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§4. Bases

Contents

1. Linear Independence 1

2. Basis of a vector space 3

3. The Dimension of a Subspace 4

4. Basis of Null space and range 6

5. Examples 7

1. Linear Independence

Let ~v1, ~v2, . . . , ~vt be vectors in a vector space V . Then Span(~v1, ~v2, . . . , ~vt) is a subspace of V .

Definition 1. • The set of vectors ~v1, . . . , ~vp in V is said to be (linearly) independent if the
homogeneous vector equation

x1~v1 + x2~v2 + · · ·+ xp~vp = ~0

only has the trivial solution x1 = x2 = · · · = xp = 0.

• If there exists a nontrivial solution (a1, a2, . . . , ap), then ~v1, . . . , ~vp is said to be (linearly) depen-
dent. In this case,

a1~v1 + a2~v2 + · · ·+ ap~vp = ~0

is a nontrivial relation among the vectors ~v1, . . . , ~vp.

Remark 2. A (possibly infinite) subset W of a vector space V is said to be linearly independent if all
finite subsets of W are linearly independent.

Remark 3. Unlike in the case of V = Fn, in the general setting of vector spaces, equation (1) cannot be
written as a matrix equation (directly).

We say a vector ~vi ( for i ≥ 2) is redundant if it is a linear combination of the preceding vectors
{~v1, ~v2, . . . , ~vi−1}, i.e.,

~vi = a1~v1 + a2~v2 + · · ·+ ai−1~vi−1

Proposition 4. Suppose ~vi is redundant in {~v1, ~v2, . . . , ~vp}. Then

Span{~v1, ~v2, . . . , ~vp} = Span{~v1, ~v2, . . . , ~̂vi . . . , ~vp}.

Here ~̂vi is removed.
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Proof. Clearly, Span{~v1, ~v2, . . . , ~vp} ⊇ Span{~v1, ~v2, . . . , ~̂vi . . . , ~vp}. We show ⊆ next.
Suppose ~u ∈ Span{~v1, ~v2, . . . , ~vp}. Then ~u = c1~v1 + c2~v2 + · · · + cp~vp. Replace ~vi by the above

redundant equation, ~u is a linear combination without ~vi. Hence, ~u ∈ Span{~v1, ~v2, . . . , ~̂vi . . . , ~vp}.
�

Proposition 5. • Suppose ~v1 6= ~0. The set {~v1, ~v2, . . . , ~vp} is independent if and only if none of
them is redundant.
• If the set {~v1, . . . , ~vp} of vectors contains the zero vector ~0, then it is linearly dependent.
• If a subset of the set {~v1, . . . , ~vp} is linearly dependent, then {~v1, . . . , ~vp} is dependent.

Proof. The first claim is equivalent to: the set {~v1, ~v2, . . . , ~vp} is dependent if and only if one of them
is redundant.
“⇒” Suppose {~v1, ~v2, . . . , ~vp} is dependent. Then

a1~v1 + a2~v2 + · · ·+ ap~vp = ~0

has non-trivial solution. Let i be the largest number such that ai 6= 0. (i 6= 1 since ~v1 6= ~0). Then

−ai~vi = a1~v1 + a2~v2 + · · ·+ ai−1~vi−1

So,
~vi = −a−1i a1~v1 − a−1i a2~v2 − · · · − a−1i ai−1~vi−1

That is, ~vi is redundant.
“⇐” Suppose ~vi is redundant. Then

~vi = a1~v1 + a2~v2 + · · ·+ ai−1~vi−1

So,
a1~v1 + a2~v2 + · · ·+ ai−1~vi−1 − ~vi = 0

So, {~v1, ~v2, . . . , ~vp} is dependent.
The proof of the rest two are easy. �

Proposition 6. A set {~v} is linearly dependent if and only if ~v = ~0.

A set {~u,~v} is linearly dependent if and only if one of the two vectors is a scalar multiple of the
other vector.

In Fn, the vector equation x1~v1 + x2~v2 + · · ·+ xp~vp = ~0 is equivalent to using the matrix equation A~x = ~0

or the augmented matrix [A | ~0]. So A = [~v1 . . . ~vp] is an n× p matrix.

Proposition 7. The set {~v1, ~v2, . . . , ~vp} ⊂ Fn is independent
if and only if the homogeneous equation only has zero solution;
if and only if there is no free variable;
if and only if all columns contain pivots;
if and only if rank(A) = p; (i.e., A has full rank. )

if and only if ker(A) = {~0}.

Proposition 8. If p > n, then a set {~v1, . . . , ~vp} of vectors in Fn is linearly dependent.
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Proof. From the above proposition, if the set is independent, rank(A) = p ≤ n. �

Warning: The preceding property does not say that p ≤ n implies that {~v1, . . . , ~vp} is linearly independent.

2. Basis of a vector space

Definition 9. Let V be vector space over F. A subset B = {~b1, . . . ,~bn} of V is called a basis for V
if

(i) B is linearly independent, and

(ii) Span{~b1, . . . ,~bn} = V .

A subset B of a vector space V has a “greater chance” of being

• linearly independent, if it has fewer vectors;

• a spanning set of V , if it has more vectors.

A basis B for a vector space V is a set that has balanced these two competing requirements. We can think
of a basis B as a spanning set that is as small as possible, and as a linearly independent set that is as
large as possible.

More precisely, we have

Theorem 10. If {~v1, ~v2, . . . , ~vn} is independent in V , and V = Span{~w1, ~w2, . . . , ~wm}, then m ≥ n.

Proof. We add ~v1 to the spanning set and get a dependent set

{~v1, ~w1, ~w2, . . . , ~wm}
Since ~v1 6= 0, we can remove one of ~wi from the set.
We then add ~v2 to the new spanning set and get a dependent set

{~v1, ~v2, ~w1, . . . , ~̂wi, . . . , ~wm}.
Claim: One of the w’s is redundant.
Proof of claim: If all w’s are not redundant, a1~v1 +a2~v2 +a3 ~w1 + · · ·+am+1 ~wm = ~0 has a non-trivial
solutions (a1, a2, 0, 0, ..., 0). That is a1~v1 + a2~v2 = 0 which is a contradiction.
So, we can remove one redundant wj’s and get a new spanning set

{~v1, ~v2, ~w1, . . . , ~̂wi, . . . , ~̂wj, . . . , ~wm}.
Keep adding the rest of v’s and remove the redundant w’s. We get a spanning set with ~v1, ~v2, . . . , ~vn
and the n w′s removed. So, we must have m ≥ n. �

Example 11. The column vectors of the identity matrix In, ~e1, ~e2, . . . , ~en form a standard basis for Fn.

Example 12. Find a basis for the vector space M2 of all 2 × 2 matrices. The standard basis for M2 is{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
Example 13. Find a basis for the vector space P2 of all polynomials of degree ≤ 2. The standard basis
for P2 is {1, t, t2}.
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Theorem 14 (Spanning Set Theorem). Let V be a vector space and let S = {~v1, . . . , ~vp} be a subset
of V with Span{~v1, . . . , ~vp} = H.
• If one of the vectors in S, say ~vk, is a linear combination of the remaining vectors in S, then the
set S − {~vk} still spans H,

H = Span{~v1, . . . , ~vp} = Span{~v1, . . . , ~vk−1, ~vk+1, . . . , ~vp}
• If H 6= {~0} then some subset of S is a basis for H.

Remark 15 (Algorithm for Finding a Basis). The preceding theorem provides a recipe for finding a
basis for a subspace H of a vector space V . Namely,

• Pick a generating set S = {~v1, . . . , ~vp} of H.

• Keep removing vectors from S that are linear combinations of other vectors in S.

• Once there are no more vectors left in S that are linear combinations of other vectors in S, S is a basis
for H.

From the algorithm, we obtained that

Proposition 16. (1) Every spanning set of a finite-dimensional vector space can be reduced to a
basis.
(2) Any finite-dimensional vector space has a basis.
(3) Any independent set in a finite-dimensional vector space can be extended to a basis.

Proof. For part (3), we need the trick in the proof of Theorem 10 �

3. The Dimension of a Subspace

For a finite-dimensional vector space V , it has many different bases. However, they contain some common
properties.

Theorem 17. If B = {~b1, . . . ,~bp} and D = {~d1, . . . , ~dm} are two bases for V , then p = m.

Proof. A basis is independent and span the space V . So, p ≤ m and p ≥ m. Then p = m. �

Definition 18 (The Dimension of a Vector Space). The dimension of a vector space V is defined
as

dimV := The cardinality of any basis for V ,

i.e., the number of elements in a basis.

By convention, the dimension of the vector space V = ~0 is 0.

Example 19. The dimension of Fn is n.
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Lemma 20. Suppose B = {~b1, . . . ,~bp} is a basis for V . (That is dimV = p.)
(1) Any set of more than p vectors is linearly dependent.
(2) Any set of less than p vectors can not span V .

Proof. From Theorem 10 in the last subsection. �

Theorem 21 (The Basis Theorem). Let V be a vector space with dim(V ) = p ≥ 1.
• Any linearly independent set of exactly p elements in V is automatically a basis for V .
• Any set of p elements in V that span V , is automatically a basis for V .

Proof. (1) Suppose {~u1, ~u2, · · · , ~up} is independent in V . If there is a vector ~v ∈ V , such that
~v /∈ Span{~u1, ~u2, · · · , ~up}, then {~u1, ~u2, · · · , ~up, ~v} is independent in V. This is a contradiction to the
above Lemma.
(2) Suppose V = Span{~w1, ~w2, · · · , ~wp}. If {~w1, ~w2, · · · , ~wp} is dependent, then we can delete a
redundant element from it and the rest still span V . This is a contradiction by the above Lemma.

�

Theorem 22. Let U be a subspace of a finite-dimensional space V . There is a subspace W such
that V = U ⊕W.

Proof. Suppose {~u1, . . . , ~up is a basis of U . We can extended it to a basis of V by adding {~w1, . . . , ~wm}.
Define W := Span{~w1, . . . , ~wm}. Claim: V = U + W and U ∩W = {~0}. (Verify this.) �

Theorem 23. Let U and V be subspaces of a finite-dimensional space. Then

dim(U + V ) = dimU + dimV − dim(U ∩ V )

Proof. Idea of the proof: Start from a basis ~w1, . . . , ~wp of U ∩ V and extended it to be a basis
~w1, . . . , ~wp, ~u1, . . . , ~um of U and a basis ~w1, . . . , ~wp, ~v1, . . . , ~vn of V . Then dimU ∩ V = p, dimU =
p + m, and dimV = p + n.
Claim: ~w1, . . . , ~wp, ~u1, . . . , ~um, ~v1, . . . , ~vn form a basis of U + V . (Verify this from definition.) �

In particular, dim(U ⊕ V ) = dimU + dimV . On the other side, we have the following theorem.

Corollary 24. Let U and W be subspaces of an n-dimensional space V . Suppose dimU+dimW = n
and U ∩W = {~0}, then V = U ⊕W .

Theorem 25. Suppose V is a finite dimensional and U1, . . . , Up are subspaces of V such that V =
U1 + · · ·+ Up and dimV = dimU1 + · · ·+ dimUp. Then V = U1 ⊕ · · · ⊕ Up.
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Proof. Suppose ~0 = ~u1 + · · ·+ ~up. �

4. Basis of Null space and range

Let T : V → W be a linear transformation. The rank of T is defined as the dimension of the image of T .
The nullity of T is defined as the dimension of the kernel of T .

Theorem 26. Let T : V → W be a linear transformation. Then

dimV = dim(kerT ) + dim(imT )

Proof. Suppose ~w1, . . . , ~wp is a basis for kerT . We can extended it to a basis {~w1, . . . , ~wp, ~v1, . . . , ~vm}
of V . Then, dimV = p + m and dim kerT = p.
Claim: {T (~v1), . . . , T (vm)} is a basis for imT . (Verify this from definition: span and independent).

�

Let A be an m × n matrix. The linear transformation defined by A is TA : Fn → Fm. We know that
dim(kerT ) + dim(imT ) = n. Now, we can also find basis for each space.

Theorem 27 (Basis for im(A)). A basis for the image im(A) is given by the pivot columns of A.
In particular, dim(imA) = rankA.

Proof. im(A) = Span{~a1, · · · ,~an}. Suppose the pivots columns are ~ac1 ,~ac2 , ...,~acr . They are inde-
pendent and all other columns are redundant columns, because they are corresponding free variables.
Hence, im(A) = Span{~ac1 ,~ac2 , ...,~acr}. So, {~ac1 ,~ac2 , ...,~acr} is a basis for im(A). �

Theorem 28 (Basis for ker(A)). Let A be an m×n matrix. Solve the matrix equation A~x = ~0. Write
~x as a linear combination of vectors ~v1, . . . , ~vp with the weights corresponding to the free variables.
Then {~v1, . . . , ~vp} is a basis for ker(A).

Proof. First, we know that ker(A) = Span{~v1, . . . , ~vp}. Since p is the number of free variables, so
dim(kerT ) = n− dim(imA) = p. So, {~v1, . . . , ~vp} is a basis for ker(A). �

Theorem 29 (The Dimensions of ker(A) and im(A)). Let A be an m× n matrix. Then,

dim(ker(A)) + dim(im(A)) = n.

Proof. Consider the matrix equation A~x = ~0. The dimension of ker(A) is the number of free variables

in the equation A~x = ~0. The dimension of im(A) is the number of pivot columns in A, which is also
the rank of A. So the sum dim(ker(A)) + dim(im(A)) is the total number of variables. �
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Theorem 30. Let A be an n× n square matrix.
A is invertible, if and only if the columns vectors span Fn;
if and only if the columns vectors of A are independent;
if and only if the columns vectors of A form a basis for Fn.

5. Examples

Example 31. Find bases for the kernel and image of the transformation defined by A =


0 0 2 −8 −1
1 6 2 −5 −2
2 12 2 −2 −3
1 6 0 3 −2

.

We already know rref(A) =


1 6 0 3 0
0 0 1 −4 0
0 0 0 0 1
0 0 0 0 0


A vector ~b ∈ Rn belongs to the column space of A if and only if there exist numbers x1, . . . , xp such that

x1~a1 + · · ·+ xp~ap = ~b.

This in turn happens if and only if the matrix equation A~x = ~b has at least one solution ~x.

This last point shows that im(A) = Fp if and only if the matrix equation A~x = ~b has a solution ~x for every

choice of ~b ∈ Fn.

Proof. Proof of the uniqueness of reduced echelon form:
�

Example 32. Can you find a 3× 3 matrix A such that dim(kerA) = dim(im(A))?

Example 33. Can you find a 4× 4 matrix A such that dim(kerA) = dim(im(A))?

Example 34. If an 4 × 4 matrix A = BC such that B is a 4 × 3 matrix and C is a 3 × 4 matrix. Is A
invertible?

Example 35. A subspace V of Fn is called a hyperplane if V is defined by

c1x1 + c2x2 + · · ·+ cnxn = 0

where at least one ci is not zero. What is the dimension of V ?

A vector ~b ∈ Rn belongs to the column space of A if and only if there exist numbers x1, . . . , xp such that

x1~a1 + · · ·+ xp~ap = ~b.

This in turn happens if and only if the matrix equation A~x = ~b has at least one solution ~x.

This last point shows that im(A) = Fp if and only if the matrix equation A~x = ~b has a solution ~x for every

choice of ~b ∈ Fn.

Example 36. Let T be the transformation defined by A =

−3 6 −1 1
1 −2 2 3
2 −4 5 8

.
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Suppose we already know rref(A) =

1 −2 0 −1
0 0 1 1
0 0 0 0


Q1. Find bases for the kernel and image of T .

Q2. What are the dimensions of for the kernel and image of A?

Q3. Is ~u =


3
1
−2
1

 in the kernel ker(A)?

Q4. Is ~v =

1
2
1

 in the column of A? Is ~w =

−1
2
5

 in the column of A?

Example 37. Let S(n) be the subset of Mn(R), defined by

S(n) = {A ∈Mn(R) | A = AT}
Show that S(n) is a subspace. What is a basis for S(n)? What is the dimension of S(n)?

Example 38. Let O(n) be the subset of Mn(R), defined by

O(n) = {A ∈Mn(R) | A = −AT}
Show that O(n) is a subspace. What is a basis for O(n)? What is the dimension of O(n)?
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