Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

• Instructor: He Wang Email: he.wang@northeastern.edu

§4. Bases

CONTENTS

1.	Linear Independence	1
2.	Basis of a vector space	3
3.	The Dimension of a Subspace	4
4.	Basis of Null space and range	6
5.	Examples	7

1. Linear Independence

Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_t$ be vectors in a vector space V. Then $\text{Span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_t)$ is a subspace of V.

Definition 1. ● The set of vectors v₁,..., v_p in V is said to be (linearly) independent if the homogeneous vector equation
x₁v₁ + x₂v₂ + ··· + x_pv_p = 0
only has the trivial solution x₁ = x₂ = ··· = x_p = 0.
If there exists a nontrivial solution (a₁, a₂,..., a_p), then v₁,..., v_p is said to be (linearly) depen-

• If there exists a nontrivial solution (a_1, a_2, \ldots, a_p) , then v_1, \ldots, v_p is said to be (linearly) dependent. In this case,

 $a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_p \vec{v}_p = \vec{0}$

is a **nontrivial relation** among the vectors $\vec{v}_1, \ldots, \vec{v}_p$.

Remark 2. A (possibly infinite) subset W of a vector space V is said to be *linearly independent* if all finite subsets of W are linearly independent.

Remark 3. Unlike in the case of $V = \mathbb{F}^n$, in the general setting of vector spaces, equation (1) cannot be written as a matrix equation (directly).

We say a vector \vec{v}_i (for $i \ge 2$) is **redundant** if it is a linear combination of the preceding vectors $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{i-1}\}$, i.e.,

$$\vec{v}_i = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_{i-1} \vec{v}_{i-1}$$

Proposition 4. Suppose \vec{v}_i is redundant in $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Then $\operatorname{Span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\} = \operatorname{Span}\{\vec{v}_1, \vec{v}_2, \dots, \hat{\vec{v}_i}, \dots, \vec{v}_p\}.$

Here $\hat{\vec{v}_i}$ is removed.

Proof. Clearly, $\operatorname{Span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\} \supseteq \operatorname{Span}\{\vec{v}_1, \vec{v}_2, \dots, \hat{\vec{v}_i}, \dots, \vec{v}_p\}$. We show \subseteq next. Suppose $\vec{u} \in \operatorname{Span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Then $\vec{u} = c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_p\vec{v}_p$. Replace \vec{v}_i by the above redundant equation, \vec{u} is a linear combination without \vec{v}_i . Hence, $\vec{u} \in \operatorname{Span}\{\vec{v}_1, \vec{v}_2, \dots, \hat{\vec{v}_i}, \dots, \vec{v}_p\}$.

Proposition 5. • Suppose $\vec{v_1} \neq \vec{0}$. The set $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}\}$ is independent if and only if none of them is redundant.

- If the set $\{\vec{v}_1, \ldots, \vec{v}_p\}$ of vectors contains the zero vector $\vec{0}$, then it is linearly dependent.
- If a subset of the set $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is linearly dependent, then $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is dependent.

Proof. The first claim is equivalent to: the set $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is dependent if and only if one of them is redundant.

" \Rightarrow " Suppose $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is dependent. Then

$$a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_p\vec{v}_p = \vec{0}$$

has non-trivial solution. Let i be the largest number such that $a_i \neq 0$. $(i \neq 1 \text{ since } \vec{v_1} \neq \vec{0})$. Then

$$-a_i \vec{v}_i = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_{i-1} \vec{v}_{i-1}$$

So,

$$\vec{v}_i = -a_i^{-1}a_1\vec{v}_1 - a_i^{-1}a_2\vec{v}_2 - \dots - a_i^{-1}a_{i-1}\vec{v}_{i-1}$$

That is, $\vec{v_i}$ is redundant.

" \Leftarrow " Suppose \vec{v}_i is redundant. Then

$$\vec{v}_i = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_{i-1} \vec{v}_{i-1}$$

So,

$$a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_{i-1}\vec{v}_{i-1} - \vec{v}_i = 0$$

So, $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is dependent. The proof of the rest two are easy.

Proposition 6. A set $\{\vec{v}\}$ is linearly dependent if and only if $\vec{v} = \vec{0}$.

A set $\{\vec{u}, \vec{v}\}$ is linearly dependent if and only if one of the two vectors is a scalar multiple of the other vector.

In \mathbb{F}^n , the vector equation $x_1\vec{v}_1 + x_2\vec{v}_2 + \cdots + x_p\vec{v}_p = \vec{0}$ is equivalent to using the matrix equation $A\vec{x} = \vec{0}$ or the augmented matrix $[A \mid \vec{0}]$. So $A = [\vec{v}_1 \dots \vec{v}_p]$ is an $n \times p$ matrix.

Proposition 7. The set $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\} \subset \mathbb{F}^n$ is independent if and only if the homogeneous equation only has zero solution; if and only if there is no free variable; if and only if all columns contain pivots; if and only if $\operatorname{rank}(A) = p$; (i.e., A has full rank.) if and only if $\ker(A) = \{\vec{0}\}$.

Proposition 8. If p > n, then a set $\{\vec{v}_1, \ldots, \vec{v}_p\}$ of vectors in \mathbb{F}^n is linearly dependent.

Proof. From the above proposition, if the set is independent, $rank(A) = p \le n$.

Warning: The preceding property does **not** say that $p \leq n$ implies that $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is linearly independent.

2. Basis of a vector space

Definition 9. Let V be vector space over \mathbb{F} . A subset $B = {\vec{b_1}, \ldots, \vec{b_n}}$ of V is called a **basis** for V if

- (i) B is linearly independent, and
- (ii) $\operatorname{Span}\{\vec{b}_1,\ldots,\vec{b}_n\}=V.$

A subset B of a vector space V has a "greater chance" of being

- linearly independent, if it has fewer vectors;
- a spanning set of V, if it has more vectors.

A basis B for a vector space V is a set that has balanced these two competing requirements. We can think of a basis B as a spanning set that is as small as possible, and as a linearly independent set that is as large as possible.

More precisely, we have

Theorem 10. If $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ is independent in *V*, and $V = \text{Span}\{\vec{w}_1, \vec{w}_2, ..., \vec{w}_m\}$, then $m \ge n$.

Proof. We add \vec{v}_1 to the **spanning** set and get a **dependent** set

 $\{\vec{v}_1, \vec{w}_1, \vec{w}_2, \dots, \vec{w}_m\}$

Since $\vec{v}_1 \neq 0$, we can remove one of \vec{w}_i from the set. We then add \vec{v}_2 to the new spanning set and get a dependent set

$$\{\vec{v}_1, \vec{v}_2, \vec{w}_1, \dots, \hat{\vec{w}}_i, \dots, \vec{w}_m\}.$$

Claim: One of the w's is redundant.

Proof of claim: If all w's are not redundant, $a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{w}_1 + \cdots + a_{m+1}\vec{w}_m = \vec{0}$ has a non-trivial solutions $(a_1, a_2, 0, 0, ..., 0)$. That is $a_1\vec{v}_1 + a_2\vec{v}_2 = 0$ which is a contradiction. So, we can remove one redundant w_i 's and get a new spanning set

 $\{\vec{v}_1, \vec{v}_2, \vec{w}_1, \dots, \widehat{\vec{w}_i}, \dots, \widehat{\vec{w}_j}, \dots, \vec{w}_m\}.$

Keep adding the rest of v's and remove the redundant w's. We get a spanning set with $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ and the $n \ w's$ removed. So, we must have $m \ge n$.

Example 11. The column vectors of the identity matrix I_n , $\vec{e_1}, \vec{e_2}, \ldots, \vec{e_n}$ form a standard basis for \mathbb{F}^n .

Example 12. Find a basis for the vector space M_2 of all 2×2 matrices. The standard basis for M_2 is $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$

Example 13. Find a basis for the vector space P_2 of all polynomials of degree ≤ 2 . The standard basis for P_2 is $\{1, t, t^2\}$.

Theorem 14 (Spanning Set Theorem). Let V be a vector space and let $S = {\vec{v}_1, \ldots, \vec{v}_p}$ be a subset of V with $\text{Span}{\vec{v}_1, \ldots, \vec{v}_p} = H$.

• If one of the vectors in S, say \vec{v}_k , is a linear combination of the remaining vectors in S, then the set $S - {\vec{v}_k}$ still spans H,

$$H = \operatorname{Span}\{\vec{v}_1, \dots, \vec{v}_p\} = \operatorname{Span}\{\vec{v}_1, \dots, \vec{v}_{k-1}, \vec{v}_{k+1}, \dots, \vec{v}_p\}$$

• If $H \neq \{\vec{0}\}$ then some subset of S is a basis for H.

Remark 15 (Algorithm for Finding a Basis). The preceding theorem provides a recipe for finding a basis for a subspace H of a vector space V. Namely,

- Pick a generating set $S = \{\vec{v}_1, \dots, \vec{v}_p\}$ of H.
- Keep removing vectors from S that are linear combinations of other vectors in S.

• Once there are no more vectors left in S that are linear combinations of other vectors in S, S is a basis for H.

From the algorithm, we obtained that

Proposition 16. (1) Every spanning set of a finite-dimensional vector space can be reduced to a basis.

(2) Any finite-dimensional vector space has a basis.

(3) Any independent set in a finite-dimensional vector space can be extended to a basis.

Proof. For part (3), we need the trick in the proof of Theorem 10

3. The Dimension of a Subspace

For a finite-dimensional vector space V, it has many different bases. However, they contain some common properties.

Theorem 17. If $\mathscr{B} = \{\vec{b}_1, \ldots, \vec{b}_p\}$ and $\mathscr{D} = \{\vec{d}_1, \ldots, \vec{d}_m\}$ are two bases for V, then p = m.

Proof. A basis is independent and span the space V. So, $p \le m$ and $p \ge m$. Then p = m.

Definition 18 (The Dimension of a Vector Space). The **dimension** of a vector space V is defined as

 $\dim V :=$ The cardinality of any basis for V,

i.e., the number of elements in a basis.

By convention, the dimension of the vector space $V = \vec{0}$ is 0.

Example 19. The dimension of \mathbb{F}^n is n.

Lemma 20. Suppose $\mathscr{B} = \{\vec{b}_1, \ldots, \vec{b}_p\}$ is a basis for V. (That is dim V = p.) (1) Any set of more than p vectors is linearly dependent. (2) Any set of less than p vectors can not span V.

Proof. From Theorem 10 in the last subsection.

Theorem 21 (The Basis Theorem). Let V be a vector space with $\dim(V) = p \ge 1$.

- Any linearly independent set of exactly p elements in V is automatically a basis for V.
- Any set of p elements in V that span V, is automatically a basis for V.

Proof. (1) Suppose $\{\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_p\}$ is independent in V. If there is a vector $\vec{v} \in V$, such that $\vec{v} \notin \text{Span}\{\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_p\}$, then $\{\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_p, \vec{v}\}$ is independent in V. This is a contradiction to the above Lemma. (2) Suppose $V = \text{Span}\{\vec{w}_1, \vec{w}_2, \cdots, \vec{w}_p\}$. If $\{\vec{w}_1, \vec{w}_2, \cdots, \vec{w}_p\}$ is dependent, then we can delete a redundant element from it and the rest still span V. This is a contradiction by the above Lemma.

Theorem 22. Let U be a subspace of a finite-dimensional space V. There is a subspace W such that $V = U \oplus W$.

Proof. Suppose $\{\vec{u}_1, \ldots, \vec{u}_p \text{ is a basis of } U$. We can extended it to a basis of V by adding $\{\vec{w}_1, \ldots, \vec{w}_m\}$. Define $W := \text{Span}\{\vec{w}_1, \ldots, \vec{w}_m\}$. Claim: V = U + W and $U \cap W = \{\vec{0}\}$. (Verify this.)

Theorem 23. Let U and V be subspaces of a finite-dimensional space. Then $\dim(U+V) = \dim U + \dim V - \dim(U \cap V)$

Proof. Idea of the proof: Start from a basis $\vec{w_1}, \ldots, \vec{w_p}$ of $U \cap V$ and extended it to be a basis $\vec{w_1}, \ldots, \vec{w_p}, \vec{u_1}, \ldots, \vec{u_m}$ of U and a basis $\vec{w_1}, \ldots, \vec{w_p}, \vec{v_1}, \ldots, \vec{v_n}$ of V. Then dim $U \cap V = p$, dim U = p + m, and dim V = p + n. Claim: $\vec{w_1}, \ldots, \vec{w_p}, \vec{u_1}, \ldots, \vec{u_m}, \vec{v_1}, \ldots, \vec{v_n}$ form a basis of U + V. (Verify this from definition.)

In particular, $\dim(U \oplus V) = \dim U + \dim V$. On the other side, we have the following theorem.

Corollary 24. Let U and W be subspaces of an n-dimensional space V. Suppose dim U+dim W = nand $U \cap W = {\vec{0}}$, then $V = U \oplus W$.

Theorem 25. Suppose V is a finite dimensional and U_1, \ldots, U_p are subspaces of V such that $V = U_1 + \cdots + U_p$ and dim $V = \dim U_1 + \cdots + \dim U_p$. Then $V = U_1 \oplus \cdots \oplus U_p$.

4. Basis of Null space and range

Let $T: V \to W$ be a linear transformation. The **rank** of T is defined as the dimension of the image of T. The **nullity** of T is defined as the dimension of the kernel of T.

Theorem 26. Let $T: V \to W$ be a linear transformation. Then $\dim V = \dim(\ker T) + \dim(\operatorname{im} T)$

Proof. Suppose $\vec{w}_1, \ldots, \vec{w}_p$ is a basis for ker T. We can extended it to a basis $\{\vec{w}_1, \ldots, \vec{w}_p, \vec{v}_1, \ldots, \vec{v}_m\}$ of V. Then, dim V = p + m and dim ker T = p. Claim: $\{T(\vec{v}_1), \ldots, T(v_m)\}$ is a basis for im T. (Verify this from definition: span and independent).

Let A be an $m \times n$ matrix. The linear transformation defined by A is $T_A : \mathbb{F}^n \to \mathbb{F}^m$. We know that $\dim(\ker T) + \dim(\operatorname{im} T) = n$. Now, we can also find basis for each space.

Theorem 27 (Basis for im(A)). A basis for the image im(A) is given by the pivot columns of A. In particular, dim(im A) = rank A.

Proof. $\operatorname{im}(A) = \operatorname{Span}\{\vec{a}_1, \cdots, \vec{a}_n\}$. Suppose the pivots columns are $\vec{a}_{c_1}, \vec{a}_{c_2}, \dots, \vec{a}_{c_r}$. They are independent and all other columns are redundant columns, because they are corresponding free variables. Hence, $\operatorname{im}(A) = \operatorname{Span}\{\vec{a}_{c_1}, \vec{a}_{c_2}, \dots, \vec{a}_{c_r}\}$. So, $\{\vec{a}_{c_1}, \vec{a}_{c_2}, \dots, \vec{a}_{c_r}\}$ is a basis for $\operatorname{im}(A)$.

Theorem 28 (Basis for ker(A)). Let A be an $m \times n$ matrix. Solve the matrix equation $A\vec{x} = \vec{0}$. Write \vec{x} as a linear combination of vectors $\vec{v}_1, \ldots, \vec{v}_p$ with the weights corresponding to the free variables. Then $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is a basis for ker(A).

Proof. First, we know that $\ker(A) = \operatorname{Span}\{\vec{v}_1, \ldots, \vec{v}_p\}$. Since p is the number of free variables, so $\dim(\ker T) = n - \dim(\operatorname{im} A) = p$. So, $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is a basis for $\ker(A)$. \Box

Theorem 29 (The Dimensions of ker(A) and im(A)). Let A be an $m \times n$ matrix. Then, $\dim(\ker(A)) + \dim(\operatorname{im}(A)) = n.$

Proof. Consider the matrix equation $A\vec{x} = \vec{0}$. The dimension of ker(A) is the number of free variables in the equation $A\vec{x} = \vec{0}$. The dimension of im(A) is the number of pivot columns in A, which is also the rank of A. So the sum dim(ker(A)) + dim(im(A)) is the total number of variables.

5. Examples

Example 31. Find bases for the kernel and image of the transformation defined by $A = \begin{bmatrix} 0 & 0 & 2 & -8 & -1 \\ 1 & 6 & 2 & -5 & -2 \\ 2 & 12 & 2 & -2 & -3 \\ 1 & 6 & 0 & 3 & -2 \end{bmatrix}$

We already know $\operatorname{rref}(A) = \begin{bmatrix} 1 & 6 & 0 & 3 & 0 \\ 0 & 0 & 1 & -4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

A vector $\vec{b} \in \mathbb{R}^n$ belongs to the column space of A if and only if there exist numbers x_1, \ldots, x_p such that

$$x_1\vec{a}_1 + \dots + x_p\vec{a}_p = \vec{b}.$$

This in turn happens if and only if the matrix equation $A\vec{x} = \vec{b}$ has at least one solution \vec{x} .

This last point shows that $im(A) = \mathbb{F}^p$ if and only if the matrix equation $A\vec{x} = \vec{b}$ has a solution \vec{x} for every choice of $\vec{b} \in \mathbb{F}^n$.

Proof. Proof of the uniqueness of reduced echelon form:

Example 32. Can you find a 3×3 matrix A such that dim(ker A) = dim(im(A))?

Example 33. Can you find a 4×4 matrix A such that $\dim(\ker A) = \dim(\operatorname{im}(A))$?

Example 34. If an 4×4 matrix A = BC such that B is a 4×3 matrix and C is a 3×4 matrix. Is A invertible?

Example 35. A subspace V of \mathbb{F}^n is called a hyperplane if V is defined by

$$c_1 x_1 + c_2 x_2 + \dots + c_n x_n = 0$$

where at least one c_i is not zero. What is the dimension of V?

A vector $\vec{b} \in \mathbb{R}^n$ belongs to the column space of A if and only if there exist numbers x_1, \ldots, x_p such that

$$x_1\vec{a}_1 + \dots + x_p\vec{a}_p = \vec{b}.$$

This in turn happens if and only if the matrix equation $A\vec{x} = \vec{b}$ has at least one solution \vec{x} .

This last point shows that $im(A) = \mathbb{F}^p$ if and only if the matrix equation $A\vec{x} = \vec{b}$ has a solution \vec{x} for every choice of $\vec{b} \in \mathbb{F}^n$.

Example 36. Let *T* be the transformation defined by
$$A = \begin{bmatrix} -3 & 6 & -1 & 1 \\ 1 & -2 & 2 & 3 \\ 2 & -4 & 5 & 8 \end{bmatrix}$$
.

Page 7

Suppose we already know $\operatorname{rref}(A) = \begin{bmatrix} 1 & -2 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Q1. Find **bases** for the **kernel** and **image** of T.

Q2. What are the dimensions of for the **kernel** and **image** of A?

Q3. Is
$$\vec{u} = \begin{bmatrix} 3\\1\\-2\\1 \end{bmatrix}$$
 in the kernel ker(A)?

Q4. Is $\vec{v} = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$ in the column of A? Is $\vec{w} = \begin{bmatrix} -1\\2\\5 \end{bmatrix}$ in the column of A?

Example 37. Let S(n) be the subset of $M_n(\mathbb{R})$, defined by

$$S(n) = \{A \in M_n(\mathbb{R}) \mid A = A^T\}$$

Show that S(n) is a subspace. What is a basis for S(n)? What is the dimension of S(n)? Example 38. Let O(n) be the subset of $M_n(\mathbb{R})$, defined by

$$O(n) = \{A \in M_n(\mathbb{R}) \mid A = -A^T\}$$

Show that O(n) is a subspace. What is a basis for O(n)? What is the dimension of O(n)?