Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

- Instructor: He Wang

Email: he.wang@northeastern.edu

$\S 6$ Determinant

Contents

1. motivation 1
2. Cofactor expansion 2
3. Row Operations and Determinant 5
4. Linearity Property of the determinant function and Cramer's Rule 8

Topics: Cofactor expansions; Permutations; Row operations; Determinant functions; Cramer's Rule.

1. motivation

Recall that the determinant of a 2×2 matrix is given by

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

We expand this definition to 1×1 matrices by setting

$$
\operatorname{det}[a]=a
$$

For 1 and 2×2 matrices, we have the following property:

A is invertible if and only if $\operatorname{det} A \neq 0$.

Goal: Define the determinant of an $n \times n$ matrix A with $n \geq 3$, such that A is invertible if and only if $\operatorname{det} A \neq 0$.

2. Cofactor expansion

Definition 1. Let A be an $n \times n$ matrix with $n \geq 2$ and with (i, j)-th entry $a_{i j}$.
Let $A_{i j}$ be the $(n-1) \times(n-1)$ matrix obtained by deleting the i-th row and j-th column from A. Then the determinant of A, denoted $\operatorname{det} A$, is defined as

$$
\begin{aligned}
\operatorname{det} A & =\sum_{i=1}^{n}(-1)^{1+i} a_{1 i} \operatorname{det} A_{1 i} \\
& =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+(-1)^{1+n} a_{1 n} \operatorname{det} A_{1 n}
\end{aligned}
$$

This formula for $\operatorname{det} A$ is called the first row cofactor expansion formula for the determinant of A.

We list some facts about permutation groups. Details of proof can be found in any group theory or abstract algebra book. Let $[n]$ be the set of n integers $[n]=\{1,2, \ldots, n\}$. Let $S(n)=\{\sigma:[n] \rightarrow$ $[n] \mid \sigma$ is a bijection $\}$ be the set of all bijections. We denote an element $\sigma \in S(n)$ as

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\sigma(1) & \sigma(2) & \cdots & \sigma(n)
\end{array}\right)
$$

For short we denote σ as $(\sigma(1) \sigma(2) \ldots \sigma(n))$.
$S(n)$ is the permutation group (symmetric group) with product given by the composition. The sign of a permutation $\sigma \in S(n)$ can be explicitly defined as

$$
\operatorname{sign}(\sigma)= \begin{cases}1 & \text { if } \sigma \text { is a product of even transpositions } \\ -1 & \text { if } \sigma \text { is a product of odd transpositions }\end{cases}
$$

A transposition is a permutation in $S(n)$ that only switch 2 numbers. For example $(2,4) \in S(5)$,

$$
(2,4)=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 3 & 2 & 5
\end{array}\right)
$$

Another equivalent way to determine the sign of σ is to use the number of inversions. An inversion of $(\sigma(1) \sigma(2) \ldots \sigma(n))$ is the pair of numbers $(\sigma(i)>\sigma(j))$ for $i<j$. For example, (2431) has 4 inversions (21), (43), (41), (31).

$$
\operatorname{sign}(\sigma)=(-1)^{N(\sigma)}
$$

where $N(\sigma)$ is the number of inversions of σ.

Proposition 2. If τ is obtained from σ by switch two numbers i, j, then $\operatorname{sign}(\tau)=-\operatorname{sign}(\sigma)$.

Proof. 1. If i, j are next to each other, the switch will increase or decrease 1 inversion.
2. In general, suppose there are k numbers between i, j, the switch of i, j can be obtained by switch $2 k+1$ pairs in case 1 .

Theorem 3. If A is an $n \times n$ matrix, then

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{\sigma \in S(n)} \operatorname{sign}(\sigma) \prod_{i=1}^{n} a_{i, \sigma(i)} \\
& =\sum_{\sigma \in S(n)} \operatorname{sign}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)}
\end{aligned}
$$

Proof. This theorem can be proved by induction on n. For $n=1$, it is true. Suppose the formula is true for $n-1$, let's show that it is true for n.

$$
\begin{aligned}
& \sum_{\sigma \in S(n)} \operatorname{sign}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)} \\
& =\sum_{i=1}^{n} a_{1 i} \sum_{\sigma \in S(n) ; \sigma(1)=i} \operatorname{sign}(\sigma) a_{2, \sigma(2)} \cdots a_{n, \sigma(n)} \\
& =\sum_{i=1}^{n} a_{1 i} \sum_{\sigma \in S(n) ; \sigma(1)=i}(-1)^{1+i} \operatorname{sign}(\sigma(2) \ldots \sigma(n)) a_{2, \sigma(2)} \cdots a_{n, \sigma(n)} \\
& =\sum_{i=1}^{n}(-1)^{1+i} a_{1 i} \operatorname{det} A_{1 i} \\
& =\operatorname{det} A
\end{aligned}
$$

Totally, $\operatorname{det}(A)$ is a sum of $n!$ terms.
Example 4. Let A be the 3×3 matrix

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

The $3!=6$ permutations of [3] are listed below, along with the determinant of the associated permutation matrix; For the 6 permutations $(\sigma(1) \sigma(2) \sigma(3))$,

$$
\begin{aligned}
& \operatorname{sign}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=1 \\
& \operatorname{sign}\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=-1 \\
& \operatorname{sign}\left(\begin{array}{lll}
2 & 1 & 3
\end{array}\right)=-1 \\
& \operatorname{sign}\left(\begin{array}{lll}
2 & 3 & 1
\end{array}\right)=1 \\
& \operatorname{sign}\left(\begin{array}{lll}
3 & 1 & 2
\end{array}\right)=1 \\
& \operatorname{sign}\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)=-1
\end{aligned}
$$

Hence we have

$$
\operatorname{det}(A)=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}-a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}
$$

Example 5. Find the determinant of $A=\left[\begin{array}{ccc}0 & 4 & 2 \\ 5 & 2 & 2 \\ 0 & 2 & -1\end{array}\right]$. Is A invertible?
Example 6. Find the determinant of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 4 \\ 5 & 6 & 7\end{array}\right]$. Is A invertible?

Definition 7. Let A be an $n \times n$ matrix. Its (i, j)-th cofactor $C_{i j}$ is defined as

$$
C_{i j}=(-1)^{i+j} \cdot \operatorname{det} A_{i j}
$$

where, as before, $A_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained from A by deleting its i-th row and j-th column.

Using cofactors, the first row cofactor expansion formula for the determinant of A can be rewritten as

$$
\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

Theorem 8. The determinant of an $n \times n$ matrix A can be computed via cofactor expansions across any row or down any column of A :

$$
\begin{aligned}
\operatorname{det} A & =a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \\
\operatorname{det} A & =a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
\end{aligned}
$$

These formulas are called the \boldsymbol{i}-th row and j-th column cofactor expansions for $\operatorname{det} A$, respectively.

Proof. Similarly as in the proof of Theorem 3.

Example 9. Redo Example 2.
Example 10. Find the determinant of $A=\left[\begin{array}{cccc}1 & 2 & 3 & 1.2 \\ 0 & 0 & 0 & 2 \\ 5 & 6 & 7 & \pi \\ 0 & 1 & 2 & \sqrt{2}\end{array}\right]$

Recall the definition of lower triangular matrix. Similarly, we can define upper triangular matrix. An $n \times n$ matrix A is called triangular if it is either lower or upper triangular.

Theorem 11 (Determinants of Triangular Matrices). Let A be an $n \times n$ triangular matrix, then $\operatorname{det} A$ equals the product of the diagonal entries of A :

$$
\operatorname{det} A=a_{11} \times a_{22} \times \cdots \times a_{n n}
$$

Example 12. Find the determinant of $A=\left[\begin{array}{cccc}2 & \sqrt{2} & 3 & 1.7 \\ 0 & 3 & 7 & 12 \\ 0 & 0 & 1 & \pi \\ 0 & 0 & 0 & 5\end{array}\right]$. Is A invertible?
Example 13. Find out for which value of λ the matrix $A-\lambda I$ is not invertible, where $A=\left[\begin{array}{ccc}2 & \sqrt{2} & 1.7 \\ 0 & 3 & 12 \\ 0 & 0 & 5\end{array}\right]$
Example 14. If A is an $n \times n$ matrix. Consider the relation between $\operatorname{det}(k A), \operatorname{det}\left(A^{-1}\right), \operatorname{det}\left(A^{T}\right)$ and $\operatorname{det}(A)$.
We consider this in the next section.

Block Matrix.

Determinant

$$
M=\left[\begin{array}{cc}
A & B \\
0 & C
\end{array}\right]=\left[\begin{array}{cccc}
1 & 2 & 11 & \sqrt{3} \\
2 & 3 & \pi & 12 \\
0 & 0 & 3 & 9 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

Theorem 15. If $M=\left[\begin{array}{cc}A & B \\ 0 & C\end{array}\right]$, then,

$$
\operatorname{det}(M)=\operatorname{det}(A) \operatorname{det}(C)
$$

Proof.

$$
\left[\begin{array}{cc}
A & B \\
0 & C
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
0 & C
\end{array}\right]
$$

No such formula for $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ in general.

3. Row Operations and Determinant

Recall that there are three types of elementary row operations:

1. (Replacement) Add to one row the multiple of another row.
2. (Interchange) Interchange two rows.
3. (Scaling) Multiply all entries of a given row by a nonzero constant.

Question:

If an $n \times n$ matrix A is modified by a single one of the elementary row operations, how does that affect its determinant?

Theorem 16 (Row Operations and the Determinant). Let A be an $n \times n$ matrix and let B be a matrix obtained from A by a single elementary row operation.

1. If B is obtained from A by an Interchange operation, then

$$
\operatorname{det} B=-\operatorname{det} A
$$

2. If B is obtained from A by a Scaling operation by a factor k, then

$$
\operatorname{det} B=k \operatorname{det} A
$$

3. If B is obtained from A by a Replacement operation, then
$\operatorname{det} B=\operatorname{det} A$.

Proof. 1. Suppose B is obtained from A by switching i, j-th rows. By Theorem 3,

$$
\begin{aligned}
\operatorname{det}(B) & =\sum_{\sigma \in S(n)} \operatorname{sign}(\sigma) a_{1, \sigma(1)} \cdots a_{j, \sigma(i)} \cdots a_{i, \sigma(j)} \cdots a_{n, \sigma(n)} \\
& =\sum_{\sigma \in S(n)}-\operatorname{sign}(\sigma(1) \ldots \sigma(j) \ldots \sigma(i) \ldots \sigma(n)) a_{1, \sigma(1)} \cdots a_{i, \sigma(j)} \cdots a_{j, \sigma(i)} \cdots a_{n, \sigma(n)} \\
& =-\operatorname{det}(A)
\end{aligned}
$$

2. By Theorem 8,

$$
\operatorname{det}(B)=\sum_{j=1}^{n} k a_{i j} C_{i j}=k \sum_{j=1}^{n} a_{i j} C_{i j}=k \operatorname{det}(A)
$$

The third formula can be proved by the following propositions.

Proposition 17.

$$
\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \cdots & \vdots \\
b_{1}+c_{1} & b_{2}+c_{2} & \cdots & b_{n}+c_{n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\left|=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \cdots & \vdots \\
b_{1} & b_{2} & \cdots & b_{n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|+\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \cdots & \vdots \\
c_{1} & c_{2} & \cdots & c_{n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|\right.
$$

Proof. By Theorem 8.

Proposition 18. In a matrix A, if the i-th row equals the j-th row, then $\operatorname{det}(A)=0$.

Proof. If we switch i-th row is a scalar product of the j-th row, then $\operatorname{det}(A)=-\operatorname{det}(A)$, so $\operatorname{det}(A)=$ 0 .

Proposition 19. In a matrix A, if the i-th row is a scalar product of the j-th row, then $\operatorname{det}(A)=0$

Theorem 20. An $n \times n$ matrix A is invertible if and only if $\operatorname{det} A \neq 0$.

Proof. By Theorem 16, $\operatorname{det}(\operatorname{rref}(A))= \pm k \operatorname{det}(A)$ where $k \neq 0 . \quad A$ is invertible if and only if $\operatorname{rref}(A)=I_{n}, \operatorname{det}(\operatorname{rref}(A))=1$.

Proposition 21. Let A be an $n \times n$ matrix.

$$
\operatorname{det}(k A)=\left(k^{n}\right)(\operatorname{det} A)
$$

Proposition 22. Let A be an $n \times n$ matrix that can be reduced to a matrix U in echelon form with only Replacement and Interchange operations. Then

$$
\operatorname{det} A=(-1)^{r} \cdot \operatorname{det} U
$$

where r is the number of Interchange operations used to get from A to U.

- The determinant $\operatorname{det} U=0$ if and only if U has a 0 on its diagonal, which in turn can only happen if U has a row of zeros.

Theorem 23 (Determinant of the Transpose Matrix).

$$
\operatorname{det} A^{T}=\operatorname{det} A
$$

Proof.

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{\sigma \in S(n)} \operatorname{sign}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)} \\
& =\sum_{\sigma \in S(n)} \operatorname{sign}\left(\sigma^{-1}\right) a_{\sigma^{-1}(1), 1} a_{\sigma^{-1}(2), 2} \cdots a_{\sigma^{-1}(n), n} \\
& =\operatorname{det}\left(A^{T}\right)
\end{aligned}
$$

Here we used the property that $\operatorname{sign}(\sigma)=\operatorname{sign}(\sigma)$ and $\sigma \rightarrow \sigma^{-1}$ is a bijection between $S(n)$ and itself.

Theorem 24 (Determinants of Products of Matrices). Let A and B be two $n \times n$ matrices.

$$
\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)
$$

Proof. Case 1. If A is invertible, then $A=E_{1} \cdots E_{s}$ a product of elementary matrices.
Theorem 16 shows that $\operatorname{det}\left(E_{i j} B\right)=-\operatorname{det}(B)=\operatorname{det}\left(E_{i j}\right) \operatorname{det}(B), \operatorname{det}\left(E_{i}(c) B\right)=\operatorname{det}\left(E_{i}(c)\right) \operatorname{det}(B)$ and $\operatorname{det}\left(E_{i j}(c) B\right)=\operatorname{det}(\operatorname{det}(B)$.
Then $\operatorname{det}(A B)=\operatorname{det}\left(E_{1} \cdots E_{s} B\right)=\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2} \cdots E_{s} B\right)=\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \cdots \operatorname{det}\left(E_{s}\right) \operatorname{det}(B)$. In particular, when $B=I_{n}$ then $\operatorname{det}(A)=\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \cdots \operatorname{det}\left(E_{s}\right) . \quad \operatorname{So}, \operatorname{det}(A B)=$ $(\operatorname{det} A)(\operatorname{det} B)$.
Case 2. If (A) is not invertible, then $\operatorname{rank}(A)<n$. Then $\operatorname{rank}(A B) \leq \operatorname{rank}(A)<n$. So, $\operatorname{det}(A B)=0$.

Proposition 25. Let A be an $n \times n$ matrix.

$$
\operatorname{det}\left(A^{m}\right)=(\operatorname{det}(A))^{m}
$$

Proposition 26. Let A be an $n \times n$ invertible matrix.

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A} .
$$

Question: How about $\operatorname{det}(A+B)$? Is it $\operatorname{det}(A)+\operatorname{det}(B)$?

Example 27. Find the determinant of $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16\end{array}\right]$. Is A invertible?
Example 28. Find the determinant of $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 9 \\ 3 & 6 & 11 & 12 \\ 4 & 8 & 15 & 16\end{array}\right]$. Is A invertible?

Definition 29 (Elementary Column Operations). 1. (Column Replacement) Add to one column the multiple of another column.
2. (Column Interchange) Interchange two columns.
3. (Column Scaling) Multiply all entries of a given column by a scalar.

Since column operations on a matrix A can be thought of as row operations on its transpose matrix A^{T}, and since $\operatorname{det} A=\operatorname{det} A^{T}$, the rules for how elementary row operations affect the determinant can be used to give a similar rule for column operations.

Theorem 30 (Column Operations and the Determinant). Let A be an $n \times n$ matrix and let B be a matrix obtained from A by a single elementary row operation.

1. If B is obtained from A by a Column Replacement operation, then

$$
\operatorname{det} B=\operatorname{det} A
$$

2. If B is obtained from A by a Column Interchange operation, then

$$
\operatorname{det} B=-\operatorname{det} A
$$

3. If B is obtained from A by a Column Scaling operation by a factor k, then
$\operatorname{det} B=k \operatorname{det} A$.

Example 31. Vandermonde determinant
$\operatorname{det}(A)=\left|\begin{array}{ccc}1 & 1 & 1 \\ a_{1} & a_{2} & a_{3} \\ a_{1}^{2} & a_{2}^{2} & a_{3}^{2}\end{array}\right|=\left(a_{3}-a_{2}\right)\left(a_{3}-a_{1}\right)\left(a_{2}-a_{1}\right)$
More generally, by induction on n, we can proved that

$$
\operatorname{det}(A)=\left|\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n} \\
a_{1}^{2} & a_{2}^{2} & a_{3}^{2} & \cdots & a_{n}^{2} \\
\vdots & \vdots & \cdots & \vdots & \\
a_{1}^{n-1} & a_{2}^{n-1} & a_{3}^{n-1} & \cdots & a_{n}^{n-1} \\
a_{1}^{n} & a_{2}^{n} & a_{3}^{n} & \cdots & a_{n}^{n}
\end{array}\right|=\prod_{1 \leq j<i \leq n}\left(a_{i}-a_{j}\right)
$$

4. Linearity Property of the determinant function and Cramer's Rule

Let A be an $n \times n$ matrix with column vectors $\vec{a}_{1}, \cdots, \vec{a}_{n}$,

$$
A=\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}
\end{array}\right]
$$

Let \vec{x} be an n-dimensional vector (an $n \times 1$ matrix) and consider the transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

defined by

$$
T(\vec{x})=\operatorname{det}\left(\left[\begin{array}{lllllll}
\vec{a}_{1} & \ldots & \vec{a}_{j-1} & \vec{x} & \vec{a}_{j+1} & \ldots & \vec{a}_{n}
\end{array}\right]\right)
$$

Theorem 32 (Linearity and Determinants). The transformation T defined above is a linear transformation, that is
(a) $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, and
(b) $T(c \vec{x})=c T(\vec{x})$ for all $\vec{x} \in R^{n}$ and all $c \in R$.

Accordingly there exists a $1 \times n$ matrix B such that $T=T_{B}$.

Proof. By Theorems 23, 16 and Proposition 17.

Example 33 (Finding matrix for the determinant transformation for a given A).

Consider a matrix equation $A \vec{x}=\vec{b}$ in which A is an $n \times n$ invertible matrix, and write $A=\left[\begin{array}{llll}\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}\end{array}\right]$. Let

$$
A_{i}(\vec{b})=\left[\begin{array}{llllllll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{i-1} & \vec{b} & \vec{a}_{i+1} & \ldots & \vec{a}_{n}
\end{array}\right]
$$

Theorem 34 (Cramer's Rule). The unique solution \vec{x} of the matrix equation $A \vec{x}=\vec{b}$ (for the case when A is an $n \times n$ invertible matrix), is given by

$$
x_{i}=\frac{\operatorname{det} A_{i}(\vec{b})}{\operatorname{det} A}, \text { for } i=1,2, \ldots, n .
$$

Proof. First, from cofactor expansion, $\operatorname{det}\left(A_{i}(\vec{b})\right)=\sum_{j=1}^{n} b_{j} C_{i j}$.

$$
\begin{aligned}
a_{k 1} x_{1}+a_{k 2} x_{2}+\cdots a_{k n} x_{n} & =\frac{1}{\operatorname{det}(A)}\left(\sum_{i=1}^{n} a_{k i} \sum_{j=1}^{n} b_{j} C_{i j}\right) \\
& =\frac{1}{\operatorname{det}(A)}\left(\sum_{j=1}^{n} b_{j} \sum_{i=1}^{n} a_{k i} C_{i j}\right) \\
& =\frac{1}{\operatorname{det}(A)}\left(b_{k} \operatorname{det}(A)\right) \\
& =b_{k}
\end{aligned}
$$

for any $k=0,1, \cdots, n$. This verifies that $\left(x_{1}, \ldots, x_{n}\right)$ is a solution of $A \vec{x}=\vec{b}$.

Let C be the associated $n \times n$ matrix of cofactors defined as:

$$
C=\left[\begin{array}{cccc}
C_{11} & C_{12} & \ldots & C_{1 n} \\
C_{21} & C_{22} & \ldots & C_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n 1} & C_{n 2} & \ldots & C_{n n}
\end{array}\right]
$$

The transpose of C is called the adjugate matrix of $A, \operatorname{denoted}$ by $\operatorname{adj} A$:

$$
\operatorname{adj} A=C^{T}=\left[\begin{array}{cccc}
C_{11} & C_{21} & \ldots & C_{n 1} \\
C_{12} & C_{22} & \ldots & C_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
C_{1 n} & C_{2 n} & \ldots & C_{n n}
\end{array}\right]
$$

Theorem 35. If A is a invertible matrix then $A^{-1}=\frac{1}{\operatorname{det} A} \cdot \operatorname{adj} A$

Proof. Similarly as the proof of Cramer's Rule, verify that $A \frac{1}{\operatorname{det} A} \cdot \operatorname{adj} A=I_{n}$

