmax

A

)k

= ~u~vT

6. Graphs and Non-negative matrices

A directed graph is a pair (V,E) consisting of a vertex set V and a subset edge set E ⊂ V × V . The
directed edge (vi, vj) goes form vi to vj. For example,

v1 → v2 → · · · → vn

The graph associated to the non-negative square n×n matrix A has vertex set V = v1, ..., vn and edge set

E = {(vj, vi) | aij 6= 0)}

The adjacency matrix A of the graph (V,E) is the n× n matrix B with

bij =

{
1 if (vj, vi) ∈ E
0 otherwise.

A path is a sequence of edges connecting v and w. The number of edges in the path is called the length
of the path.

If A is the adjacency matrix of the graph, then (A2)ij gives the number of paths of length two joining vj
to vi, and, more generally, (Am)ij gives the number of paths of length m joining vj to vi.

Theorem 20. A is irreducible if and only if its associated graph is strongly connected, i.e., for any
two vertices vi and vj there is a path (of some length) joining vi to vj .

A cycle is a path starting and ending at the same vertex.

If M is primitive, then there are (at least) two cycles whose lengths are relatively prime.

Theorem 21. If the graph associated to M is strongly connected and has two cycles of relatively
prime lengths, then M is primitive.

7. Population model (The Leslie Model)

1. (The Fibonacci Model) Simple Population model.

At : the number of adult pairs of rabbits at the end of month t.
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Yt : the number of youth pairs of rabbits at the end of month t.

Start with one pair of youth rabbits (1 month old). Each youth pair takes two months to mature into
adulthood.

In this simple model, both adults and youth give birth to a pair at the end of every month, but once a
youth pair matures to adulthood and reproduces, it then becomes extinct.

A0 = 0, Y0 = 1; A1 = 1, Y1 = 1; A2 = Y1, Y2 = A1 + Y1; ... ; At = Yt−1, Yt = At−1 + Yt−1; ... Hence,

[
Yt+1

At+1

]
=

[
1 1
1 0

] [
Yt
At

]
Here, the sequence Yt give us the Fibonacci numbers.

2. In the simple model, the 1’s in the first row represent the number of offspring produced so we can
replace these 1’s with birth rates b1 and b2. Since the lower 1 in our matrix represents a youth surviving
into adulthood we will replace it by 0 < s ≤ 1, which is called the survival rate.

~f(t+ 1) =

[
Yt+1

At+1

]
=

[
b1 b2
s 0

] [
Yt
At

]

3. Lesli Model. More generally, if we consider k age classes other than 2 age classes, we have the Lesli
Model (1945). The population to consider consists of the females of a species, and the stratification is by
age group.

So the population is described by a vector ~f(t) =

f1(t)...
fn(t)

, where the i-th entry fi(t) is the number of

females in the i-th age group.

Let bi be the female birth rate in the i-th age group and si the survival rate of females in the i-th age
group

The transition after one time unit is given by the Leslie matrix

L =


b1 b2 . . . bn−1 bn
s1 0 0 0 0
0 s2 0 . . . 0
...

...
. . .

...
...

0 0 . . . sn−1 0



Proposition 22. L is irreducible.

The graph associated to L consists of n vertices

v1 // v2 // v3 //
��

· · ·
��

// vn

(and possibly others when bi 6= 0) connected to v1 and so is strongly connected.
Page 9



Proposition 23. If there are two relative prime numbers i and j such that bi > 0 and bj > 0, to
one another then L is primitive.

8. Economic growth

Consider an economy, with activity level xi ≥ 0 in sector i for i = 1, ..., n.

Given activity level ~xt in period t, in period t+ 1 we have ~xt+1 = A~xt, with A non-negative.

aij ≥ 0 means activity in sector j does not decrease activity in sector i, i.e., the activities are mutually
non-inhibitory.

9. SVD analysis(in the last section)
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Further reading about the PageRank:

Other lectures:

http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

A little more professional:

https://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf

https://www.math.purdue.edu/~ttm/google.pdf

http://www.ams.org/publicoutreach/feature-column/fcarc-pagerank

Original paper:

Sergey Brin and Lawrence Page http://infolab.stanford.edu/~backrub/google.html
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