Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

\author{

- Instructor: He Wang
}

Email: he.wang@northeastern.edu

§8 Jordan Canonical Form

Contents

1. Block diagonal 1
2. Nilpotent matrix 2
3. Jordan Canonical Form 7
4. Algorithm and example 8
5. Cayley-Hamilton Theorem 11
6. Minimal polynomial 12

Not every square matrix is diagonalizable. However, we can block diagonalize it to be in Jordan canonical(normal, norm) form.

1. Block diagonal

An $n \times n$ matrix B is a block diagonal matrix if

$$
B=\left[\begin{array}{cccc}
B_{1} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & B_{2} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & B_{m}
\end{array}\right]
$$

with the matrices on the diagonal. Block diagonal matrix B is also denoted as direct sum:

$$
B=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{m} .
$$

Recall that given a linear transformation $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$. A subspace $W \subseteq \mathbb{F}^{n}$ is said to be invariant under T if $T(\vec{w}) \in W$ whenever $w \in W$.

Theorem 1. An $n \times n$ matrix A is similar to a block diagonal matrix B, (i.e., $\left.A=P B P^{-1}\right)$ if and only if there exists a decomposition of $\mathbb{F}^{n}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{m}$ such that V_{i} is invariant under T_{A}.

Proof. Choose a basis $\mathscr{B}_{i}=\left\{\vec{v}_{i, 1}, \ldots, \vec{v}_{i, n_{i}}\right\}$ for each V_{i}. Denote matrix $P=\left[\vec{v}_{1,1} \ldots \vec{v}_{1, n_{1}} \ldots \vec{v}_{m, n_{m}}\right]$. By change of coordinate theorem, we know that $A=P B P^{-1}$ where matrix B is defined as $\vec{b}_{i, j}=$ $\left[A \vec{v}_{i, j}\right]_{\mathscr{B}}$
Since V_{i} is invariant under T_{A}, then $A \vec{v}_{i, j} \in V_{i}$, hence $A \vec{v}_{i, j}=b_{i, 1} \vec{v}_{i, 1}+\cdots+b_{i, n_{i}} \vec{v}_{i, n_{i}}$.

The following non-diagonalizable matrices are called Jordan blocks of size 1, 2, 3, 4, ..

$$
J_{\lambda, 1}=[\lambda], \quad J_{\lambda, 2}=\left[\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right], \quad J_{\lambda, 3}=\left[\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right], \quad J_{\lambda, 4}=\left[\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right], \ldots
$$

Definition 2. An $n \times n$ Jordan normal matrix (Jordan normal form) is a block diagonal matrix

$$
J=\left[\begin{array}{cccc}
J_{n_{1}}\left(\lambda_{1}\right) & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & J_{n_{2}}\left(\lambda_{2}\right) & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & J_{n_{m}}\left(\lambda_{m}\right)
\end{array}\right]
$$

such that all diagonal matrices $J_{n_{i}}\left(\lambda_{i}\right)$ are of the form

$$
J_{n_{i}}\left(\lambda_{i}\right)=\left[\begin{array}{cccc}
\lambda_{i} & * & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \lambda_{i} & \ddots & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \ddots & * \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \lambda_{i}
\end{array}\right]
$$

where $*=1$ or 0 .

Remark: 1. $J_{n_{i}}\left(\lambda_{i}\right)$ is direct sum (block diagonal) of Jordan blocks $J_{*, \lambda_{i}}$. 2. $J_{n_{i}}\left(\lambda_{i}\right)$ is not uniquely determined by n_{i} and λ_{i}.

Our purpose in this section is to show the following theorem:

Theorem 3. Every $n \times n$ matrix A with n eigenvalues in a field \mathbb{F} is similar to a matrix J in Jordan normal matrix, that is $A=P J P^{-1}$.

The Jordan normal form of A is unique up to the order of Jordan blocks.

2. Nilpotent matrix

Definition 4. An $n \times n$ matrix A is called nilpotent of degree m if $A^{m}=\mathbf{0}$ and $A^{m-1} \neq \mathbf{0}$ for some $m \geq 0$.

Proposition 5. - If A is nilpotent, then zero is the only eigenvalue of A.

- If A is nilpotent and diagonalizable, then $A=0$.

Proof. (1) If $\lambda \neq 0$ is an eigenvalue of A, then $A \vec{v}=\lambda \vec{v}$ with nonzero \vec{v}. So, $A^{k} \vec{v}=\lambda^{k} \vec{v}$ for any k. So A is not nilpotent.
(2) Suppose $A=P D P^{-1}$. From (1), we know that $D=0$. So $A=0$.

Lemma 6. - $J_{0, k}$ is nilpotent of degree k.

- Suppose a Jordan matrix $J=J_{n}(\lambda)$ with the same entry λ on diagonal, then there exist a number m such that $\left(J-\lambda I_{n}\right)^{m}=\boldsymbol{0}$.

Proof.

$$
J_{0, k} \vec{x}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k-1} \\
x_{k}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
\vdots \\
x_{k} \\
0
\end{array}\right]
$$

(1) Direct calculation $J_{0, k}^{k}=\mathbf{0}$ and $J_{0, k}^{k-1} \neq \mathbf{0}$.
(2) Let m be the size of the largest Jordan block in J.

Some times, it is continent to describe a Jordan block as the sum of λI and a nilpotent block:

$$
J_{\lambda, k}=\lambda I+J_{0, k}
$$

Suppose A is similar to a Jordan block $J_{\lambda, n}$ (i.e., $A=P J_{\lambda, n} P^{-1}$), then

$$
A P=P J_{\lambda, n} .
$$

That is

$$
\left[A \vec{w}_{1} \cdots A \vec{w}_{n}\right]=\left[\begin{array}{lll}
\vec{w}_{1} & \cdots & \vec{w}_{n}
\end{array}\right]\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right]=\left[\lambda \vec{w}_{1} \lambda \vec{w}_{2}+\vec{w}_{1} \ldots \lambda \vec{w}_{n}+\vec{w}_{n-1}\right]
$$

Hence,

$$
\begin{aligned}
& A \vec{w}_{1}=\lambda \vec{w}_{1} \\
& A \vec{w}_{2}=\lambda \vec{w}_{2}+\vec{w}_{1} \\
& \quad \vdots \\
& A \vec{w}_{n}=\lambda \vec{w}_{n}+\vec{w}_{n-1}
\end{aligned}
$$

Equivalently,

$$
\begin{gathered}
(A-\lambda I) \vec{w}_{1}=\overrightarrow{0} \\
(A-\lambda I) \vec{w}_{2}=\vec{w}_{1} \\
\vdots \\
(A-\lambda I) \vec{w}_{n}=\vec{w}_{n-1}
\end{gathered}
$$

Denote $N=A-\lambda I$, such a sequence of vectors $\left\{\vec{w}_{1}, \vec{w}_{2}, \cdots, \vec{w}_{n}\right\}=\left\{N^{n-1} \vec{w}_{n}, N^{n-2} \vec{w}_{n}, \ldots, \vec{w}_{n}\right\}$ is called a Jordan Chain.

We also get

$$
(A-\lambda I)^{2} \vec{w}_{2}=\overrightarrow{0} ;(A-\lambda I)^{3} \vec{w}_{3}=\overrightarrow{0} ; \ldots ;(A-\lambda I)^{n} \vec{w}_{n}=\overrightarrow{0}
$$

To get matrix $P=\left[\begin{array}{llll}\vec{w}_{1} & \vec{w}_{2} & \cdots & \vec{w}_{n}\end{array}\right]$, the key is obtain the vector \vec{w}_{n}.
Let \vec{w}_{n} be the vector such that $\vec{w}_{n} \in \operatorname{ker}(A-\lambda I)^{n}$ and $\vec{w}_{n} \notin \operatorname{ker}(A-\lambda I)^{n-1}$.
Claim: $\left\{N^{n-1} \vec{w}_{n}, N^{n-2} \vec{w}_{n}, \ldots, \vec{w}_{n}\right\}$ is independent.

Definition 7. Let A be an $n \times n$ matrix. A non-zero vector \vec{v} is called a generalized eigenvector of A if

$$
(A-\lambda I)^{k} \vec{v}=\overrightarrow{0}
$$

for some $k \geq 1$.

Remark:

(1) Any eigenvector is a generalized vector.
(2) A generalized vector can exist only for the regular eigenvalue λ. A generalized vector can exists if and only if $\operatorname{det}\left[(A-\lambda I)^{k}\right]=0$, which only happen when $\operatorname{det}[(A-\lambda I)]=0$.
(3) Let V_{λ} be the set of all generalized eigenvectors together with $\overrightarrow{0}$. Then V_{λ} is a subspace of \mathbb{F}^{n}.
(4) A Jordan chain is independent if and only if $\vec{v}_{1} \neq \overrightarrow{0}$.
(5) A is similar to a Jordan block $J_{\lambda, n}$ if and only if there exists a Jordan Chain $\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}\right\}$ if and only if there exists a vector \vec{v}_{n} such that $(A-\lambda I)^{n} \vec{v}_{n}=0$ but $(A-\lambda I)^{n-1} \vec{v}_{n} \neq 0$.

We need to find the structure of a nilpotent matrix. We want to show that any nilpotent matrix is similar to $J_{n}(0)$. For example,

$$
\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \text { or }\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \text { or }\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \ldots
$$

That is $J_{3} \oplus J_{2} \oplus J_{1}$, or $J_{2} \oplus J_{2} \oplus J_{1} \oplus J_{1}$, or $J_{4} \oplus J_{2} \ldots$
There is a one-to-one corresponding between $J_{n}(0)$ and partition of $n,\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ such that

$$
n=n_{1}+n_{2}+\cdots+n_{k} \text { and } n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq 1
$$

In the above examples, the partition of 6 are $(3,2,1)$, or $(2,2,1,1)$, or $(4,2) \ldots$ (How many? 11)
We can use the Young diagram to describe the partitions.

From the Young diagrams, we can easily find the dual partitions by summing the squares in another direction. In above examples, the dual partitions are $(3,2,1),(4,2),(2,2,1,1)$

For another example, the Jordan matrix corresponds to partition $\left(n_{1}, n_{2}, n_{3}\right)=(3,2,2,1)$ is

$$
B=\left[\begin{array}{llllllll}
0 & 1 & 0 & & & & & \\
0 & 0 & 1 & & & & & \\
0 & 0 & 0 & & & & & \\
& & & 0 & 1 & & & \\
& & & 0 & 0 & & & \\
& & & & & 0 & 1 & \\
& & & & & 0 & 0 & \\
& & & & & & & 0
\end{array}\right]
$$

By Young diagram,
 the dual partition is $\left(s_{1}, s_{2}, s_{3}\right)=(4,3,1)$.

Lemma 8. Let N be an $n \times n$ nilpotent of degree r. Then we have strict inclusions $\operatorname{ker} N \subset \operatorname{ker} N^{2} \subset \cdots \subset \operatorname{ker} N^{r}=\mathbb{F}^{n}$

Proof. If $\vec{v} \in \operatorname{ker} N^{k}$, then $N^{k} \vec{v}=\overrightarrow{0}$, hence $N^{k+1} \vec{v}=\overrightarrow{0}$, hence $\vec{v} \in \operatorname{ker} N^{k+1}$, hence $N^{k} \subseteq N^{k+1}$.
Since N is nilpotent of degree r, there is a vector such that $\vec{v} \in \operatorname{ker} N^{r}=V$ but $\vec{v} \notin \operatorname{ker} N^{r-1}$. Then $N^{r-i} \vec{v} \in \operatorname{ker} N^{i}$ but $N^{r-i} \vec{v} \notin \operatorname{ker} N^{i-1}$. Hence each inclusion is strict.

As for the above example $B, m_{1}=\operatorname{dim} \operatorname{ker} N=4, m_{2}=\operatorname{dim} \operatorname{ker} N^{2}=7, m_{3}=\operatorname{dim} \operatorname{ker} N^{3}=8$.
Notice that $m_{1}=s_{1}, m_{2}=m_{1}+s_{2}, m_{3}=m_{2}+s_{3}$. Or $m_{1}=s_{1}, m_{2}=s_{1}+s_{2}, m_{3}=s_{1}+s_{2}+s_{3}$.

Theorem 9. Let N be an $n \times n$ nilpotent matrix of degree r. Then there exist vectors $\vec{v}_{1}, \ldots, \vec{v}_{s}$ and integers n_{1}, \ldots, n_{s} with $1 \leq n_{s} \leq \cdots \leq n_{1}=r$ such that $N^{n_{i}-1} \vec{v}_{i} \neq \overrightarrow{0}$ and $N^{n_{i}} \vec{v}_{i}=\overrightarrow{0}$ for all $i=1,2, \ldots, s$ and vectors

$$
\begin{aligned}
& N^{n_{1}-1} \vec{v}_{1}, \ldots, \ldots, \ldots N \vec{v}_{1}, \vec{v}_{1} \\
& N^{n_{2}-1} \vec{v}_{2} \ldots, \ldots, N \vec{v}_{2}, \vec{v}_{2} \\
& \quad \vdots \\
& N^{n_{s}-1} \vec{v}_{s} \ldots, N \vec{v}_{s}, \vec{v}_{s}
\end{aligned}
$$

form a basis for \mathbb{F}^{n}.

Proof. By Lemma 8, there are strict inclusions

$$
\operatorname{ker} N \subset \operatorname{ker} N^{2} \subset \cdots \subset \operatorname{ker} N^{r}=\mathbb{F}^{n}
$$

Hence, there exist direct decompositions

$$
\operatorname{ker} N^{i}=\operatorname{ker} N^{i-1} \oplus W_{i}
$$

Hence $\mathbb{F}^{n}=W_{r} \oplus W_{r-1} \oplus \cdots \oplus W_{2} \oplus W_{1}$, where $W_{1}=\operatorname{ker} N$.
Denote the dimension of each null space as $m_{i}=\operatorname{dim} \operatorname{ker} N^{i}$ for $i=1,2, \ldots, r$. Then denote $\operatorname{dim} W_{i}=$ s_{i} where $s_{1}=m_{1}, s_{2}=m_{2}-m_{1}, s_{3}=m_{3}-m_{2}, \ldots, s_{r}=m_{r}-m_{r-1}$.
Choose a basis $\left\{\vec{w}_{r, 1}, . ., \vec{w}_{r, s_{r}}\right\}$ for $W_{r} . \quad\left\{\vec{w}_{r, 1}, . ., \vec{w}_{r, s_{r}}, \ldots, N^{r-1} \vec{w}_{r 1}, . ., N^{r-1} \vec{w}_{r, s_{r}}\right\}$ is independent. $N^{i} \vec{w}_{r, *} \in W_{r-i}$ for $i=0,1,2, \ldots, r-1$.
Extend $\left\{N \vec{w}_{r, 1}, . ., N \vec{w}_{r, s_{r}}\right\}$ to be a basis for W_{r-1} by adding $\left\{\vec{w}_{r-1,1}, . ., \vec{w}_{r-1, s_{r-1}-s_{r}}\right\}$.
Keep extending until to W_{1}, we extended $\left\{N^{r-1} \vec{w}_{r, 1}, . ., N^{r-1} \vec{w}_{r, s_{r}}, N^{r-2} \vec{w}_{r, 1}, . ., N^{r-2} \vec{w}_{r-2, s_{r}}, \ldots\right\}$ to be a basis for W_{1} by adding $\left\{\vec{w}_{1,1}, . ., \vec{w}_{1, s_{1}-s_{2}}\right\}$
Claim, the set

$$
\begin{array}{lll}
N^{r-1} \vec{w}_{r 1} \ldots & N \vec{w}_{r, 1}, & \vec{w}_{r, 1}, \\
\vdots & & \\
N^{r-1} \vec{w}_{r, s_{r}} \ldots & N \vec{w}_{r, s_{r}} & \vec{w}_{r, s_{r}} \\
N^{r-2} \vec{w}_{r-1,1}, \ldots & \vec{w}_{r-1,1}, & \\
\vdots & & \\
N^{r-2} \vec{w}_{r-1, s_{r-1}-s_{r}} \ldots & \vec{w}_{r-1, s_{r-1}-s_{r}} & \\
\quad \vdots & & \\
\vec{w}_{1,1}, & & \\
\vdots & & \\
\vec{w}_{1, s_{1}-s_{2}} & &
\end{array}
$$

is a basis for \mathbb{F}^{n}.

Remark: The proof can also be done by induction on r or n. But our proof gives an algorithm of finding the basis.

In the example, if we want to fit the Young diagram, it is

The first columns form basis for ker B. The first two columns form basis for ker B^{2}. All vectors form a basis for $\operatorname{ker} B^{3}=\mathbb{F}^{8}$.

Remark: In the theorem, $\left(n_{1}, n_{2}, \ldots, n_{s}\right)$ is a partition of n corresponding the sizes of Jordan blocks. The dual partition is $\left(s_{1}, s_{2}, \ldots, s_{r}\right)$.

Denote the dimension of each null space as $m_{i}=\operatorname{dim} \operatorname{ker} N^{i}$ for $i=1,2, \ldots, r$. Then $m_{1}=s_{1}, m_{2}=m_{1}+s_{2}$, $m_{3}=m_{2}+s_{3}, \ldots, m_{r}=m_{r-1}+s_{r}$.

Denote the rank $c_{i}=\operatorname{rank} N^{i}$ for $i=1,2, \ldots, r$. Then $c_{1}=n-s_{1}, c_{2}=c_{1}-s_{2}, c_{3}=c_{2}-s_{3}, \ldots, c_{r}=c_{r-1}-s_{r}$.
So, the procedure of calculation is find m_{i} or c_{i} first, then s_{i}, then n_{i}.

Remark: In the theorem, $N^{n_{1}-1} \vec{v}_{1}, N^{n_{2}-1} \vec{v}_{2}, \ldots N^{n_{s}-1} \vec{v}_{s}$ form a basis for ker N.

Corollary 10. Let N be an $n \times n$ matrix. N is nilpotent if and only if N is similar to a Jordan canonical matrix $J_{n}(0)$.

Proof. The forward direction (\Rightarrow) is by Theorem 9 .
The backward direction (\Leftarrow) is from Lemma 6.

Corollary 11. Let N be an $n \times n$ nilpotent matrix. Then $\lambda I+N$ is similar to a Jordan canonical matrix $J_{n}(\lambda)$.

3. Jordan Canonical Form

Theorem 12. Let A be an $n \times n$ matrix. If $\operatorname{ker} A \cap \operatorname{im} A=\{0\}$, then $\mathbb{F}^{n}=\operatorname{ker} A \oplus \operatorname{im} A$.

Proof. We know that $\operatorname{dim} \operatorname{ker} A+\operatorname{dim} \operatorname{im} A=n$. Together with $\operatorname{ker} A \cap \operatorname{im} A=\{0\}$, we have the conclusion.

Remark: (1) The assumption is needed. For example, $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. $\operatorname{ker} A=\operatorname{im} A=\operatorname{Span}\left\{\vec{e}_{2}\right\}$
(2) Notice that $T_{A}(\operatorname{ker} A)=\{\overrightarrow{0}\}$ and $T_{A}(\operatorname{im} A) \subset \operatorname{im} A$. So, both ker A are im A invariant under T_{A}.

Theorem 13. Let A be an $n \times n$ matrix with an eigenvalue λ. Denote the set of all generalized eigenvectors of A corresponding to λ, together with $\{\overrightarrow{0}\}$ by V_{λ}. Then, there exists m such that

$$
V_{\lambda}=\operatorname{ker}(A-\lambda I)^{m}
$$

and

$$
\mathbb{F}^{n}=\operatorname{ker}(A-\lambda I)^{m} \oplus \operatorname{im}(A-\lambda I)^{m}
$$

Both $\operatorname{ker}(A-\lambda I)^{m}$ and $\operatorname{im}(A-\lambda I)^{m}$ are invariant under T_{A}.

Proof. The theorem can be proved by the following steps.

1. Verify V_{λ} is a subspace of \mathbb{F}^{n}. (Verify by definition.)

Let m be the (smallest) number that $(A-\lambda I)^{m} \vec{v}=\{\overrightarrow{0}\}$ for any $\vec{v} \in V_{\lambda}$. This can be done since V_{λ} is a finite-dimensional vector space. We only need to vanish the basis vectors.
2. It is clear that $V_{\lambda}=\operatorname{ker}(A-\lambda I)^{m}$.
3. $\operatorname{ker}(A-\lambda I)^{m} \cap \operatorname{im}(A-\lambda I)^{m}=\{\overrightarrow{0}\}$

Suppose $\vec{v} \in \operatorname{ker}(A-\lambda I)^{m} \cap \operatorname{im}(A-\lambda I)^{m}$, then $(A-\lambda I)^{m} \vec{v}=\overrightarrow{0}$ and $\vec{v}=(A-\lambda I)^{m} \vec{w}$. Then $(A-\lambda I)^{2 m} \vec{w}=\overrightarrow{0}$. Then $\vec{w} \in V_{\lambda}$. Then $(A-\lambda I)^{m} \vec{w}=\overrightarrow{0}$. So, $\vec{v}=\overrightarrow{0}$.
4. Each space is invariant under $(A-\lambda I)$, hence also A.

Theorem 14. Let A be an $n \times n$ matrix with n eigenvalues. The distinct eigenvalues are $\lambda_{1}, \ldots, \lambda_{k}$. Then, there exist numbers $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
\mathbb{F}^{n}=\operatorname{ker}\left(A-\lambda_{1} I\right)^{m_{1}} \oplus \cdots \oplus \operatorname{ker}\left(A-\lambda_{k} I\right)^{m_{k}}
$$

and each $\operatorname{ker}\left(A-\lambda_{i} I\right)^{m_{i}}$ is invariant under T_{A}.

Proof. By induction on number of distinct eigenvalues. T_{A} has eigenvalues $\lambda_{2}, \ldots, \lambda_{k}$ on $\operatorname{im}(A-\lambda I)^{m}$.

Remark: More generally, all properties in this section can be generalized to linear transformations T on a finite-dimensional vector space V. (We discussed a particular case when $V=\mathbb{F}^{n}$.)

Choose a basis for each subspace $\operatorname{ker}\left(A-\lambda_{i} I\right)^{m_{i}}$ and put them together we get a basis $\mathscr{B}=\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ for \mathbb{F}^{n}. The \mathscr{B}-matrix for T_{A} is block diagonal $B=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{k}$, since each space is invariant under T_{A}. For each matrix B_{k} we know that $\left(B_{i}-\lambda_{i} I\right)^{m_{i}}=\mathbf{0}$.

Hence we have showed that A is similar to a block diagonal matrix $B_{1} \oplus B_{2} \oplus \cdots \oplus B_{k}$ such that each B_{i} is $\lambda_{i} I$ plus a nilpotent matrix.

Theorem 15 (Block Diagonalization). Every $n \times n$ matrix A with n eigenvalues in a field \mathbb{F} is similar to a block diagonal matrix, where each block has a single eigenvalue.
More precisely, suppose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the distinct eigenvalues of A. Then there is an invertible matrix $P \in \mathbb{F}^{n \times n}$ such that

$$
P^{-1} A P=\operatorname{diag}\left(B_{1}, B_{2}, \ldots, B_{k}\right)
$$

where the matrix $B_{i}-\lambda_{i} I$ is nilpotent for $i=1,2, \ldots, k$.

Together with the result for nilpotent matrix, we have

Theorem 16. Every $n \times n$ matrix A with n eigenvalues in a field \mathbb{F} is similar to a matrix J in Jordan normal matrix, that is $A=P J P^{-1}$.

4. Algorithm and example

Let A be an $n \times n$ matrix with distinct real eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$ such that

$$
f_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)^{k_{1}}\left(\lambda_{2}-\lambda\right)^{k_{2}} \cdots\left(\lambda_{p}-\lambda\right)^{k_{p}}
$$

Suppose $k_{1}+k_{2}+\cdots+k_{p}=n$. (This is always true if \mathbb{F} is algebraic closed, e.g., when $\mathbb{F}=\mathbb{C}$).

Algorithm of computing Jordan Normal form of a matrix:

Step 1. Find all eigenvalues λ_{i} and their algebraic multiplicity $\operatorname{am}\left(\lambda_{i}\right)=k_{i}$.
Step 2. For each eigenvalue λ_{i}, calculate $m_{j}=\operatorname{dim} \operatorname{ker}\left(A-\lambda_{i} I\right)^{j}$ for $j=1,2, \ldots$ until $\operatorname{dim} \operatorname{ker}(A-$ $\left.\lambda_{i} I\right)^{s}=k_{i}$.
Step 3. From m_{1}, \ldots, m_{s} we can calculate $s_{j}=m_{j}-m_{j-1}$, then use Young diagram calculate n_{1}, \ldots, n_{t}. Now we have determined the Jordan normal form J.
Step 4. To calculate the matrix P such that $A=P J P^{-1}$, we calculate $\operatorname{rref}(A-\lambda I)^{j}$ for each $\lambda=\lambda_{i}$. Step 5. Find vectors $\left\{\vec{w}_{r, 1}, \ldots \vec{w}_{r, s_{r}}\right\}, \ldots,\left\{\vec{w}_{1,1}, \ldots \vec{w}_{1, s_{1}-s_{2}}\right\}$ such that

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & -1 & -1 \\
0 & -8 & 4 & -3 & 1 & -3 \\
-3 & 13 & -8 & 6 & 2 & 9 \\
-2 & 14 & -7 & 4 & 2 & 10 \\
1 & -18 & 11 & -11 & 2 & -6 \\
-1 & 19 & -11 & 10 & -2 & 7
\end{array}\right]
$$

Step 1, calculate all eigenvalues of A, which are $\lambda=2$ with algebraic multiplicity 1 and $\lambda=-1$ with algebraic multiplicity 5 . We know that the Jordan form looks like:
$J=\left[\begin{array}{cccccc}2 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & * & 0 & 0 & 0 \\ 0 & 0 & -1 & * & 0 & 0 \\ 0 & 0 & 0 & -1 & * & 0 \\ 0 & 0 & 0 & 0 & -1 & * \\ 0 & 0 & 0 & 0 & 0 & -1\end{array}\right]$
Calculate $m_{i}=\operatorname{dim} \operatorname{ker}\left((A+I)^{i}\right)$ we have $m_{1}=2, m_{2}=4, m_{3}=5$ which is the algebraic multiplicity $a m(-1)$. So, $s_{1}=2, s_{2}=2, s_{3}=1$ and by Young diagram

$B^{2} \vec{v}\left\|\overrightarrow{v_{1}}\right\| \vec{v}_{1}$
$B \vec{v}_{2} \vec{v}_{2}$

$n_{1}=3, n_{2}=2$. So, $J=\left[\begin{array}{cccccc}2 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1\end{array}\right]$
To find matrix P such that $A=P J P^{-1}$, we need to calculate
$\operatorname{rref}(A+I)=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 & \frac{3}{2} \\ 0 & 0 & 1 & 0 & 2 & \frac{3}{2} \\ 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\operatorname{rref}(A+I)^{2}=\left[\begin{array}{cccccc}1 & 0 & -\frac{1}{2} & \frac{3}{2} & -2 & -\frac{5}{2} \\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\operatorname{rref}(A+I)^{3}=\left[\begin{array}{cccccc}0 & 1 & -\frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\vec{v}_{1}=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}\right]^{T}$ is the vector in $\operatorname{ker}(A+I)^{3}$ but not in $\operatorname{ker}(A+I)^{2}$
Calculate $(A+I) \vec{v}_{1}=\left[\begin{array}{llllll}1 & 0 & -3 & -2 & 1 & -1\end{array}\right]^{T}$ and $(A+I)^{2} \vec{v}_{1}=\left[\begin{array}{llllll}1 & -2 & -1 & 1 & -1 & 2\end{array}\right]^{T}$
$\vec{v}_{2}=\left[\begin{array}{llllll}0 & 1 & -2 & -2 & 3 & -3\end{array}\right]^{T}$ is the vector in $\operatorname{ker}(A+I)^{2}$ but not in $\operatorname{ker}(A+I)$ and not dependent on \vec{v}_{1}, $(A+I) \vec{v}_{1}$ and $(A+I)^{2} \vec{v}_{1}$
$\operatorname{rref}(A+2 I)=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 1 & 0 & 0 & -\frac{2}{3} \\ 0 & 0 & 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{cccccc}0 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
A basis for $\operatorname{ker}(A+2 I)$ is $\left[\begin{array}{llllll}0 & 1 & -2 & -2 & 3 & -3\end{array}\right]^{T}$ Hence matrix
P is $P=\left[\begin{array}{cccccc}0 & 1 & 1 & 1 & 1 & 1 \\ 1 & -2 & 0 & 0 & 1 & 1 \\ -2 & -1 & -3 & 0 & -4 & 2 \\ -2 & 1 & -2 & 0 & -2 & 0 \\ 3 & -1 & 1 & 0 & 5 & 0 \\ -3 & 2 & -1 & 0 & -4 & 0\end{array}\right]$

Using Matlab directly $\mathrm{A}=\operatorname{sym}(\mathrm{A})$ and $[\mathrm{P}, \mathrm{J}]=$ jordan(A) will give us the result

$$
J=\left[\begin{array}{cccccc}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right] P=\left[\begin{array}{cccccc}
0 & -\frac{9}{2} & -7 & -7 & \frac{3}{2} & \frac{5}{2} \\
-1 & 9 & 3 & 1 & 0 & 0 \\
2 & \frac{9}{2} & 18 & \frac{5}{2} & -\frac{9}{2} & -\frac{3}{2} \\
2 & -\frac{9}{2} & \frac{17}{2} & 2 & -\frac{3}{2} & -1 \\
-3 & \frac{9}{2} & -6 & \frac{3}{2} & \frac{9}{2} & \frac{3}{2} \\
3 & -9 & \frac{7}{2} & -\frac{3}{2} & -3 & -\frac{1}{2}
\end{array}\right]
$$

Remark: The Jordan normal form is more useful in theory than in computation. There is a technical problem of Jordan Normal Form in numerical calculation. For example,

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & t
\end{array}\right]
$$

Then when $t \neq 1$, the matrix A is diagonalizable with $D=\left[\begin{array}{ll}1 & 0 \\ 0 & t\end{array}\right]$. However, when $t=1$, the matrix A is not diagonalizable and the Jordan normal form is $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. This means that the calculation is not "continuous". A small floating approximation in computer calculation may give a huge mistake in the Jordan Normal Form calculation.

5. Cayley-Hamilton Theorem

Definition 17. An annihilating polynomial for a square matrix A is a non-zero polynomial $p(t)$ such that $p(A)=0$.

Theorem 18. Then there exists an annihilating polynomial for any $n \times n$ matrix A.

Proof. Suppose $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a basis for \mathbb{F}^{n}, then, each $\left\{\vec{v}_{i}, A \vec{v}_{i}, \ldots, A^{n} \vec{v}_{i}\right\}$ is dependent. $(n+1$ vectors) So, there exists a dependent relation

$$
a_{i 0} \vec{v}_{i}+a_{i 1} A \vec{v}_{i}+\cdots+a_{i n} A^{n} \vec{v}_{i}=\overrightarrow{0}
$$

Denote the polynomial $p_{i}(t)=a_{i 0}+a_{i 1} t+\cdots+a_{i n} t^{n}$ So $p(A)=\prod_{i=1}^{n} p_{i}(A)$ sent a basis of \mathbb{F}^{n} to zero. So, $P(A)=\overrightarrow{0}$.

Remark: Another way to prove the theorem is using vector spaces $F^{n \times n}$ with $\operatorname{dim}\left(F^{n \times n}\right)=n^{2}$. So, A is a vector in $F^{n \times n}$. So $n+1$ vectors in $F^{n \times n}$ is dependent. So $I, A, A^{2}, \ldots, A^{n^{2}}$ is dependent. So, there exists a polynomial annihilating A.

The degree of the annihilating polynomial is n^{2}. In fact, the degree can be smaller.

Theorem 19 (Cayley-Hamilton Theorem). If $f(t)$ is the characteristic polynomial of A, then $f(A)=0$.

Proof. Suppose $f_{A}(t)=\operatorname{det}(A-t I)=\left(\lambda_{1}-t\right)^{k_{1}}\left(\lambda_{2}-t\right)^{k_{2}} \cdots\left(\lambda_{p}-t\right)^{k_{p}}$.
If A is diagonalizable, (i.e., $A=P D P^{-1}$), the proof is easy. Since f is a polynomial, $f(A)=$ $P f(D) P^{-1}=P\left[\begin{array}{cccc}f\left(\lambda_{1}\right) & 0 & \cdots & 0 \\ 0 & f\left(\lambda_{1}\right) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f\left(\lambda_{p}\right)\end{array}\right] P^{-1}=P \mathbf{0} P^{-1}=\mathbf{0}$.
In general, we use Jordan normal forms decomposition $A=P J P^{-1}$. We only need to show that $f(J)=\mathbf{0}$.

$$
f(J)=\left[\begin{array}{cccc}
f\left(J_{\lambda_{1}}\left(k_{1}\right)\right) & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & f\left(J_{\lambda_{2}}\left(k_{2}\right)\right) & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & f\left(J_{\lambda_{m}}\left(k_{p}\right)\right)
\end{array}\right]
$$

Each matrix $f\left(J_{\lambda_{i}}\left(k_{i}\right)\right)=\left(\lambda_{1} I-J_{\lambda_{i}}\left(k_{i}\right)\right)^{k_{1}} \cdots\left(\lambda_{i} I-J_{\lambda_{i}}\left(k_{i}\right)\right)^{k_{i}} \cdots\left(\lambda_{p} I-J_{\lambda_{i}}\left(k_{i}\right)\right)^{k_{p}}=\mathbf{0}$, since $\left(\lambda_{i} I-\right.$ $\left.J_{\lambda_{i}}\left(k_{i}\right)\right)^{k_{i}}=\mathbf{0}$ by Lemma 6

Wrong proof: $f(t)=\operatorname{det}(A-t I)$. So, $f(A)=\operatorname{det}(A-A I)=\operatorname{det}(0)=0$. (Why?)
Application to computing powers A^{k} of matrix A using linear combinations of I, A, \ldots, A^{n-1}.

6. Minimal polynomial

By Cayley-Hamilton Theorem, we know that we can find annihilating polynomial of A with degree $\leq n$.

Definition 20. The smallest degree annihilating polynomial of A is called the minimal polynomial of A.

Theorem 21 (Minimal Polynomial Theorem). Consider $\mathbb{F}=\mathbb{C}$. The eigenvalues of A are the roots of the minimal polynomial $f(t)$ of A.

Corollary 22. The minimal polynomial $f(t)$ of A has the form

$$
f(t)=\left(t-\lambda_{1}\right)^{p_{1}}\left(t-\lambda_{2}\right)^{p_{2}} \cdots\left(t-\lambda_{m}\right)^{p_{m}}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ be the distinct eigenvalues of A and the exponents p_{k} is the largest block size for each eigenvalue..

