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1. Diagonalization

Let D be an diagonal matrix. The power Dk is easy to calculate. For example,

Dk =


d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4


k

=


(d1)

k 0 0 0
0 (d2)

k 0 0
0 0 (d3)

k 0
0 0 0 (d4)

k



Definition 1. An n× n matrix A is said to be diagonalizable if it is similar to a diagonal matrix
D, that is, if there exists an invertible matrix P such that A = PDP−1.

Powers of a diagonalizable matrix A are also easy to calculate:

Ak = PDkP−1

We see that Ak is similar to the diagonal matrix Dk, and hence also diagonalizable.

Question:

1. Are all n× n matrices A diagonalizable?
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2. If a matrix A is diagonalizable, how to find the invertible matrix P and the diagonal matrix D? The
answer for this question is called diagonalize matrix A.

Solve A = PDP−1. That is AP = PD. More explicitly (when n = 3)

A[~b1 ~b2 ~b3] = [~b1 ~b2 ~b3]

d1 0 0
0 d2 0
0 0 d3


That is [A~b1 A~b2 A~b3] = [d1~b1 d2~b2 d3~b3]

So, equivalently, we need to find numbers d1, d2, d3 and ~b1,~b2,~b3 satisfy

A~b1 = d1~b1, A~b2 = d2~b2, A~b3 = d3~b3. They are the same equation:

A~x = d~x

Remark: From the point of view of change of coordinates. Recall from §4 the meaning of similar matrices
A = PDP−1:

Let A be the matrix of a transformation T : Rn → Rn. Let B = {~b1, . . . ,~bn} be a basis for Rn and denote

P = [~b1 . . .~bn] the change of coordinate matrix. The matrix of T respect to basis B is

D =
[
[T (~b1)]B [T (~b2)]B · · · [T (~bn)]B

]
Then, A = PDP−1.

Example 2. Let T be the projection transformation onto a line L = Span{

1
2
3

} R3.

Find a basis B = [~b1 ~b2 ~b3] for R3 such that the B-matrix of the T is the diagonal matrix D =

d1 0 0
0 d2 0
0 0 d3

.

Method of Solution:

Step 1. Compare the columns of D. It is equivalent to find independent vectors ~b1,~b2,~b3 and numbers
d1, d2, d3 such that

T (~b1) = d1(~b1), T (~b2) = d2(~b2), T (~b2) = d2(~b2)

Step 2. Use the geometric properties of the transformation to find those vectors and numbers.

We need to find vectors ~b1,~b2,~b3 such that the projection projL~bi is the scalar product of ~bi.

Let ~b1 =

1
2
3

. Then, A~b1 = 1~b1. So, d1 = 1.

Let ~b1 =

 2
−1
0

. Then, A~b2 = ~0 = 0~b2. So, d2 = 0.

Let ~b1 =

 3
0
−1

. Then, A~b3 = ~0 = 0~b3. So, d3 = 0.

Page 2



The key is to solve T (~x) = λ~x or equivalently A~x = λ~x.

2. Eigenvalues and Eigenvectors.

Consider a linear transformation T : Rn → Rn by matrix T~x = A~x.

Definition 3. • An eigenvector of A is a nonzero n-dimensional vector ~x such that

A~x = λ~x

for some (possibly complex) scalar λ.
• An eigenvalue of A is a (possibly complex) scalar λ for which there exists a nonzero vector
~x such that A~x = λ~x. We say that ~x is an eigenvector corresponding to λ.

• A basis ~b1, . . . ,~bn of Rn is called an eigenbasis for A if the vectors ~b1, . . . ,~bn are eigenvectors
of A.

Example 4. A =

[
3 −2
1 0

]
, ~u =

[
−1
1

]
, ~v =

[
2
1

]
Example 5. If ~v is an eigenvector of A corresponding to λ, is ~v an eigenvector of Ak?

Theorem 6. A is diagonalizable if and only if it has n linearly independent eigenvectors ~b1, . . . ,~bn
(eigenbasis).
In this case A = PDP−1 where the columns of P are eigenvectors of A; the diagonal entries of D
are the eigenvalues of A corresponding to the eigenvectors given by the columns of P .

Proof. We already verified that system of equations A~b1 = λ1~b1, A~b2 = λ2~b2, . . . , A~bn = λn~bn. is
equivalent to matrix equation

AP = PD

where P = [~b1 . . . ~bn] and D =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

.

P is invertible if and only if {~b1, . . . ,~bn} is a basis of Rn. In this case, A = PDP−1 and A is
diagonalizable.

�

Example 7. Write down all matrices A, P and D in Example 1.

Example 8. Let T be the rotation through an angle of π/2 in the counterclock direction. So the matrix

of T is A =

[
0 −1
1 0

]
. Find all eigenvalues and eigenvectors of A. Is A diagonalizable?

Example 9. Find all possible real eigenvalues of an n× n orthogonal matrix.

Example 10. Which matrix has 0 as an eigenvalue?

2. Eigenvalues

Let A be an n× n matrix.
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• Recall that a (possibly comlex) scalar λ is an eigenvalue of A if A~x = λ~x has a nonzero solution.

• Equivalently, (A− λIn)~x = ~0 has a nonzero solution.
• Equivalently, A− λIn is not invertible.
• Equivalently, the determinant of A− λIn equals zero.

Hence, we have proved the following theorem.

Theorem 11 (The Characteristic Equation). Let A be an n× n matrix. A (possibly comlex) scalar
λ is an eigenvalue of A if and only if

det(A− λIn) = 0

This last equation is called the characteristic equation of A.

Example 12. Finding Eigenvalues for the following matrices:

A =

[
2 5
3 4

]
B =

[
2 1
−1 4

]

Theorem 13. The eigenvalues of a (upper or lower) triangular n× n matrix A equal the diagonal
entries of A.

Proof. Suppose A is an upper triangular matrix.

det(A − λI) =

∣∣∣∣∣∣∣∣
a11 − λ a12 · · · a1n

0 a22 − λ · · · a2n
...

...
...

...
0 0 · · · ann − λ

∣∣∣∣∣∣∣∣ = (a11 − λ)(a22 − λ) · · · (ann − λ) = 0 Hence, the

eigenvalues of A are aii for i = 1, ..., n. �

Example 14. Finding Eigenvalues for the following matrices:

A =

2 5
√

2
3 4 7
0 0 3

 B =

 2 1 0
−1 4 0
3 5 7


In general for a n× n matrix A,

det(A− λI) =

∣∣∣∣∣∣∣∣
a11 − λ a12 · · · a1n
a21 a22 − λ · · · a2n
...

...
...

...
an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣
= (a11 − λ)(a22 − λ) · · · (ann − λ) +

∑
( terms of degree ≤ (n− 2))

= (−λ)n − (a11 + a22 + · · ·+ ann)(−λ)n−1 +
∑

( terms of degree ≤ (n− 2))

Definition 15 (Characteristic Polynomial ). If A is an n× n matrix, the degree n polynomial

fA(λ) = det(A− λIn)

is called the characteristic polynomial of A.
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Example 16. Find the characteristic polynomial for a 2× 2 arbitrary matrix.

Definition 17. Th sum of the diagonal entries of a square matrix is called the trace of A, denoted
by trA.

Summarize Example 2: the characteristic polynomial for a 2× 2 A:

det(A− λI) = λ2 − (trA)λ+ det(A)

More generally,

Theorem 18. Let A be an n× n matrix. Then the characteristic polynomial of A is

fA(λ) = det(A− λI) = (−λ)n + (trA)(−λ)n−1 + · · ·+ det(A).

Proof. The constant of the polynomial = fA(0) = det(A) �

Remark: We have no formulas for the middle terms.

3. Review of Polynomials

Definition 19. • A polynomial with coefficients in field F is a function p : F → F of the
form

p(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n.

• If am 6= 0, we say that the polynomial p(t) has degree n
• A number λ is called a root of the polynomial p(t) if p(λ) = 0.

Proposition 20. λ is root of a degree n polynomial p(t) if and only if there is a degree n − 1
polynomial q(t) such that

p(t) = (t− λ)q(t)

Proof. Backward direction“⇐” is obvious. Let’s show forward direction “⇒”
Since λ is root, we have a0 + a1λ+ a2λ

2 + · · ·+ anλ
n = 0.

So,

p(t) = p(t)− a0 + a1λ+ a2λ
2 + · · ·+ anλ

n

= a1(t− λ) + a2(t
2 − λ2) + · · ·+ an(tn − λn)

= (t− λ)
[
a1 + a2(t+ λ) + · · ·+ an(tn−1 + tn−2λ+ · · ·+ λn−1)

]
= (t− λ)q(t)

Here q(t) has degree n− 1 since an 6= 0. �
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Proposition 21. A degree n polynomial has at most n (distinct) roots in F.

Proof. From the above theorem by induction. �

Proposition 22. If a0 + a1t+ a2t
2 + · · ·+ ant

n = 0 for all t ∈ F, then a0 = a1 = · · · = an = 0.

Proof. Only zero polynomial p = 0 has infinitely many solutions. �

This means that {1, t, t2, . . . , tn} is independent in polynomial vector space P .

Proposition 23 (Division Algorithm). Suppose p(t) and q(t) are non-zero polynomials. There exists
polynomials r(t) and s(t) such that

p(t) = s(t)q(t) + r(t)

and deg(r) < deg(q).

Similar as integers, we can think this as divide p(t) by q(t) and the remainder is r(t).

Theorem 24 (Fundamental Theorem of Algebra). Every polynomial p(t) of degree n ≥ 1 with
complex coefficient has n roots. That is

p(t) = an(t− z1)(t− z2) · · · (t− zn)

The above factorization is unique if we do not count the order.

Proposition 25. Suppose p(t) is a polynomial with real coefficients. If z ∈ C is a root of p(t), then
the conjugate of z is also a root.

Proof. If p(z) = 0, then take the conjugate of both sides, we have p(z) = 0 and hence p(z̄) = 0 by
properties of conjugate. �

Theorem 26 (Real roots). Every polynomial p(t) of degree n ≥ 1 with real coefficient can be
factorized as

p(t) = an(t− c1)(t− c2) · · · (t− cp)(t2 + a1t+ b1)(t
2 + a2t+ b2) · · · (t2 + amt+ bm)

where all numbers in the factorization are real numbers and a2i < 4bi for i = 1, 2, ...,m

Proof. First p(t) = an(t− z1)(t− z2) · · · (t− zn) has been factored as complex roots. Since complex
roots come in pairs for real polynomials. Suppose z = a + bi is a root, then p(t) contains a real
polynomial factor (t− z)(t− z̄) = t2 − 2at+ |z|2. �
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Proposition 27 (Rational roots). Let p(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n be a polynomial of degree

n ≥ 1 with integer coefficient. Suppose rational number
p

q
is a root of p(t) such that (p, q) = 1, then

p|a0 and q|an.

4. More on Characteristic Polynomials

Definition 28 ( Algebraic Multiplicity). An eigenvalue λ0 of A is said to have algebraic multi-
plicity k if it has multiplicity k as a root of the characteristic polynomial fA(t). Equivalently,

fA(λ) = (λ0 − λ)kg(λ)

such that g(λ0) 6= 0.

Theorem 29. An n×n matrix has at most n eigenvalues, even counted with algebraic multiplicities.

Example 30. Find all eigenvalues and their algebraic multiplicities of A =

1 1 1
1 1 1
1 1 1


Example 31. Find the characteristic polynomial of A =

1 1 2
1 2 1
2 1 1

. Which of the following numbers 1,

−1, 4 are eigenvalues of A?

Example 32. Find the characteristic polynomial of A =

 2 1 2
−1 4 2
−1 1 5

. Verify that 3 and 5 are eigenvalues.

Theorem 33. Let A be an n × n matrix. Suppose A has n eigenvalues λ1, λ2, . . . , λn, (listed with
algebraic multiplicities. ) Then

det(A) = λ1λ2 · · ·λn
and

trA = λ1 + λ2 + · · ·+ λn

This theorem comes from

fA(λ) = det(A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ)

Theorem 34 (On Eigenvalues of Similar Matrices). If A and B are similar, i.e., A = PBP−1, then
they have the same characteristic polynomial, i.e. fA(λ) = fB(λ), and hence the same eigenvalues
with the same multiplicities.

Proof. fA(λ) = det(A − λI) = det(PBP−1 − λI) = det(P (B − λI)P−1) = det(P ) det(B −
λI) det(P−1) = det(B − λI) = fB(λ). So, A and B have the same characteristic polynomial. �
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If A and B are similar, we also have
rank(A) = rank(B), det(A) = det(B), tr(A) = tr(B).

The converse of the preceding theorem is not generally true. There do exist matrices with the same
characteristic polynomial that are not similar matrices. See example later.

Proposition 35. If A and B are similar, we also have det(A) = det(B), tr(A) = tr(B).

Proof. Proof. Since determinant and trace are determined by characteristic polynomial, so we get
the result by the above theorem. �

Proposition 36. If A and B are similar, then rank(A) = rank(B).

Proof. A = PBP−1. Multiplying an invertible matrix does not change the rank. So, rank(A) =
rank(B). �

Example 37. A =

[
1 0
0 1

]
and B =

[
1 1
0 1

]
are not similar, but they have the same rank, the same

determinant, the same trace, the same eigenvalues.

If B similar to A = I, then B = PAP−1 = I which is a contradiction.

Example 38. Are the following two matrices similar to each other? A =

[
2 4
1 3

]
, B =

[
3 5
2 3

]

tr(A) = 5 but tr(B) = 6
|A| = 2 but |B| = −1

Warning: Similar matrices may have different eigenvectors.

Think about Example 1 in §7.1. The projection matrix A =
1

14

1 2 3
2 4 6
3 6 9

 is similar to D =

1 0 0
0 0 0
0 0 0



~b =

2
0
0

 is an eigenvector of D but it is not an eigenvector of A.
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5. Eigenspaces

Theorem 39. Let A be an n×n matrix. A scalar λ is an eigenvalue for A if and only if the matrix
equation

(A− λIn)~x = ~0

has a nontrivial solution ~x.
Said differently, λ is an eigenvalue for A if and only if

Nul(A− λIn) 6= {~0}.

Definition 40. Let A be an n × n matrix and λ be a eigenvalue of A. The set of all eigenvectors
of A corresponding to λ together with the zero vector, is called the eigenspace of A corresponding
to λ, and it equals the subspace

Nul(A− λIn).

The dimension of Nul(A− λIn) is called the geometric multiplicity of λ. (G.m.(λ))

Proposition 41. 1≤ Geometric multiplicity of λ ≤ Algebraic multiplicity of λ ≤ n .

Proof. There is at least one eigenvector(non-zero). So, 1≤ Geometric multiplicity of λ.
Suppose the geometric multiplicity of λ = k. Then Nul(A − λIn) has a basis ~v1, . . . , ~vk. Let
B = S−1AS, where the first k columns of S are ~v1, . . . , ~vk. Hence,

B =

[
λIk ∗
0 ∗

]
Since A and B are similar, so they have the same eigenvalues. It is clear that Algebraic multiplicity
of λ in B is at least k. �

Example 42. Let T be the projection transformation onto a line L = Span{

1
2
3

} R3. Explain the

geometric meaning of the eigenvalues and eigenspaces.

Example 43. Find all eigenvalues and the corresponding eigenspaces of A =

4 −1 0
2 1 0
2 −1 2



Lemma 44. Let A be an n × n matrix and let ~v1, . . . , ~vp be eigenvectors of A that correspond to
distinct eigenvalues λ1, . . . , λp respectively. Then {~v1, . . . , ~vp} is a linearly independent set of vectors.

Proof. We prove this by induction on p. If p = 1, it is clear. Suppose this is true for p− 1 vectors.
Multiply A to a1~v1 + · · ·+ ap~vp = 0, we have a1λ1~v1 + · · ·+ apλp~vp = 0.
Multiply λ1 to a1~v1 + · · ·+ ap~vp = 0, we have a1λ1~v1 + · · ·+ apλ1~vp = 0.
The difference of this two equation is

a2(λ2 − λ1)~v2 + · · ·+ ap(λp − λ1)~vp = 0

From the induction, we have a2(λ2 − λ1) = 0, . . . , ap(λp − λ1) = 0. So, a2 = a3 = · · · = ap = 0.
Plug in back, we have a1~v1 = 0. So a1 = 0. �
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Lemma 45. Let A be an n× n matrix and let λ1, . . . , λp be distinct eigenvalues with corresponding
independent set of eigenvectors V1, . . . , Vp. Then V1 ∪ · · · ∪ Vp is a linearly independent set of
vectors.

Proof. The proof is similar as the above lemma, by induction on p. �

Recall that an n × n matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.
(eigenbasis.) In this case A = PDP−1 where the columns of P are eigenvectors of A; the diagonal entries
of D are the eigenvalues of A corresponding to the eigenvectors given by the columns of P .

Proposition 46 (Case of Distinct Eigenvalues). If an n× n matrix A has n distinct eigenvalues,
then its corresponding eigenvectors are linearly independent and accordingly A is diagonalizable.

Theorem 47. Let A be an n× n matrix with distinct real eigenvalues λ1, . . . , λp such that

fA(λ) = det(A− λI) = (λ1 − λ)k1(λ2 − λ)k2 · · · (λp − λ)kp .

Suppose k1 + k2 + · · ·+ kp = n. Let Ek be the eigenspace of λk.

(1) Suppose Bk is a basis for Ek. A is diagonalizable if and only if B = B1 ∪ · · · ∪ Bp is an
eigen-basis for A.

(2) A is diagonalizable if and only if

dimE1 + · · ·+ dimEp = n.

This equality is satisfied if and only if dim(Ei) = ki for each i = 1, . . . , p

Proof. A is diagonalizable if and only if it has n linearly independent eigenvectors.
Proof of “⇒” of (1): For each Ei, at most we can choose ki independent eigenvectors, since g.m.(λk)≤
a.m.(λk)=ki. Since A has n linearly independent eigenvectors, g.m.(λk)=ki. So, |B| = n. We know
that B is independent.
“⇐” of (1) is clear.
(2) follows from (1). �

Remark: The theorem is also true if we state everything over C, where we don’t need the assumptions.

Another point of view of the eigenspaces is the invariant subspace.

Definition 48. Let T : V → V be a linear transformation on a vector space V . A subspace W ⊆ V
is said to be invariant under T if T (~w) ∈ W whenever w ∈ W .

Proposition 49. A one-dimensional subspace is invariant under the linear transformation TA if
and only if it is an eigenspace spanned by an eigenvector of A.
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Theorem 50. An n×n matrix A is similar to a diagonal matrix D, (i.e., A = PDP−1) if and only
if there exists a decomposition of Fn = V1 ⊕ V2 ⊕ · · · ⊕ Vn such that each Vi is one dimensional and
invariant under TA.

Example 51. Diagonalizing Matrix A =

4 −1 0
2 1 0
2 −1 2


Example 52. Diagonalizing Matrix A =

5 1 0
2 4 0
2 1 3


Remark[Non Diagonalizing Result] For any n > 1 there exist examples of n × n matrices that are not
diagonalizable.

Example 53. For any n > 1, find examples of n× n non-diagonalizable matrices.

Example 54. Diagonalizing the matrix A =

1 1 2
1 2 1
2 1 1

. We already know that 1, −1, 4 are eigenvalues

of A.

Example 55. Diagonalizing the matrix A =

 2 1 2
−1 4 2
−1 1 5

. We already know that 3 and 5 are eigenvalues

of A.

6. Complex Eigenvalues and Eigenvectors

We list some basic knowledge of complex numbers.

• Just as R denotes the set of real numbers, we will use C to denote the set of complex numbers
z = a+ ib. Here i =

√
−1, and a and b are real numbers called/denoted

a = Re(z) = real part of z
b = Im(z) = imaginary part of z

• The complex conjugate of z = a+ bi ∈ C is z̄ := a− bi
• The absolute value of z is |z| =

√
a2 + b2.

• zz̄ = |z|2

Similarly to Rn denoting n-dimensional real vectors (that is n× 1 matrices with real number entries), so
Cn shall denote n-dimensional complex vectors, that is n× 1 matrices with complex number entries.

If A is an m × n matrix and ~x ∈ Cn an n-dimensional complex vector, then A~x is defined in exactly the
same way as it is in the case of a real n-dimensional vector ~x. We extend the notion of an eigenvector
of a given eigenvalue λ (real or complex) of an n × n matrix A be any nonzero vector ~x ∈ Cn such that
A~x = λ~x.

Remark 56. Let A be a real n× n matrix and λ be an eigenvalue of A.

• lf λ is a real number, then there exist real eigenvectors associate to λ, as well as complex eigenvector.
• If λ is a complex (non-real) eigenvalue of A, then every eigenvector ~x associated to λ is a complex

(non-real) vector.
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Real and Imaginary Parts of Vectors

Definition 57. Let ~x ∈ Cn be a complex n-dimensional vector.

• The complex conjugate vector ~x of ~x is the vector made up from the complex conjugate
entries of ~x.
• The real part of ~x, denoted Re(~x) is the (real) vector consisting of the real parts of the

entries of ~x.
• The imaginary part of ~x, denoted Im(~x) is the (real) vector consisting of the imaginary

parts of the entries of ~x.

Note that

~x = Re(~x) + i · Im(~x) and ~x = Re(~x)− i · Im(~x).

Remark 58. Replacing the complex vector ~x from the previous definition by a complex m× n matrix A,
leads to the

• Complex conjugate matrix A.
• Real part Re(A) of A.
• Imaginary part Im(A) of A.

The analogues of above equations apply, in addition to

λ · ~x = λ · ~x, A · ~x = A · ~x, A ·B = A ·B.

Example 59 (Complex Conjugate Vectors/Matrices).

Real Matrices Acting on Cn

Suppose A is an n× n matrix with real number entries so that A = A. Let λ be a complex eigenvalue of
A with associated eigenvector ~x. Then

A · ~x = A · ~x = A · ~x
A · ~x = λ · ~x = λ · ~x

Combining the two we obtain
A · ~x = λ · ~x.

Theorem 60. Let A be an n × n matrix with real number entries and let λ be an eigenvalue of A with
associated eigenvector ~x. Then λ is also an eigenvalue of A with associated eigenvector ~x.
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