Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

• Instructor: He Wang Email: he.wang@northeastern.edu

§7 Diagonalization; Eigenvalues; Eigenvectors;

Contents

1.	Diagonalization	1
2.	Eigenvalues	3
3.	Review of Polynomials	5
4.	More on Characteristic Polynomials	7
5.	Eigenspaces	9
6.	Complex Eigenvalues and Eigenvectors	11
7.	Examples	12

1. Diagonalization

Let D be an diagonal matrix. The power D^k is easy to calculate. For example,

$$D^{k} = \begin{bmatrix} d_{1} & 0 & 0 & 0\\ 0 & d_{2} & 0 & 0\\ 0 & 0 & d_{3} & 0\\ 0 & 0 & 0 & d_{4} \end{bmatrix}^{k} = \begin{bmatrix} (d_{1})^{k} & 0 & 0 & 0\\ 0 & (d_{2})^{k} & 0 & 0\\ 0 & 0 & (d_{3})^{k} & 0\\ 0 & 0 & 0 & (d_{4})^{k} \end{bmatrix}$$

Definition 1. An $n \times n$ matrix A is said to be **diagonalizable** if it is similar to a diagonal matrix D, that is, if there exists an invertible matrix P such that $A = PDP^{-1}$.

Powers of a diagonalizable matrix A are also easy to calculate:

$$A^k = PD^k P^{-1}$$

We see that A^k is similar to the diagonal matrix D^k , and hence also **diagonalizable**.

Question:

1. Are all $n \times n$ matrices A diagonalizable?

2. If a matrix A is diagonalizable, how to find the invertible matrix P and the diagonal matrix D? The answer for this question is called **diagonalize** matrix A.

Solve $A = PDP^{-1}$. That is AP = PD. More explicitly (when n = 3) $A[\vec{b}_1 \ \vec{b}_2 \ \vec{b}_3] = [\vec{b}_1 \ \vec{b}_2 \ \vec{b}_3] \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}$ That is $[A\vec{b}_1 \ A\vec{b}_2 \ A\vec{b}_3] = [d_1\vec{b}_1 \ d_2\vec{b}_2 \ d_3\vec{b}_3]$ So, equivalently, we need to find numbers d_1, d_2, d_3 and $\vec{b}_1, \vec{b}_2, \vec{b}_3$ satisfy $A\vec{b}_1 = d_1\vec{b}_1, A\vec{b}_2 = d_2\vec{b}_2, A\vec{b}_3 = d_3\vec{b}_3$. They are the same equation: $A\vec{x} = d\vec{x}$

Remark: From the point of view of change of coordinates. Recall from §4 the meaning of similar matrices $A = PDP^{-1}$:

Let A be the matrix of a transformation $T : \mathbb{R}^n \to \mathbb{R}^n$. Let $\mathscr{B} = \{\vec{b}_1, \ldots, \vec{b}_n\}$ be a basis for \mathbb{R}^n and denote $P = [\vec{b}_1 \ldots \vec{b}_n]$ the change of coordinate matrix. The *matrix of T respect to basis* \mathscr{B} is

$$D = \left[[T(\vec{b}_1)]_{\mathscr{B}} [T(\vec{b}_2)]_{\mathscr{B}} \cdots [T(\vec{b}_n)]_{\mathscr{B}} \right]$$

Then, $A = PDP^{-1}$.

Example 2. Let T be the projection transformation onto a line $L = \text{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \mathbb{R}^3$.

Find a basis $\mathscr{B} = [\vec{b_1} \ \vec{b_2} \ \vec{b_3}]$ for \mathbb{R}^3 such that the \mathscr{B} -matrix of the T is the diagonal matrix $D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}$.

Method of Solution:

Step 1. Compare the columns of *D*. It is equivalent to find independent vectors $\vec{b}_1, \vec{b}_2, \vec{b}_3$ and numbers d_1, d_2, d_3 such that

$$T(\vec{b}_1) = d_1(\vec{b}_1), \quad T(\vec{b}_2) = d_2(\vec{b}_2), \quad T(\vec{b}_2) = d_2(\vec{b}_2)$$

Step 2. Use the geometric properties of the transformation to find those vectors and numbers.

We need to find vectors
$$\vec{b}_1, \vec{b}_2, \vec{b}_3$$
 such that the projection $\operatorname{proj}_L \vec{b}_i$ is the scalar product of \vec{b}_i .
Let $\vec{b}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$. Then, $A\vec{b}_1 = 1\vec{b}_1$. So, $d_1 = 1$.
Let $\vec{b}_1 = \begin{bmatrix} 2\\-1\\0\\-1 \end{bmatrix}$. Then, $A\vec{b}_2 = \vec{0} = 0\vec{b}_2$. So, $d_2 = 0$.
Let $\vec{b}_1 = \begin{bmatrix} 3\\0\\-1 \end{bmatrix}$. Then, $A\vec{b}_3 = \vec{0} = 0\vec{b}_3$. So, $d_3 = 0$.

The key is to solve $T(\vec{x}) = \lambda \vec{x}$ or equivalently $A\vec{x} = \lambda \vec{x}$.

2. Eigenvalues and Eigenvectors.

Consider a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ by matrix $T\vec{x} = A\vec{x}$.

Definition 3. • An eigenvector of A is a nonzero *n*-dimensional vector \vec{x} such that $A\vec{x} = \lambda \vec{x}$

for some (possibly complex) scalar λ .

- An eigenvalue of A is a (possibly complex) scalar λ for which there exists a nonzero vector \vec{x} such that $A\vec{x} = \lambda \vec{x}$. We say that \vec{x} is an eigenvector corresponding to λ .
- A basis $\vec{b}_1, \ldots, \vec{b}_n$ of \mathbb{R}^n is called an **eigenbasis** for A if the vectors $\vec{b}_1, \ldots, \vec{b}_n$ are eigenvectors of A.

Example 4. $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}, \ \vec{u} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Example 5. If \vec{v} is an eigenvector of A corresponding to λ , is \vec{v} an eigenvector of A^k ?

Theorem 6. A is diagonalizable if and only if it has n linearly independent eigenvectors $\vec{b}_1, \ldots, \vec{b}_n$ (eigenbasis).

In this case $A = PDP^{-1}$ where the columns of P are eigenvectors of A; the diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors given by the columns of P.

Proof. We already verified that system of equations $A\vec{b}_1 = \lambda_1\vec{b}_1, \ A\vec{b}_2 = \lambda_2\vec{b}_2, \ \dots, \ A\vec{b}_n = \lambda_n\vec{b}_n$. is equivalent to matrix equation

$$AP = PD$$

where $P = [\vec{b}_1 \ \dots \ \vec{b}_n]$ and $D = \begin{vmatrix} a_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{vmatrix}$.

P is invertible if and only if $\{\vec{b}_1, \ldots, \vec{b}_n\}$ is a basis of \mathbb{R}^n . In this case, $A = PDP^{-1}$ and *A* is diagonalizable.

Example 7. Write down all matrices A, P and D in Example 1.

Example 8. Let *T* be the rotation through an angle of $\pi/2$ in the counterclock direction. So the matrix of *T* is $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Find all eigenvalues and eigenvectors of *A*. Is *A* diagonalizable? **Example 9.** Find all possible real eigenvalues of an $n \times n$ orthogonal matrix. **Example 10.** Which matrix has 0 as an eigenvalue?

2. Eigenvalues

- Recall that a (possibly comlex) scalar λ is an eigenvalue of A if $A\vec{x} = \lambda \vec{x}$ has a nonzero solution.
- Equivalently, $(A \lambda I_n)\vec{x} = \vec{0}$ has a nonzero solution.
- Equivalently, $A \lambda I_n$ is not invertible.
- Equivalently, the determinant of $A \lambda I_n$ equals zero.

Hence, we have proved the following theorem.

Theorem 11 (The Characteristic Equation). Let A be an $n \times n$ matrix. A (possibly comlex) scalar λ is an eigenvalue of A if and only if

 $\det(A - \lambda I_n) = 0$

This last equation is called the characteristic equation of A.

Example 12. Finding Eigenvalues for the following matrices:

$$A = \begin{bmatrix} 2 & 5\\ 3 & 4 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 2 & 1\\ -1 & 4 \end{bmatrix}$$

Theorem 13. The eigenvalues of a (upper or lower) triangular $n \times n$ matrix A equal the diagonal entries of A.

 $\begin{array}{l} Proof. \text{ Suppose } A \text{ is an upper triangular matrix.} \\ \det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} - \lambda \end{vmatrix} = (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda) = 0 \text{ Hence, the} \\ \text{eigenvalues of } A \text{ are } a_{ii} \text{ for } i = 1, \dots, n. \end{array}$

Example 14. Finding Eigenvalues for the following matrices:

$$A = \begin{bmatrix} 2 & 5 & \sqrt{2} \\ 3 & 4 & 7 \\ 0 & 0 & 3 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 4 & 0 \\ 3 & 5 & 7 \end{bmatrix}$$

In general for a $n \times n$ matrix A,

$$\det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$
$$= (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda) + \sum (\text{ terms of degree} \le (n - 2))$$
$$= (-\lambda)^n - (a_{11} + a_{22} + \cdots + a_{nn})(-\lambda)^{n-1} + \sum (\text{ terms of degree} \le (n - 2))$$

Definition 15 (Characteristic Polynomial). If A is an $n \times n$ matrix, the degree n polynomial $f_A(\lambda) = \det(A - \lambda I_n)$ is called the characteristic melanemial of A

is called the **characteristic polynomial** of *A*.

Example 16. Find the characteristic polynomial for a 2×2 arbitrary matrix.

Definition 17. The sum of the diagonal entries of a square matrix is called the **trace** of A, denoted by tr A.

Summarize Example 2: the characteristic polynomial for a $2 \times 2 A$:

$$\det(A - \lambda I) = \lambda^2 - (\operatorname{tr} A)\lambda + \det(A)$$

More generally,

Theorem 18. Let A be an $n \times n$ matrix. Then the characteristic polynomial of A is $f_A(\lambda) = \det(A - \lambda I) = (-\lambda)^n + (\operatorname{tr} A)(-\lambda)^{n-1} + \dots + \det(A).$

Proof. The constant of the polynomial $= f_A(0) = \det(A)$

Remark: We have no formulas for the middle terms.

3. Review of Polynomials

Definition 19. • A polynomial with coefficients in field \mathbb{F} is a function $p : \mathbb{F} \to \mathbb{F}$ of the form

 $p(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n.$

• If $a_m \neq 0$, we say that the polynomial p(t) has degree n

• A number λ is called a **root** of the polynomial p(t) if $p(\lambda) = 0$.

Proposition 20. λ is root of a degree n polynomial p(t) if and only if there is a degree n-1 polynomial q(t) such that

$$p(t) = (t - \lambda)q(t)$$

Proof. Backward direction " \Leftarrow " is obvious. Let's show forward direction " \Rightarrow " Since λ is root, we have $a_0 + a_1\lambda + a_2\lambda^2 + \cdots + a_n\lambda^n = 0$. So,

$$p(t) = p(t) - a_0 + a_1\lambda + a_2\lambda^2 + \dots + a_n\lambda^n$$

= $a_1(t - \lambda) + a_2(t^2 - \lambda^2) + \dots + a_n(t^n - \lambda^n)$
= $(t - \lambda)[a_1 + a_2(t + \lambda) + \dots + a_n(t^{n-1} + t^{n-2}\lambda + \dots + \lambda^{n-1})]$
= $(t - \lambda)q(t)$

Here q(t) has degree n-1 since $a_n \neq 0$.

Page 5

Proposition 21. A degree n polynomial has at most n (distinct) roots in \mathbb{F} .

Proof. From the above theorem by induction.

Proposition 22. If $a_0 + a_1t + a_2t^2 + \cdots + a_nt^n = 0$ for all $t \in \mathbb{F}$, then $a_0 = a_1 = \cdots = a_n = 0$.

Proof. Only zero polynomial p = 0 has infinitely many solutions.

This means that $\{1, t, t^2, \ldots, t^n\}$ is independent in polynomial vector space P.

Proposition 23 (Division Algorithm). Suppose p(t) and q(t) are non-zero polynomials. There exists polynomials r(t) and s(t) such that

$$p(t) = s(t)q(t) + r(t)$$

and $\deg(r) < \deg(q)$.

Similar as integers, we can think this as divide p(t) by q(t) and the remainder is r(t).

Theorem 24 (Fundamental Theorem of Algebra). Every polynomial p(t) of degree $n \ge 1$ with complex coefficient has n roots. That is

 $p(t) = a_n(t - z_1)(t - z_2) \cdots (t - z_n)$

The above factorization is unique if we do not count the order.

Proposition 25. Suppose p(t) is a polynomial with real coefficients. If $z \in C$ is a root of p(t), then the conjugate of z is also a root.

Proof. If p(z) = 0, then take the conjugate of both sides, we have $\overline{p(z)} = 0$ and hence $p(\overline{z}) = 0$ by properties of conjugate.

Theorem 26 (Real roots). Every polynomial p(t) of degree $n \ge 1$ with real coefficient can be factorized as

$$p(t) = a_n(t - c_1)(t - c_2) \cdots (t - c_p)(t^2 + a_1t + b_1)(t^2 + a_2t + b_2) \cdots (t^2 + a_mt + b_m)$$

where all numbers in the factorization are real numbers and $a_i^2 < 4b_i$ for i = 1, 2, ..., m

Proof. First $p(t) = a_n(t - z_1)(t - z_2) \cdots (t - z_n)$ has been factored as complex roots. Since complex roots come in pairs for real polynomials. Suppose z = a + bi is a root, then p(t) contains a real polynomial factor $(t - z)(t - \overline{z}) = t^2 - 2at + |z|^2$.

 \square

Proposition 27 (Rational roots). Let $p(t) = a_0 + a_1t + a_2t^2 + \cdots + a_nt^n$ be a polynomial of degree $n \ge 1$ with integer coefficient. Suppose rational number $\frac{p}{q}$ is a root of p(t) such that (p,q) = 1, then $p|a_0$ and $q|a_n$.

4. More on Characteristic Polynomials

Definition 28 (Algebraic Multiplicity). An eigenvalue λ_0 of A is said to have **algebraic multiplicity** k if it has multiplicity k as a root of the characteristic polynomial $f_A(t)$. Equivalently,

$$f_A(\lambda) = (\lambda_0 - \lambda)^k g(\lambda)$$

such that $g(\lambda_0) \neq 0$.

Theorem 29. An $n \times n$ matrix has at most n eigenvalues, even counted with algebraic multiplicities.

Example 30. Find all eigenvalues and their algebraic multiplicities of $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Example 31. Find the characteristic polynomial of $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$. Which of the following numbers 1, -1, 4 are eigenvalues of A?

Example 32. Find the characteristic polynomial of $A = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 4 & 2 \\ -1 & 1 & 5 \end{bmatrix}$. Verify that 3 and 5 are eigenvalues.

Theorem 33. Let A be an $n \times n$ matrix. Suppose A has n eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, (listed with algebraic multiplicities.) Then $dot(A) = \lambda_1 \lambda_2 \dots \lambda_n$

and

$$\det(A) \equiv \lambda_1 \lambda_2 \cdots \lambda_n$$

$$\operatorname{tr} A = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

This theorem comes from

$$f_A(\lambda) = \det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$

Theorem 34 (On Eigenvalues of Similar Matrices). If A and B are similar, i.e., $A = PBP^{-1}$, then they have the same characteristic polynomial, i.e. $f_A(\lambda) = f_B(\lambda)$, and hence the same eigenvalues with the same multiplicities.

Proof. $f_A(\lambda) = \det(A - \lambda I) = \det(PBP^{-1} - \lambda I) = \det(P(B - \lambda I)P^{-1}) = \det(P)\det(B - \lambda I)\det(P^{-1}) = \det(B - \lambda I) = f_B(\lambda)$. So, A and B have the same characteristic polynomial.

If A and B are similar, we also have rank $(A) = \operatorname{rank}(B)$, det $(A) = \det(B)$, tr $(A) = \operatorname{tr}(B)$.

The converse of the preceding theorem is not generally true. There do exist matrices with the same characteristic polynomial that are not similar matrices. See example later.

Proposition 35. If A and B are similar, we also have det(A) = det(B), tr(A) = tr(B).

Proof. Proof. Since determinant and trace are determined by characteristic polynomial, so we get the result by the above theorem. \Box

Proposition 36. If A and B are similar, then rank(A) = rank(B).

Proof. $A = PBP^{-1}$. Multiplying an invertible matrix does not change the rank. So, rank(A) = rank(B).

Example 37. $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ are not similar, but they have the same rank, the same determinant, the same trace, the same eigenvalues.

If B similar to A = I, then $B = PAP^{-1} = I$ which is a contradiction.

Example 38. Are the following two matrices similar to each other? $A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}, B = \begin{bmatrix} 3 & 5 \\ 2 & 3 \end{bmatrix}$

tr(A) = 5 but tr(B) = 6|A| = 2 but |B| = -1

Warning: Similar matrices may have different eigenvectors.

Think about Example 1 in §7.1. The projection matrix $A = \frac{1}{14} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$ is similar to $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 $\vec{b} = \begin{bmatrix} 2\\0\\0 \end{bmatrix}$ is an eigenvector of D but it is not an eigenvector of A.

5. Eigenspaces

Theorem 39. Let A be an $n \times n$ matrix. A scalar λ is an eigenvalue for A if and only if the matrix equation

$$(A - \lambda I_n)\vec{x} = \vec{0}$$

has a nontrivial solution \vec{x} . Said differently, λ is an eigenvalue for A if and only if

$$\operatorname{Nul}(A - \lambda I_n) \neq \{\vec{0}\}.$$

Definition 40. Let A be an $n \times n$ matrix and λ be a eigenvalue of A. The set of all eigenvectors of A corresponding to λ together with the zero vector, is called the **eigenspace** of A corresponding to λ , and it equals the subspace

 $\operatorname{Nul}(A - \lambda I_n).$

The dimension of $\operatorname{Nul}(A - \lambda I_n)$ is called the **geometric multiplicity** of λ . (G.m.(λ))

Proposition 41. $1 \leq Geometric multiplicity of <math>\lambda \leq Algebraic multiplicity of \lambda \leq n$.

Proof. There is at least one eigenvector(non-zero). So, $1 \leq \text{Geometric multiplicity of } \lambda$. Suppose the geometric multiplicity of $\lambda = k$. Then $\text{Nul}(A - \lambda I_n)$ has a basis $\vec{v}_1, \ldots, \vec{v}_k$. Let $B = S^{-1}AS$, where the first k columns of S are $\vec{v}_1, \ldots, \vec{v}_k$. Hence,

$$B = \begin{bmatrix} \lambda I_k & * \\ \mathbf{0} & * \end{bmatrix}$$

Since A and B are similar, so they have the same eigenvalues. It is clear that Algebraic multiplicity of λ in B is at least k.

Example 42. Let T be the projection transformation onto a line $L = \text{Span}\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\} \mathbb{R}^3$. Explain the geometric meaning of the eigenvalues and eigenspaces.

Example 43. Find all eigenvalues and the corresponding eigenspaces of $A = \begin{bmatrix} 4 & -1 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & 2 \end{bmatrix}$

Lemma 44. Let A be an $n \times n$ matrix and let $\vec{v}_1, \ldots, \vec{v}_p$ be eigenvectors of A that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_p$ respectively. Then $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is a linearly independent set of vectors.

Proof. We prove this by induction on p. If p = 1, it is clear. Suppose this is true for p - 1 vectors. Multiply A to $a_1\vec{v}_1 + \cdots + a_p\vec{v}_p = 0$, we have $a_1\lambda_1\vec{v}_1 + \cdots + a_p\lambda_p\vec{v}_p = 0$. Multiply λ_1 to $a_1\vec{v}_1 + \cdots + a_p\vec{v}_p = 0$, we have $a_1\lambda_1\vec{v}_1 + \cdots + a_p\lambda_1\vec{v}_p = 0$. The difference of this two equation is $a_2(\lambda_2 - \lambda_1)\vec{v}_2 + \cdots + a_p(\lambda_p - \lambda_1)\vec{v}_p = 0$

From the induction, we have $a_2(\lambda_2 - \lambda_1) = 0, \ldots, a_p(\lambda_p - \lambda_1) = 0$. So, $a_2 = a_3 = \cdots = a_p = 0$. Plug in back, we have $a_1\vec{v}_1 = 0$. So $a_1 = 0$. **Lemma 45.** Let A be an $n \times n$ matrix and let $\lambda_1, \ldots, \lambda_p$ be distinct eigenvalues with corresponding independent set of eigenvectors V_1, \ldots, V_p . Then $V_1 \cup \cdots \cup V_p$ is a linearly independent set of vectors.

Proof. The proof is similar as the above lemma, by induction on p.

Recall that an $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors. (eigenbasis.) In this case $A = PDP^{-1}$ where the columns of P are eigenvectors of A; the diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors given by the columns of P.

Proposition 46 (Case of Distinct Eigenvalues). If an $n \times n$ matrix A has n distinct eigenvalues, then its corresponding eigenvectors are linearly independent and accordingly A is diagonalizable.

Theorem 47. Let A be an $n \times n$ matrix with distinct real eigenvalues $\lambda_1, \ldots, \lambda_p$ such that

 $f_A(\lambda) = \det(A - \lambda I) = (\lambda_1 - \lambda)^{k_1} (\lambda_2 - \lambda)^{k_2} \cdots (\lambda_p - \lambda)^{k_p}.$

Suppose $k_1 + k_2 + \cdots + k_p = n$. Let E_k be the eigenspace of λ_k .

- (1) Suppose B_k is a basis for E_k . A is diagonalizable if and only if $B = B_1 \cup \cdots \cup B_p$ is an eigenbasis for A.
- (2) A is diagonalizable if and only if

 $\dim E_1 + \dots + \dim E_p = n.$

This equality is satisfied if and only if $\dim(E_i) = k_i$ for each $i = 1, \ldots, p$

Proof. A is diagonalizable if and only if it has n linearly independent eigenvectors. Proof of " \Rightarrow " of (1): For each E_i , at most we can choose k_i independent eigenvectors, since $g.m.(\lambda_k) \leq a.m.(\lambda_k) = k_i$. Since A has n linearly independent eigenvectors, $g.m.(\lambda_k) = k_i$. So, |B| = n. We know that B is independent. " \Leftarrow " of (1) is clear. (2) follows from (1).

Remark: The theorem is also true if we state everything over \mathbb{C} , where we don't need the assumptions.

Another point of view of the eigenspaces is the invariant subspace.

Definition 48. Let $T: V \to V$ be a linear transformation on a vector space V. A subspace $W \subseteq V$ is said to be **invariant** under T if $T(\vec{w}) \in W$ whenever $w \in W$.

Proposition 49. A one-dimensional subspace is invariant under the linear transformation T_A if and only if it is an eigenspace spanned by an eigenvector of A.

Theorem 50. An $n \times n$ matrix A is similar to a diagonal matrix D, (i.e., $A = PDP^{-1}$) if and only if there exists a decomposition of $\mathbb{F}^n = V_1 \oplus V_2 \oplus \cdots \oplus V_n$ such that each V_i is one dimensional and invariant under T_A .

Example 51. Diagonalizing Matrix $A = \begin{bmatrix} 4 & -1 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & 2 \end{bmatrix}$ Example 52. Diagonalizing Matrix $A = \begin{bmatrix} 5 & 1 & 0 \\ 2 & 4 & 0 \\ 2 & 1 & 3 \end{bmatrix}$

Remark[Non Diagonalizing Result] For any n > 1 there exist examples of $n \times n$ matrices that are not diagonalizable.

Example 53. For any n > 1, find examples of $n \times n$ non-diagonalizable matrices.

Example 54. Diagonalizing the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$. We already know that 1, -1, 4 are eigenvalues of A.

Example 55. Diagonalizing the matrix $A = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 4 & 2 \\ -1 & 1 & 5 \end{bmatrix}$. We already know that 3 and 5 are eigenvalues of A.

6. Complex Eigenvalues and Eigenvectors

We list some basic knowledge of complex numbers.

• Just as \mathbb{R} denotes the set of real numbers, we will use \mathbb{C} to denote the set of complex numbers z = a + ib. Here $i = \sqrt{-1}$, and a and b are real numbers called/denoted

$$a = Re(z) =$$
real part of z
 $b = Im(z) =$ imaginary part of z

- The complex conjugate of $z = a + bi \in \mathbb{C}$ is $\overline{z} := a bi$
- The absolute value of z is $|z| = \sqrt{a^2 + b^2}$.
- $z\bar{z} = |z|^2$

Similarly to \mathbb{R}^n denoting *n*-dimensional real vectors (that is $n \times 1$ matrices with real number entries), so \mathbb{C}^n shall denote *n*-dimensional complex vectors, that is $n \times 1$ matrices with complex number entries.

If A is an $m \times n$ matrix and $\vec{x} \in \mathbb{C}^n$ an n-dimensional complex vector, then $A\vec{x}$ is defined in exactly the same way as it is in the case of a real n-dimensional vector \vec{x} . We extend the notion of an eigenvector of a given eigenvalue λ (real or complex) of an $n \times n$ matrix A be any nonzero vector $\vec{x} \in \mathbb{C}^n$ such that $A\vec{x} = \lambda \vec{x}$.

Remark 56. Let A be a real $n \times n$ matrix and λ be an eigenvalue of A.

- If λ is a real number, then there exist real eigenvectors associate to λ , as well as complex eigenvector.
- If λ is a complex (non-real) eigenvalue of A, then every eigenvector \vec{x} associated to λ is a complex (non-real) vector.

Definition 57. Let $\vec{x} \in \mathbb{C}^n$ be a complex *n*-dimensional vector.

- The complex conjugate vector \vec{x} of \vec{x} is the vector made up from the complex conjugate entries of \vec{x} .
- The real part of \vec{x} , denoted $Re(\vec{x})$ is the (real) vector consisting of the real parts of the entries of \vec{x} .
- The **imaginary part** of \vec{x} , denoted $Im(\vec{x})$ is the (real) vector consisting of the imaginary parts of the entries of \vec{x} .

Note that

 $\vec{x} = Re(\vec{x}) + i \cdot Im(\vec{x})$ and $\overline{\vec{x}} = Re(\vec{x}) - i \cdot Im(\vec{x})$.

Remark 58. Replacing the complex vector \vec{x} from the previous definition by a complex $m \times n$ matrix A, leads to the

- Complex conjugate matrix \overline{A} .
- Real part Re(A) of A.
- Imaginary part Im(A) of A.

The analogues of above equations apply, in addition to

$$\overline{\lambda \cdot \vec{x}} = \overline{\lambda} \cdot \overline{\vec{x}}, \qquad \overline{A \cdot \vec{x}} = \overline{A} \cdot \overline{\vec{x}}, \qquad \overline{A \cdot B} = \overline{A} \cdot \overline{B}.$$

Example 59 (Complex Conjugate Vectors/Matrices).

Real Matrices Acting on \mathbb{C}^n

Suppose A is an $n \times n$ matrix with real number entries so that $\overline{A} = A$. Let λ be a complex eigenvalue of A with associated eigenvector \vec{x} . Then

$$\overline{\overline{A \cdot \vec{x}}} = \overline{\overline{A} \cdot \vec{x}} = A \cdot \overline{\vec{x}}$$
$$\overline{\overline{A \cdot \vec{x}}} = \overline{\lambda \cdot \vec{x}} = \overline{\lambda} \cdot \overline{\vec{x}}$$

Combining the two we obtain

 $A \cdot \overline{\vec{x}} = \overline{\lambda} \cdot \overline{\vec{x}}.$

Theorem 60. Let A be an $n \times n$ matrix with real number entries and let λ be an eigenvalue of A with associated eigenvector \vec{x} . Then $\overline{\lambda}$ is also an eigenvalue of A with associated eigenvector \vec{x} .