Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

- Instructor: He Wang Email: he.wang@northeastern.edu
$\S 7$ Diagonalization; Eigenvalues; Eigenvectors;

Contents

1. Diagonalization 1
2. Eigenvalues 3
3. Review of Polynomials 5
4. More on Characteristic Polynomials 7
5. Eigenspaces 9
6. Complex Eigenvalues and Eigenvectors 11
7. Examples 12

1. Diagonalization

Let D be an diagonal matrix. The power D^{k} is easy to calculate. For example,

$$
D^{k}=\left[\begin{array}{cccc}
d_{1} & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 \\
0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & d_{4}
\end{array}\right]^{k}=\left[\begin{array}{cccc}
\left(d_{1}\right)^{k} & 0 & 0 & 0 \\
0 & \left(d_{2}\right)^{k} & 0 & 0 \\
0 & 0 & \left(d_{3}\right)^{k} & 0 \\
0 & 0 & 0 & \left(d_{4}\right)^{k}
\end{array}\right]
$$

Definition 1. An $n \times n$ matrix A is said to be diagonalizable if it is similar to a diagonal matrix D, that is, if there exists an invertible matrix P such that $A=P D P^{-1}$.

Powers of a diagonalizable matrix A are also easy to calculate:

$$
A^{k}=P D^{k} P^{-1}
$$

We see that A^{k} is similar to the diagonal matrix D^{k}, and hence also diagonalizable.

Question:

1. Are all $n \times n$ matrices A diagonalizable?
2. If a matrix A is diagonalizable, how to find the invertible matrix P and the diagonal matrix D ? The answer for this question is called diagonalize matrix A.

Solve $A=P D P^{-1}$. That is $A P=P D$. More explicitly (when $n=3$)
$A\left[\begin{array}{lll}\vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3}\end{array}\right]=\left[\begin{array}{lll}\vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3}\end{array}\right]\left[\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right]$
That is $\left[\begin{array}{lll}A \vec{b}_{1} & A \vec{b}_{2} & A \vec{b}_{3}\end{array}\right]=\left[\begin{array}{lll}d_{1} \vec{b}_{1} & d_{2} \vec{b}_{2} & d_{3} \vec{b}_{3}\end{array}\right]$
So, equivalently, we need to find numbers d_{1}, d_{2}, d_{3} and $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ satisfy
$A \vec{b}_{1}=d_{1} \vec{b}_{1}, A \overrightarrow{b_{2}}=d_{2} \vec{b}_{2}, A \vec{b}_{3}=d_{3} \vec{b}_{3}$. They are the same equation:

$$
A \vec{x}=d \vec{x}
$$

Remark: From the point of view of change of coordinates. Recall from $\S 4$ the meaning of similar matrices $A=P D P^{-1}$:

Let A be the matrix of a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Let $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis for \mathbb{R}^{n} and denote $P=\left[\vec{b}_{1} \ldots \vec{b}_{n}\right]$ the change of coordinate matrix. The matrix of T respect to basis \mathscr{B} is

$$
D=\left[\left[T\left(\vec{b}_{1}\right)\right]_{\mathscr{B}}\left[T\left(\vec{b}_{2}\right)\right]_{\mathscr{B}} \cdots \quad\left[T\left(\vec{b}_{n}\right)\right]_{\mathscr{B}}\right]
$$

Then, $A=P D P^{-1}$.

Example 2. Let T be the projection transformation onto a line $L=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\} \mathbb{R}^{3}$.
Find a basis $\mathscr{B}=\left[\begin{array}{ll}\vec{b}_{1} & \vec{b}_{2}\end{array} \vec{b}_{3}\right]$ for \mathbb{R}^{3} such that the \mathscr{B}-matrix of the T is the diagonal matrix $D=\left[\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right]$.

Method of Solution:

Step 1. Compare the columns of D. It is equivalent to find independent vectors $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ and numbers d_{1}, d_{2}, d_{3} such that

$$
T\left(\vec{b}_{1}\right)=d_{1}\left(\vec{b}_{1}\right), \quad T\left(\vec{b}_{2}\right)=d_{2}\left(\vec{b}_{2}\right), \quad T\left(\vec{b}_{2}\right)=d_{2}\left(\vec{b}_{2}\right)
$$

Step 2. Use the geometric properties of the transformation to find those vectors and numbers.

We need to find vectors $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ such that the projection $\operatorname{proj}_{L} \vec{b}_{i}$ is the scalar product of \vec{b}_{i}.
Let $\vec{b}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Then, $A \vec{b}_{1}=1 \vec{b}_{1}$. So, $d_{1}=1$.
Let $\vec{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$. Then, $A \vec{b}_{2}=\overrightarrow{0}=0 \vec{b}_{2}$. So, $d_{2}=0$.
Let $\vec{b}_{1}=\left[\begin{array}{c}3 \\ 0 \\ -1\end{array}\right]$. Then, $A \vec{b}_{3}=\overrightarrow{0}=0 \vec{b}_{3}$. So, $d_{3}=0$.

The key is to solve $T(\vec{x})=\lambda \vec{x}$ or equivalently $A \vec{x}=\lambda \vec{x}$.

2. Eigenvalues and Eigenvectors.

Consider a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by matrix $T \vec{x}=A \vec{x}$.

Definition 3. - An eigenvector of A is a nonzero n-dimensional vector \vec{x} such that

$$
A \vec{x}=\lambda \vec{x}
$$

for some (possibly complex) scalar λ.

- An eigenvalue of A is a (possibly complex) scalar λ for which there exists a nonzero vector \vec{x} such that $A \vec{x}=\lambda \vec{x}$. We say that \vec{x} is an eigenvector corresponding to λ.
- A basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathbb{R}^{n} is called an eigenbasis for A if the vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$ are eigenvectors of A.

Example 4. $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right], \vec{u}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], \vec{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
Example 5. If \vec{v} is an eigenvector of A corresponding to λ, is \vec{v} an eigenvector of A^{k} ?

Theorem 6. A is diagonalizable if and only if it has n linearly independent eigenvectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$ (eigenbasis).
In this case $A=P D P^{-1}$ where the columns of P are eigenvectors of A; the diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors given by the columns of P.

Proof. We already verified that system of equations $A \vec{b}_{1}=\lambda_{1} \vec{b}_{1}, A \vec{b}_{2}=\lambda_{2} \vec{b}_{2}, \ldots, A \vec{b}_{n}=\lambda_{n} \vec{b}_{n}$. is equivalent to matrix equation
where $P=\left[\begin{array}{lll}\vec{b}_{1} & \ldots & \vec{b}_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}d_{1} & 0 & \cdots & 0 \\ 0 & d_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n}\end{array}\right]$.
P is invertible if and only if $\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ is a basis of \mathbb{R}^{n}. In this case, $A=P D P^{-1}$ and A is diagonalizable.

Example 7. Write down all matrices A, P and D in Example 1.
Example 8. Let T be the rotation through an angle of $\pi / 2$ in the counterclock direction. So the matrix of T is $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Find all eigenvalues and eigenvectors of A. Is A diagonalizable?
Example 9. Find all possible real eigenvalues of an $n \times n$ orthogonal matrix.
Example 10. Which matrix has 0 as an eigenvalue?

2. Eigenvalues

- Recall that a (possibly comlex) scalar λ is an eigenvalue of A if $A \vec{x}=\lambda \vec{x}$ has a nonzero solution.
- Equivalently, $\left(A-\lambda I_{n}\right) \vec{x}=\overrightarrow{0}$ has a nonzero solution.
- Equivalently, $A-\lambda I_{n}$ is not invertible.
- Equivalently, the determinant of $A-\lambda I_{n}$ equals zero.

Hence, we have proved the following theorem.

Theorem 11 (The Characteristic Equation). Let A be an $n \times n$ matrix. A (possibly comlex) scalar λ is an eigenvalue of A if and only if

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

This last equation is called the characteristic equation of A.
Example 12. Finding Eigenvalues for the following matrices:

$$
A=\left[\begin{array}{ll}
2 & 5 \\
3 & 4
\end{array}\right] \quad B=\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]
$$

Theorem 13. The eigenvalues of a (upper or lower) triangular $n \times n$ matrix A equal the diagonal entries of A.

Proof. Suppose A is an upper triangular matrix.
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cccc}a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22}-\lambda & \cdots & a_{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n n}-\lambda\end{array}\right|=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)=0$ Hence, the
eigenvalues of A are $a_{i i}$ for $i=1, \ldots, n$.
Example 14. Finding Eigenvalues for the following matrices:

$$
A=\left[\begin{array}{ccc}
2 & 5 & \sqrt{2} \\
3 & 4 & 7 \\
0 & 0 & 3
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 4 & 0 \\
3 & 5 & 7
\end{array}\right]
$$

In general for a $n \times n$ matrix A,

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda
\end{array}\right| \\
& =\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)+\sum(\text { terms of degree } \leq(n-2)) \\
& =(-\lambda)^{n}-\left(a_{11}+a_{22}+\cdots+a_{n n}\right)(-\lambda)^{n-1}+\sum(\text { terms of degree } \leq(n-2))
\end{aligned}
$$

Definition 15 (Characteristic Polynomial). If A is an $n \times n$ matrix, the degree n polynomial

$$
f_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)
$$

is called the characteristic polynomial of A.

Example 16. Find the characteristic polynomial for a 2×2 arbitrary matrix.

Definition 17. Th sum of the diagonal entries of a square matrix is called the trace of A, denoted by $\operatorname{tr} A$.

Summarize Example 2: the characteristic polynomial for a $2 \times 2 A$:

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-(\operatorname{tr} A) \lambda+\operatorname{det}(A)
$$

More generally,

Theorem 18. Let A be an $n \times n$ matrix. Then the characteristic polynomial of A is

$$
f_{A}(\lambda)=\operatorname{det}(A-\lambda I)=(-\lambda)^{n}+(\operatorname{tr} A)(-\lambda)^{n-1}+\cdots+\operatorname{det}(A)
$$

Proof. The constant of the polynomial $=f_{A}(0)=\operatorname{det}(A)$

Remark: We have no formulas for the middle terms.

3. Review of Polynomials

Definition 19. - A polynomial with coefficients in field \mathbb{F} is a function $p: \mathbb{F} \rightarrow \mathbb{F}$ of the form

$$
p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}
$$

- If $a_{m} \neq 0$, we say that the polynomial $p(t)$ has degree n
- A number λ is called a root of the polynomial $p(t)$ if $p(\lambda)=0$.

Proposition 20. λ is root of a degree n polynomial $p(t)$ if and only if there is a degree $n-1$ polynomial $q(t)$ such that

$$
p(t)=(t-\lambda) q(t)
$$

Proof. Backward direction " \Leftarrow " is obvious. Let's show forward direction " \Rightarrow "
Since λ is root, we have $a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\cdots+a_{n} \lambda^{n}=0$.
So,

$$
\begin{aligned}
p(t) & =p(t)-a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\cdots+a_{n} \lambda^{n} \\
& =a_{1}(t-\lambda)+a_{2}\left(t^{2}-\lambda^{2}\right)+\cdots+a_{n}\left(t^{n}-\lambda^{n}\right) \\
& =(t-\lambda)\left[a_{1}+a_{2}(t+\lambda)+\cdots+a_{n}\left(t^{n-1}+t^{n-2} \lambda+\cdots+\lambda^{n-1}\right)\right] \\
& =(t-\lambda) q(t)
\end{aligned}
$$

Here $q(t)$ has degree $n-1$ since $a_{n} \neq 0$.

Proposition 21. A degree n polynomial has at most n (distinct) roots in \mathbb{F}.

Proof. From the above theorem by induction.

Proposition 22. If $a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}=0$ for all $t \in \mathbb{F}$, then $a_{0}=a_{1}=\cdots=a_{n}=0$.

Proof. Only zero polynomial $p=0$ has infinitely many solutions.

This means that $\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is independent in polynomial vector space P.

Proposition 23 (Division Algorithm). Suppose $p(t)$ and $q(t)$ are non-zero polynomials. There exists polynomials $r(t)$ and $s(t)$ such that

$$
p(t)=s(t) q(t)+r(t)
$$

and $\operatorname{deg}(r)<\operatorname{deg}(q)$.

Similar as integers, we can think this as divide $p(t)$ by $q(t)$ and the remainder is $r(t)$.

Theorem 24 (Fundamental Theorem of Algebra). Every polynomial $p(t)$ of degree $n \geq 1$ with complex coefficient has n roots. That is

$$
p(t)=a_{n}\left(t-z_{1}\right)\left(t-z_{2}\right) \cdots\left(t-z_{n}\right)
$$

The above factorization is unique if we do not count the order.

Proposition 25. Suppose $p(t)$ is a polynomial with real coefficients. If $z \in C$ is a root of $p(t)$, then the conjugate of z is also a root.

Proof. If $p(z)=0$, then take the conjugate of both sides, we have $\overline{p(z)}=0$ and hence $p(\bar{z})=0$ by properties of conjugate.

Theorem 26 (Real roots). Every polynomial $p(t)$ of degree $n \geq 1$ with real coefficient can be factorized as

$$
p(t)=a_{n}\left(t-c_{1}\right)\left(t-c_{2}\right) \cdots\left(t-c_{p}\right)\left(t^{2}+a_{1} t+b_{1}\right)\left(t^{2}+a_{2} t+b_{2}\right) \cdots\left(t^{2}+a_{m} t+b_{m}\right)
$$

where all numbers in the factorization are real numbers and $a_{i}^{2}<4 b_{i}$ for $i=1,2, \ldots, m$

Proof. First $p(t)=a_{n}\left(t-z_{1}\right)\left(t-z_{2}\right) \cdots\left(t-z_{n}\right)$ has been factored as complex roots. Since complex roots come in pairs for real polynomials. Suppose $z=a+b i$ is a root, then $p(t)$ contains a real polynomial factor $(t-z)(t-\bar{z})=t^{2}-2 a t+|z|^{2}$.

Proposition 27 (Rational roots). Let $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}$ be a polynomial of degree $n \geq 1$ with integer coefficient. Suppose rational number $\frac{p}{q}$ is a root of $p(t)$ such that $(p, q)=1$, then $p \mid a_{0}$ and $q \mid a_{n}$.

4. More on Characteristic Polynomials

Definition 28 (Algebraic Multiplicity). An eigenvalue λ_{0} of A is said to have algebraic multiplicity k if it has multiplicity k as a root of the characteristic polynomial $f_{A}(t)$. Equivalently,

$$
f_{A}(\lambda)=\left(\lambda_{0}-\lambda\right)^{k} g(\lambda)
$$

such that $g\left(\lambda_{0}\right) \neq 0$.

Theorem 29. An $n \times n$ matrix has at most n eigenvalues, even counted with algebraic multiplicities.
Example 30. Find all eigenvalues and their algebraic multiplicities of $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
Example 31. Find the characteristic polynomial of $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1\end{array}\right]$. Which of the following numbers 1, $-1,4$ are eigenvalues of A ?
Example 32. Find the characteristic polynomial of $A=\left[\begin{array}{ccc}2 & 1 & 2 \\ -1 & 4 & 2 \\ -1 & 1 & 5\end{array}\right]$. Verify that 3 and 5 are eigenvalues.

Theorem 33. Let A be an $n \times n$ matrix. Suppose A has n eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, (listed with algebraic multiplicities.) Then

$$
\operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}
$$

and

$$
\operatorname{tr} A=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}
$$

This theorem comes from

$$
f_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)
$$

Theorem 34 (On Eigenvalues of Similar Matrices). If A and B are similar, i.e., $A=P B P^{-1}$, then they have the same characteristic polynomial, i.e. $f_{A}(\lambda)=f_{B}(\lambda)$, and hence the same eigenvalues with the same multiplicities.

Proof. $f_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(P B P^{-1}-\lambda I\right)=\operatorname{det}\left(P(B-\lambda I) P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(B-$ $\lambda I) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}(B-\lambda I)=f_{B}(\lambda)$. So, A and B have the same characteristic polynomial.

If A and B are similar, we also have
$\operatorname{rank}(A)=\operatorname{rank}(B), \operatorname{det}(A)=\operatorname{det}(B), \operatorname{tr}(A)=\operatorname{tr}(B)$.
The converse of the preceding theorem is not generally true. There do exist matrices with the same characteristic polynomial that are not similar matrices. See example later.

Proposition 35. If A and B are similar, we also have $\operatorname{det}(A)=\operatorname{det}(B), \operatorname{tr}(A)=\operatorname{tr}(B)$.

Proof. Proof. Since determinant and trace are determined by characteristic polynomial, so we get the result by the above theorem.

Proposition 36. If A and B are similar, then $\operatorname{rank}(A)=\operatorname{rank}(B)$.

Proof. $A=P B P^{-1}$. Multiplying an invertible matrix does not change the rank. So, $\operatorname{rank}(A)=$ $\operatorname{rank}(B)$.

Example 37. $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ are not similar, but they have the same rank, the same determinant, the same trace, the same eigenvalues.

If B similar to $A=I$, then $B=P A P^{-1}=I$ which is a contradiction.

Example 38. Are the following two matrices similar to each other? $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{ll}3 & 5 \\ 2 & 3\end{array}\right]$
$\operatorname{tr}(A)=5$ but $\operatorname{tr}(B)=6$
$|A|=2$ but $|B|=-1$

Warning: Similar matrices may have different eigenvectors.
Think about Example 1 in $\S 7.1$. The projection matrix $A=\frac{1}{14}\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right]$ is similar to $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\vec{b}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$ is an eigenvector of D but it is not an eigenvector of A.

5. Eigenspaces

Theorem 39. Let A be an $n \times n$ matrix. A scalar λ is an eigenvalue for A if and only if the matrix equation

$$
\left(A-\lambda I_{n}\right) \vec{x}=\overrightarrow{0}
$$

has a nontrivial solution \vec{x}.
Said differently, λ is an eigenvalue for A if and only if

$$
\operatorname{Nul}\left(A-\lambda I_{n}\right) \neq\{\overrightarrow{0}\} .
$$

Definition 40. Let A be an $n \times n$ matrix and λ be a eigenvalue of A. The set of all eigenvectors of A corresponding to λ together with the zero vector, is called the eigenspace of A corresponding to λ, and it equals the subspace

$$
\operatorname{Nul}\left(A-\lambda I_{n}\right)
$$

The dimension of $\operatorname{Nul}\left(A-\lambda I_{n}\right)$ is called the geometric multiplicity of λ. (G.m. (λ))

Proposition 41. $1 \leq$ Geometric multiplicity of $\lambda \leq$ Algebraic multiplicity of $\lambda \leq n$.

Proof. There is at least one eigenvector(non-zero). So, $1 \leq$ Geometric multiplicity of λ.
Suppose the geometric multiplicity of $\lambda=k$. Then $\operatorname{Nul}\left(A-\lambda I_{n}\right)$ has a basis $\vec{v}_{1}, \ldots, \vec{v}_{k}$. Let $B=S^{-1} A S$, where the first k columns of S are $\vec{v}_{1}, \ldots, \vec{v}_{k}$. Hence,

$$
B=\left[\begin{array}{cc}
\lambda I_{k} & * \\
\mathbf{0} & *
\end{array}\right]
$$

Since A and B are similar, so they have the same eigenvalues. It is clear that Algebraic multiplicity of λ in B is at least k.

Example 42. Let T be the projection transformation onto a line $L=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\} \mathbb{R}^{3}$. Explain the geometric meaning of the eigenvalues and eigenspaces.
Example 43. Find all eigenvalues and the corresponding eigenspaces of $A=\left[\begin{array}{ccc}4 & -1 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & 2\end{array}\right]$

Lemma 44. Let A be an $n \times n$ matrix and let $\vec{v}_{1}, \ldots, \vec{v}_{p}$ be eigenvectors of A that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$ respectively. Then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a linearly independent set of vectors.

Proof. We prove this by induction on p. If $p=1$, it is clear. Suppose this is true for $p-1$ vectors. Multiply A to $a_{1} \vec{v}_{1}+\cdots+a_{p} \vec{v}_{p}=0$, we have $a_{1} \lambda_{1} \vec{v}_{1}+\cdots+a_{p} \lambda_{p} \vec{v}_{p}=0$.
Multiply λ_{1} to $a_{1} \vec{v}_{1}+\cdots+a_{p} \vec{v}_{p}=0$, we have $a_{1} \lambda_{1} \vec{v}_{1}+\cdots+a_{p} \lambda_{1} \vec{v}_{p}=0$.
The difference of this two equation is

$$
a_{2}\left(\lambda_{2}-\lambda_{1}\right) \vec{v}_{2}+\cdots+a_{p}\left(\lambda_{p}-\lambda_{1}\right) \vec{v}_{p}=0
$$

From the induction, we have $a_{2}\left(\lambda_{2}-\lambda_{1}\right)=0, \ldots, a_{p}\left(\lambda_{p}-\lambda_{1}\right)=0$. So, $a_{2}=a_{3}=\cdots=a_{p}=0$.
Plug in back, we have $a_{1} \vec{v}_{1}=0$. So $a_{1}=0$.

Lemma 45. Let A be an $n \times n$ matrix and let $\lambda_{1}, \ldots, \lambda_{p}$ be distinct eigenvalues with corresponding independent set of eigenvectors V_{1}, \ldots, V_{p}. Then $V_{1} \cup \cdots \cup V_{p}$ is a linearly independent set of vectors.

Proof. The proof is similar as the above lemma, by induction on p.

Recall that an $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors. (eigenbasis.) In this case $A=P D P^{-1}$ where the columns of P are eigenvectors of A; the diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors given by the columns of P.

Proposition 46 (Case of Distinct Eigenvalues). If an $n \times n$ matrix A has n distinct eigenvalues, then its corresponding eigenvectors are linearly independent and accordingly A is diagonalizable.

Theorem 47. Let A be an $n \times n$ matrix with distinct real eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$ such that

$$
f_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)^{k_{1}}\left(\lambda_{2}-\lambda\right)^{k_{2}} \cdots\left(\lambda_{p}-\lambda\right)^{k_{p}}
$$

Suppose $k_{1}+k_{2}+\cdots+k_{p}=n$. Let E_{k} be the eigenspace of λ_{k}.
(1) Suppose B_{k} is a basis for $E_{k} . A$ is diagonalizable if and only if $B=B_{1} \cup \cdots \cup B_{p}$ is an eigen-basis for A.
(2) A is diagonalizable if and only if

$$
\operatorname{dim} E_{1}+\cdots+\operatorname{dim} E_{p}=n
$$

This equality is satisfied if and only if $\operatorname{dim}\left(E_{i}\right)=k_{i}$ for each $i=1, \ldots, p$

Proof. A is diagonalizable if and only if it has n linearly independent eigenvectors.
Proof of " \Rightarrow " of (1): For each E_{i}, at most we can choose k_{i} independent eigenvectors, since g.m. $\left(\lambda_{k}\right) \leq$ a.m. $\left(\lambda_{k}\right)=k_{i}$. Since A has n linearly independent eigenvectors, g.m. $\left(\lambda_{k}\right)=k_{i}$. So, $|B|=n$. We know that B is independent.
" \Leftarrow " of (1) is clear.
(2) follows from (1).

Remark: The theorem is also true if we state everything over \mathbb{C}, where we don't need the assumptions.
Another point of view of the eigenspaces is the invariant subspace.

Definition 48. Let $T: V \rightarrow V$ be a linear transformation on a vector space V. A subspace $W \subseteq V$ is said to be invariant under T if $T(\vec{w}) \in W$ whenever $w \in W$.

Proposition 49. A one-dimensional subspace is invariant under the linear transformation T_{A} if and only if it is an eigenspace spanned by an eigenvector of A.

Theorem 50. An $n \times n$ matrix A is similar to a diagonal matrix D, (i.e., $\left.A=P D P^{-1}\right)$ if and only if there exists a decomposition of $\mathbb{F}^{n}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$ such that each V_{i} is one dimensional and invariant under T_{A}.

Example 51. Diagonalizing Matrix $A=\left[\begin{array}{ccc}4 & -1 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & 2\end{array}\right]$
Example 52. Diagonalizing Matrix $A=\left[\begin{array}{lll}5 & 1 & 0 \\ 2 & 4 & 0 \\ 2 & 1 & 3\end{array}\right]$

Remark[Non Diagonalizing Result] For any $n>1$ there exist examples of $n \times n$ matrices that are not diagonalizable.
Example 53. For any $n>1$, find examples of $n \times n$ non-diagonalizable matrices.
Example 54. Diagonalizing the matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1\end{array}\right]$. We already know that $1,-1,4$ are eigenvalues of A.
Example 55. Diagonalizing the matrix $A=\left[\begin{array}{ccc}2 & 1 & 2 \\ -1 & 4 & 2 \\ -1 & 1 & 5\end{array}\right]$. We already know that 3 and 5 are eigenvalues of A.

6. Complex Eigenvalues and Eigenvectors

We list some basic knowledge of complex numbers.

- Just as \mathbb{R} denotes the set of real numbers, we will use \mathbb{C} to denote the set of complex numbers $z=a+i b$. Here $i=\sqrt{-1}$, and a and b are real numbers called/denoted

$$
\begin{aligned}
& a=\operatorname{Re}(z)=\text { real part of } z \\
& b=\operatorname{Im}(z)=\text { imaginary part of } z
\end{aligned}
$$

- The complex conjugate of $z=a+b i \in \mathbb{C}$ is $\bar{z}:=a-b i$
- The absolute value of z is $|z|=\sqrt{a^{2}+b^{2}}$.
- $z \bar{z}=|z|^{2}$

Similarly to \mathbb{R}^{n} denoting n-dimensional real vectors (that is $n \times 1$ matrices with real number entries), so \mathbb{C}^{n} shall denote n-dimensional complex vectors, that is $n \times 1$ matrices with complex number entries.

If A is an $m \times n$ matrix and $\vec{x} \in \mathbb{C}^{n}$ an n-dimensional complex vector, then $A \vec{x}$ is defined in exactly the same way as it is in the case of a real n-dimensional vector \vec{x}. We extend the notion of an eigenvector of a given eigenvalue λ (real or complex) of an $n \times n$ matrix A be any nonzero vector $\vec{x} \in \mathbb{C}^{n}$ such that $A \vec{x}=\lambda \vec{x}$.

Remark 56. Let A be a real $n \times n$ matrix and λ be an eigenvalue of A.

- If λ is a real number, then there exist real eigenvectors associate to λ, as well as complex eigenvector.
- If λ is a complex (non-real) eigenvalue of A, then every eigenvector \vec{x} associated to λ is a complex (non-real) vector.

Real and Imaginary Parts of Vectors

Definition 57. Let $\vec{x} \in \mathbb{C}^{n}$ be a complex n-dimensional vector.

- The complex conjugate vector $\overline{\vec{x}}$ of \vec{x} is the vector made up from the complex conjugate entries of \vec{x}.
- The real part of \vec{x}, denoted $\operatorname{Re}(\vec{x})$ is the (real) vector consisting of the real parts of the entries of \vec{x}.
- The imaginary part of \vec{x}, denoted $\operatorname{Im}(\vec{x})$ is the (real) vector consisting of the imaginary parts of the entries of \vec{x}.
Note that

$$
\vec{x}=\operatorname{Re}(\vec{x})+i \cdot \operatorname{Im}(\vec{x}) \quad \text { and } \quad \overline{\vec{x}}=\operatorname{Re}(\vec{x})-i \cdot \operatorname{Im}(\vec{x}) .
$$

Remark 58. Replacing the complex vector \vec{x} from the previous definition by a complex $m \times n$ matrix A, leads to the

- Complex conjugate matrix \bar{A}.
- Real part $\operatorname{Re}(A)$ of A.
- Imaginary part $\operatorname{Im}(A)$ of A.

The analogues of above equations apply, in addition to

$$
\overline{\lambda \cdot \vec{x}}=\bar{\lambda} \cdot \overline{\vec{x}}, \quad \overline{A \cdot \vec{x}}=\bar{A} \cdot \overline{\vec{x}}, \quad \overline{A \cdot B}=\bar{A} \cdot \bar{B}
$$

Example 59 (Complex Conjugate Vectors/Matrices).

Real Matrices Acting on \mathbb{C}^{n}

Suppose A is an $n \times n$ matrix with real number entries so that $\bar{A}=A$. Let λ be a complex eigenvalue of A with associated eigenvector \vec{x}. Then

$$
\begin{aligned}
& \overline{A \cdot \vec{x}}=\bar{A} \cdot \overline{\vec{x}}=A \cdot \overline{\vec{x}} \\
& \overline{A \cdot \vec{x}}=\overline{\vec{\lambda} \cdot \overline{\vec{x}}}=\bar{\lambda} \cdot \overline{\vec{x}}
\end{aligned}
$$

Combining the two we obtain

$$
A \cdot \overline{\vec{x}}=\bar{\lambda} \cdot \overline{\vec{x}}
$$

Theorem 60. Let A be an $n \times n$ matrix with real number entries and let λ be an eigenvalue of A with associated eigenvector \vec{x}. Then $\bar{\lambda}$ is also an eigenvalue of A with associated eigenvector $\overline{\vec{x}}$.

