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Not every square matrix is diagonalizable. However, we can block diagonalize it to be in Jordan canoni-
cal(normal, norm) form.

1. Block diagonal

An n× n matrix B is a block diagonal matrix if

B =


B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bm


with the matrices on the diagonal. Block diagonal matrix B is also denoted as direct sum:

B = B1 ⊕B2 ⊕ · · · ⊕Bm.

Recall that given a linear transformation T : Fn → Fn. A subspace W ⊆ Fn is said to be invariant under
T if T (~w) ∈ W whenever w ∈ W .

Theorem 1. An n× n matrix A is similar to a block diagonal matrix B, (i.e., A = PBP−1) if and
only if there exists a decomposition of Fn = V1 ⊕ V2 ⊕ · · · ⊕ Vm such that Vi is invariant under TA.
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Proof. Choose a basis Bi = {~vi,1, . . . , ~vi,ni
} for each Vi. Denote matrix P = [~v1,1 . . . ~v1,n1 . . . ~vm,nm ].

By change of coordinate theorem, we know that A = PBP−1 where matrix B is defined as ~bi,j =
[A~vi,j]B
Since Vi is invariant under TA, then A~vi,j ∈ Vi, hence A~vi,j = bi,1~vi,1 + · · ·+ bi,ni

~vi,ni
. �

The following non-diagonalizable matrices are called Jordan blocks of size 1, 2, 3, 4, ...

Jλ,1 =
[
λ
]
, Jλ,2 =

[
λ 1
0 λ

]
, Jλ,3 =

λ 1 0
0 λ 1
0 0 λ

 , Jλ,4 =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 , ...

Definition 2. An n × n Jordan normal matrix (Jordan normal form) is a block diagonal
matrix

J =


Jn1(λ1) 0 · · · 0

0 Jn2(λ2) · · · 0
...

...
. . .

...
0 0 · · · Jnm(λm)


such that all diagonal matrices Jni

(λi) are of the form

Jni
(λi) =


λi ∗ 0 0

0 λi
. . . 0

0 0
. . . ∗

0 0 0 λi


where ∗ = 1 or 0.

Remark: 1. Jni
(λi) is direct sum (block diagonal) of Jordan blocks J∗,λi . 2. Jni

(λi) is not uniquely
determined by ni and λi.

Our purpose in this section is to show the following theorem:

Theorem 3. Every n×n matrix A with n eigenvalues in a field F is similar to a matrix J in Jordan
normal matrix, that is A = PJP−1.

The Jordan normal form of A is unique up to the order of Jordan blocks.

2. Nilpotent matrix

Definition 4. An n × n matrix A is called nilpotent of degree m if Am = 0 and Am−1 6= 0 for
some m ≥ 0.

Proposition 5. • If A is nilpotent, then zero is the only eigenvalue of A.
• If A is nilpotent and diagonalizable, then A = 0.
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Proof. (1) If λ 6= 0 is an eigenvalue of A, then A~v = λ~v with nonzero ~v. So, Ak~v = λk~v for any k.
So A is not nilpotent.
(2) Suppose A = PDP−1. From (1), we know that D = 0. So A = 0. �

Lemma 6. • J0,k is nilpotent of degree k.
• Suppose a Jordan matrix J = Jn(λ) with the same entry λ on diagonal, then there exist a

number m such that (J − λIn)m = 0.

Proof.

J0,k~x =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
0 0 0 · · · 0



x1
x2
...

xk−1

xk

 =


x2
x3
...
xk
0


(1) Direct calculation Jk0,k = 0 and Jk−1

0,k 6= 0.
(2) Let m be the size of the largest Jordan block in J . �

Some times, it is continent to describe a Jordan block as the sum of λI and a nilpotent block:

Jλ,k = λI + J0,k

Suppose A is similar to a Jordan block Jλ,n (i.e., A = PJλ,nP
−1), then

AP = PJλ,n.

That is

[A~w1 · · · A~wn] = [~w1 · · · ~wn]


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
0 0 0 · · · λ

 = [λ~w1 λ~w2 + ~w1 . . . λ~wn + ~wn−1]

Hence,

A~w1 = λ~w1

A~w2 = λ~w2 + ~w1

...

A~wn = λ~wn + ~wn−1

Equivalently,

(A− λI)~w1 = ~0

(A− λI)~w2 = ~w1

...

(A− λI)~wn = ~wn−1

Denote N = A − λI, such a sequence of vectors {~w1, ~w2, · · · , ~wn} = {Nn−1 ~wn, N
n−2 ~wn, . . . , ~wn} is called

a Jordan Chain.
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We also get

(A− λI)2 ~w2 = ~0; (A− λI)3 ~w3 = ~0; ...; (A− λI)n ~wn = ~0

To get matrix P = [~w1 ~w2 · · · ~wn], the key is obtain the vector ~wn.

Let ~wn be the vector such that ~wn ∈ ker(A− λI)n and ~wn /∈ ker(A− λI)n−1.

Claim: {Nn−1 ~wn, N
n−2 ~wn, . . . , ~wn} is independent.

Definition 7. Let A be an n×n matrix. A non-zero vector ~v is called a generalized eigenvector
of A if

(A− λI)k~v = ~0

for some k ≥ 1.

Remark:

(1) Any eigenvector is a generalized vector.
(2) A generalized vector can exist only for the regular eigenvalue λ. A generalized vector can exists if

and only if det[(A− λI)k] = 0, which only happen when det[(A− λI)] = 0.

(3) Let Vλ be the set of all generalized eigenvectors together with ~0. Then Vλ is a subspace of Fn.

(4) A Jordan chain is independent if and only if ~v1 6= ~0.
(5) A is similar to a Jordan block Jλ,n if and only if there exists a Jordan Chain {~v1, ~v2, · · · , ~vn} if and

only if there exists a vector ~vn such that (A− λI)n~vn = 0 but (A− λI)n−1~vn 6= 0.

We need to find the structure of a nilpotent matrix. We want to show that any nilpotent matrix is similar
to Jn(0). For example,

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

 or


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 or


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 ...

That is J3 ⊕ J2 ⊕ J1, or J2 ⊕ J2 ⊕ J1 ⊕ J1, or J4 ⊕ J2...

There is a one-to-one corresponding between Jn(0) and partition of n, (n1, n2, . . . , nk) such that

n = n1 + n2 + · · ·+ nk and n1 ≥ n2 ≥ · · · ≥ nk ≥ 1

In the above examples, the partition of 6 are (3, 2, 1), or (2, 2, 1, 1), or (4, 2)... (How many? 11)

We can use the Young diagram to describe the partitions.

or or ...
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From the Young diagrams, we can easily find the dual partitions by summing the squares in another
direction. In above examples, the dual partitions are (3, 2, 1), (4, 2), (2, 2, 1, 1)

For another example, the Jordan matrix corresponds to partition (n1, n2, n3) = (3, 2, 2, 1) is

B =



0 1 0
0 0 1
0 0 0

0 1
0 0

0 1
0 0

0



By Young diagram, , the dual partition is (s1, s2, s3) = (4, 3, 1).

Lemma 8. Let N be an n× n nilpotent of degree r. Then we have strict inclusions

kerN ⊂ kerN2 ⊂ · · · ⊂ kerN r = Fn

Proof. If ~v ∈ kerNk, then Nk~v = ~0, hence Nk+1~v = ~0, hence ~v ∈ kerNk+1, hence Nk ⊆ Nk+1.
Since N is nilpotent of degree r, there is a vector such that ~v ∈ kerN r = V but ~v /∈ kerN r−1. Then
N r−i~v ∈ kerN i but N r−i~v /∈ kerN i−1. Hence each inclusion is strict. �

As for the above example B, m1 = dim kerN = 4, m2 = dim kerN2 = 7, m3 = dim kerN3 = 8.

Notice that m1 = s1, m2 = m1 + s2, m3 = m2 + s3. Or m1 = s1, m2 = s1 + s2, m3 = s1 + s2 + s3.

Theorem 9. Let N be an n × n nilpotent matrix of degree r. Then there exist vectors ~v1, . . . , ~vs
and integers n1, . . . , ns with 1 ≤ ns ≤ · · · ≤ n1 = r such that Nni−1~vi 6= ~0 and Nni~vi = ~0 for all
i = 1, 2, ..., s and vectors

Nn1−1~v1, . . . , . . . , . . . N~v1, ~v1,
Nn2−1~v2 . . . , . . . , N~v2, ~v2,

...
Nns−1~vs . . . , N~vs, ~vs

form a basis for Fn.
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Proof. By Lemma 8, there are strict inclusions

kerN ⊂ kerN2 ⊂ · · · ⊂ kerN r = Fn

Hence, there exist direct decompositions

kerN i = kerN i−1 ⊕Wi

Hence Fn = Wr ⊕Wr−1 ⊕ · · · ⊕W2 ⊕W1, where W1 = kerN .
Denote the dimension of each null space as mi = dim kerN i for i = 1, 2, ..., r. Then denote dimWi =
si where s1 = m1, s2 = m2 −m1, s3 = m3 −m2,..., sr = mr −mr−1.
Choose a basis {~wr,1, .., ~wr,sr} for Wr. {~wr,1, .., ~wr,sr , ..., N r−1 ~wr1, .., N

r−1 ~wr,sr} is independent.
N i ~wr,∗ ∈ Wr−i for i = 0, 1, 2, ..., r − 1.
Extend {N ~wr,1, .., N ~wr,sr} to be a basis for Wr−1 by adding {~wr−1,1, .., ~wr−1,sr−1−sr}.
Keep extending until to W1, we extended {N r−1 ~wr,1, .., N

r−1 ~wr,sr , N
r−2 ~wr,1, .., N

r−2 ~wr−2,sr , ...} to be
a basis for W1 by adding {~w1,1, .., ~w1,s1−s2}
Claim, the set

N r−1 ~wr1 . . . N ~wr,1, ~wr,1,
...
N r−1 ~wr,sr . . . N ~wr,sr ~wr,sr
N r−2 ~wr−1,1, . . . ~wr−1,1,
...
N r−2 ~wr−1,,sr−1−sr . . . ~wr−1,sr−1−sr

...
~w1,1,
...
~w1,s1−s2

is a basis for Fn. �

Remark: The proof can also be done by induction on r or n. But our proof gives an algorithm of finding
the basis.

In the example, if we want to fit the Young diagram, it is

B2~v1B~v1~v1

B~v2 ~v2

B~v3 ~v3

~v4

.

The first columns form basis for kerB. The first two columns form basis for kerB2. All vectors form a
basis for kerB3 = F8.

Remark: In the theorem, (n1, n2, ..., ns) is a partition of n corresponding the sizes of Jordan blocks.
The dual partition is (s1, s2, ..., sr).

Denote the dimension of each null space as mi = dim kerN i for i = 1, 2, ..., r. Then m1 = s1, m2 = m1+s2,
m3 = m2 + s3,..., mr = mr−1 + sr.

Denote the rank ci = rankN i for i = 1, 2, ..., r. Then c1 = n−s1, c2 = c1−s2, c3 = c2−s3,..., cr = cr−1−sr.

So, the procedure of calculation is find mi or ci first, then si, then ni.
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Remark: In the theorem, Nn1−1~v1, N
n2−1~v2, ... Nns−1~vs form a basis for kerN .

Corollary 10. Let N be an n × n matrix. N is nilpotent if and only if N is similar to a Jordan
canonical matrix Jn(0).

Proof. The forward direction (⇒) is by Theorem 9.
The backward direction (⇐) is from Lemma 6.

�

Corollary 11. Let N be an n× n nilpotent matrix. Then λI +N is similar to a Jordan canonical
matrix Jn(λ).

3. Jordan Canonical Form

Theorem 12. Let A be an n× n matrix. If kerA ∩ imA = {0}, then Fn = kerA⊕ imA.

Proof. We know that dim kerA + dim imA = n. Together with kerA ∩ imA = {0}, we have the
conclusion. �

Remark: (1) The assumption is needed. For example, A =

[
0 1
0 0

]
. kerA = imA = Span{~e2}

(2) Notice that TA(kerA) = {~0} and TA(imA) ⊂ imA. So, both kerA are imA invariant under TA.

Theorem 13. Let A be an n × n matrix with an eigenvalue λ. Denote the set of all generalized
eigenvectors of A corresponding to λ, together with {~0} by Vλ. Then, there exists m such that

Vλ = ker(A− λI)m

and
Fn = ker(A− λI)m ⊕ im(A− λI)m.

Both ker(A− λI)m and im(A− λI)m are invariant under TA.

Proof. The theorem can be proved by the following steps.
1. Verify Vλ is a subspace of Fn. (Verify by definition.)

Let m be the (smallest) number that (A− λI)m~v = {~0} for any ~v ∈ Vλ. This can be done since Vλ
is a finite-dimensional vector space. We only need to vanish the basis vectors.
2. It is clear that Vλ = ker(A− λI)m.

3. ker(A− λI)m ∩ im(A− λI)m = {~0}
Suppose ~v ∈ ker(A − λI)m ∩ im(A − λI)m, then (A − λI)m~v = ~0 and ~v = (A − λI)m ~w. Then

(A− λI)2m ~w = ~0. Then ~w ∈ Vλ. Then (A− λI)m ~w = ~0. So, ~v = ~0.
4. Each space is invariant under (A− λI), hence also A. �
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Theorem 14. Let A be an n×n matrix with n eigenvalues. The distinct eigenvalues are λ1, . . . , λk.
Then, there exist numbers m1,m2, . . . ,mk such that

Fn = ker(A− λ1I)m1 ⊕ · · · ⊕ ker(A− λkI)mk

and each ker(A− λiI)mi is invariant under TA.

Proof. By induction on number of distinct eigenvalues. TA has eigenvalues λ2, . . . , λk on im(A−λI)m.
�

Remark: More generally, all properties in this section can be generalized to linear transformations T on
a finite-dimensional vector space V . (We discussed a particular case when V = Fn.)

Choose a basis for each subspace ker(A− λiI)mi and put them together we get a basis B = {~v1, · · · , ~vn}
for Fn. The B-matrix for TA is block diagonal B = B1⊕B2⊕· · ·⊕Bk, since each space is invariant under
TA. For each matrix Bk we know that (Bi − λiI)mi = 0.

Hence we have showed that A is similar to a block diagonal matrix B1 ⊕B2 ⊕ · · · ⊕Bk such that each Bi

is λiI plus a nilpotent matrix.

Theorem 15 (Block Diagonalization). Every n × n matrix A with n eigenvalues in a field F is
similar to a block diagonal matrix, where each block has a single eigenvalue.
More precisely, suppose λ1, λ2, . . . , λk are the distinct eigenvalues of A. Then there is an invertible
matrix P ∈ Fn×n such that

P−1AP = diag(B1, B2, . . . , Bk)

where the matrix Bi − λiI is nilpotent for i = 1, 2, . . . , k.

Together with the result for nilpotent matrix, we have

Theorem 16. Every n × n matrix A with n eigenvalues in a field F is similar to a matrix J in
Jordan normal matrix, that is A = PJP−1.

4. Algorithm and example

Let A be an n× n matrix with distinct real eigenvalues λ1, . . . , λp such that

fA(λ) = det(A− λI) = (λ1 − λ)k1(λ2 − λ)k2 · · · (λp − λ)kp .

Suppose k1 + k2 + · · ·+ kp = n. (This is always true if F is algebraic closed, e.g., when F = C).

Algorithm of computing Jordan Normal form of a matrix:

Step 1. Find all eigenvalues λi and their algebraic multiplicity am(λi) = ki.
Step 2. For each eigenvalue λi, calculate mj = dim ker(A − λiI)j for j = 1, 2, ... until dim ker(A −

λiI)s = ki.
Step 3. From m1, ...,ms we can calculate sj = mj−mj−1, then use Young diagram calculate n1, ..., nt.

Now we have determined the Jordan normal form J .
Step 4. To calculate the matrix P such that A = PJP−1, we calculate rref(A−λI)j for each λ = λi.
Step 5. Find vectors {~wr,1, ... ~wr,sr},..., {~w1,1, ... ~w1,s1−s2} such that
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A =


0 0 0 0 −1 −1
0 −8 4 −3 1 −3
−3 13 −8 6 2 9
−2 14 −7 4 2 10
1 −18 11 −11 2 −6
−1 19 −11 10 −2 7



Step 1, calculate all eigenvalues of A, which are λ = 2 with algebraic multiplicity 1 and λ = −1 with
algebraic multiplicity 5. We know that the Jordan form looks like:

J =


2 0 0 0 0 0
0 −1 ∗ 0 0 0
0 0 −1 ∗ 0 0
0 0 0 −1 ∗ 0
0 0 0 0 −1 ∗
0 0 0 0 0 −1


Calculate mi = dim ker((A + I)i) we have m1 = 2,m2 = 4,m3 = 5 which is the algebraic multiplicity
am(−1). So, s1 = 2, s2 = 2, s3 = 1 and by Young diagram

B2~v1B~v1~v1

B~v2 ~v2
.

n1 = 3, n2 = 2. So, J =


2 0 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 0 0
0 0 0 0 −1 1
0 0 0 0 0 −1


To find matrix P such that A = PJP−1, we need to calculate

rref(A+ I) =


1 0 0 0 −1 −1
0 1 0 0 1 3

2
0 0 1 0 2 3

2
0 0 0 1 0 −1

2
0 0 0 0 0 0
0 0 0 0 0 0



rref(A+ I)2 =


1 0 −1

2
3
2
−2 −5

2
0 1 −1

2
1
2

0 1
2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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rref(A+ I)3 =


0 1 −1

2
1
2

0 1
2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


~v1 =

[
1 0 0 0 0 0

]T
is the vector in ker(A+ I)3 but not in ker(A+ I)2

Calculate (A+ I)~v1 =
[
1 0 −3 −2 1 −1

]T
and (A+ I)2~v1 =

[
1 −2 −1 1 −1 2

]T
~v2 =

[
0 1 −2 −2 3 −3

]T
is the vector in ker(A+ I)2 but not in ker(A+ I) and not dependent on ~v1,

(A+ I)~v1 and (A+ I)2~v1

rref(A + 2I) =


1 0 0 0 0 0
0 1 0 0 0 1

3
0 0 1 0 0 −2

3
0 0 0 1 0 −2

3
0 0 0 0 1 1
0 0 0 0 0 0

 A basis for ker(A + 2I) is
[
0 1 −2 −2 3 −3

]T
Hence matrix

P is P =


0 1 1 1 1 1
1 −2 0 0 1 1
−2 −1 −3 0 −4 2
−2 1 −2 0 −2 0
3 −1 1 0 5 0
−3 2 −1 0 −4 0


Using Matlab directly A=sym(A) and [P, J] = jordan(A) will give us the result

J =


2 0 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 0 0
0 0 0 0 −1 1
0 0 0 0 0 −1

 P =


0 −9

2
−7 −7 3

2
5
2

−1 9 3 1 0 0
2 9

2
18 5

2
−9

2
−3

2
2 −9

2
17
2

2 −3
2
−1

−3 9
2
−6 3

2
9
2

3
2

3 −9 7
2
−3

2
−3 −1

2


Remark: The Jordan normal form is more useful in theory than in computation. There is a technical
problem of Jordan Normal Form in numerical calculation. For example,

A =

[
1 1
0 t

]

Then when t 6= 1, the matrix A is diagonalizable with D =

[
1 0
0 t

]
. However, when t = 1, the matrix

A is not diagonalizable and the Jordan normal form is A =

[
1 1
0 1

]
. This means that the calculation is

not “continuous”. A small floating approximation in computer calculation may give a huge mistake in the
Jordan Normal Form calculation.
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5. Cayley-Hamilton Theorem

Definition 17. An annihilating polynomial for a square matrix A is a non-zero polynomial p(t)
such that p(A) = 0.

Theorem 18. Then there exists an annihilating polynomial for any n× n matrix A.

Proof. Suppose {~v1, . . . , ~vn} is a basis for Fn, then, each {~vi, A~vi, . . . , An~vi} is dependent. (n + 1
vectors) So, there exists a dependent relation

ai0~vi + ai1A~vi + · · ·+ ainA
n~vi = ~0

Denote the polynomial pi(t) = ai0 + ai1t + · · · + aint
n So p(A) =

∏n
i=1 pi(A) sent a basis of Fn to

zero. So, P (A) = ~0. �

Remark: Another way to prove the theorem is using vector spaces F n×n with dim(F n×n) = n2. So, A

is a vector in F n×n. So n + 1 vectors in F n×n is dependent. So I, A, A2, ..., An
2

is dependent. So, there
exists a polynomial annihilating A.

The degree of the annihilating polynomial is n2. In fact, the degree can be smaller.

Theorem 19 (Cayley-Hamilton Theorem). If f(t) is the characteristic polynomial of A, then
f(A) = 0.

Proof. Suppose fA(t) = det(A− tI) = (λ1 − t)k1(λ2 − t)k2 · · · (λp − t)kp .
If A is diagonalizable, (i.e., A = PDP−1), the proof is easy. Since f is a polynomial, f(A) =

Pf(D)P−1 = P


f(λ1) 0 · · · 0

0 f(λ1) · · · 0
...

...
. . .

...
0 0 · · · f(λp)

P−1 = P0P−1 = 0.

In general, we use Jordan normal forms decomposition A = PJP−1. We only need to show that
f(J) = 0.

f(J) =


f(Jλ1(k1)) 0 · · · 0

0 f(Jλ2(k2)) · · · 0
...

...
. . .

...
0 0 · · · f(Jλm(kp))


Each matrix f(Jλi(ki)) = (λ1I − Jλi(ki))k1 · · · (λiI − Jλi(ki))ki · · · (λpI − Jλi(ki))kp = 0, since (λiI −
Jλi(ki))

ki = 0 by Lemma 6 �

Wrong proof: f(t) = det(A− tI). So, f(A) = det(A− AI) = det(0) = 0. (Why?)

Application to computing powers Ak of matrix A using linear combinations of I, A, ..., An−1.
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6. Minimal polynomial

By Cayley-Hamilton Theorem, we know that we can find annihilating polynomial of A with degree ≤ n.

Definition 20. The smallest degree annihilating polynomial ofA is called the minimal polynomial
of A.

Theorem 21 (Minimal Polynomial Theorem). Consider F = C. The eigenvalues of A are the roots
of the minimal polynomial f(t) of A.

Corollary 22. The minimal polynomial f(t) of A has the form

f(t) = (t− λ1)p1(t− λ2)p2 · · · (t− λm)pm

where λ1, λ2, . . . , λm be the distinct eigenvalues of A and the exponents pk is the largest block size
for each eigenvalue..
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