Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

- Instructor: He Wang

Email: he.wang@northeastern.edu

§4. Bases

Contents

1. Linear Independence 1
2. Basis of a vector space 3
3. The Dimension of a Subspace 4
4. Basis of Null space and range 6
5. Examples 7

1. Linear Independence

Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{t}$ be vectors in a vector space V. Then $\operatorname{Span}\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{t}\right)$ is a subspace of V.

Definition 1. - The set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{p}$ in V is said to be (linearly) independent if the homogeneous vector equation

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{p} \vec{v}_{p}=\overrightarrow{0}
$$

only has the trivial solution $x_{1}=x_{2}=\cdots=x_{p}=0$.

- If there exists a nontrivial solution $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$, then $\vec{v}_{1}, \ldots, \vec{v}_{p}$ is said to be (linearly) dependent. In this case,

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{p} \vec{v}_{p}=\overrightarrow{0}
$$

is a nontrivial relation among the vectors $\vec{v}_{1}, \ldots, \vec{v}_{p}$.
Remark 2. A (possibly infinite) subset W of a vector space V is said to be linearly independent if all finite subsets of W are linearly independent.
Remark 3. Unlike in the case of $V=\mathbb{F}^{n}$, in the general setting of vector spaces, equation (1) cannot be written as a matrix equation (directly).

We say a vector \vec{v}_{i} (for $i \geq 2$) is redundant if it is a linear combination of the preceding vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{i-1}\right\}$, i.e.,

$$
\vec{v}_{i}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{i-1} \vec{v}_{i-1}
$$

Proposition 4. Suppose \vec{v}_{i} is redundant in $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$. Then

$$
\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \widehat{\vec{v}}_{i} \ldots, \vec{v}_{p}\right\} .
$$

Here $\widehat{\vec{v}_{i}}$ is removed.

Proof. Clearly, $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\} \supseteq \operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \widehat{\vec{v}}_{i} \ldots, \vec{v}_{p}\right\}$. We show \subseteq next.
Suppose $\vec{u} \in \operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$. Then $\vec{u}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}$. Replace \vec{v}_{i} by the above redundant equation, \vec{u} is a linear combination without \vec{v}_{i}. Hence, $\vec{u} \in \operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \widehat{\vec{v}_{i}} \ldots, \vec{v}_{p}\right\}$.

Proposition 5. - Suppose $\vec{v}_{1} \neq \overrightarrow{0}$. The set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is independent if and only if none of them is redundant.

- If the set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ of vectors contains the zero vector $\overrightarrow{0}$, then it is linearly dependent.
- If a subset of the set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is linearly dependent, then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is dependent.

Proof. The first claim is equivalent to: the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is dependent if and only if one of them is redundant.
$" \Rightarrow$ " Suppose $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is dependent. Then

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{p} \vec{v}_{p}=\overrightarrow{0}
$$

has non-trivial solution. Let i be the largest number such that $a_{i} \neq 0$. $\left(i \neq 1\right.$ since $\left.\vec{v}_{1} \neq \overrightarrow{0}\right)$. Then

$$
-a_{i} \vec{v}_{i}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{i-1} \vec{v}_{i-1}
$$

So,

$$
\vec{v}_{i}=-a_{i}^{-1} a_{1} \vec{v}_{1}-a_{i}^{-1} a_{2} \vec{v}_{2}-\cdots-a_{i}^{-1} a_{i-1} \vec{v}_{i-1}
$$

That is, \vec{v}_{i} is redundant.
$" \Leftarrow$ " Suppose \vec{v}_{i} is redundant. Then

$$
\vec{v}_{i}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{i-1} \vec{v}_{i-1}
$$

So,

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{i-1} \vec{v}_{i-1}-\vec{v}_{i}=0
$$

So, $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is dependent.
The proof of the rest two are easy.

Proposition 6. A set $\{\vec{v}\}$ is linearly dependent if and only if $\vec{v}=\overrightarrow{0}$.
A set $\{\vec{u}, \vec{v}\}$ is linearly dependent if and only if one of the two vectors is a scalar multiple of the other vector.

In \mathbb{F}^{n}, the vector equation $x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{p} \vec{v}_{p}=\overrightarrow{0}$ is equivalent to using the matrix equation $A \vec{x}=\overrightarrow{0}$ or the augmented matrix $[A \mid \overrightarrow{0}]$. So $A=\left[\begin{array}{lll}\vec{v}_{1} & \ldots & \vec{v}_{p}\end{array}\right]$ is an $n \times p$ matrix.

Proposition 7. The set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\} \subset \mathbb{F}^{n}$ is independent
if and only if the homogeneous equation only has zero solution;
if and only if there is no free variable;
if and only if all columns contain pivots;
if and only if $\operatorname{rank}(A)=p$; (i.e., A has full rank.)
if and only if $\operatorname{ker}(A)=\{\overrightarrow{0}\}$.

Proposition 8. If $p>n$, then a set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ of vectors in \mathbb{F}^{n} is linearly dependent.

Proof. From the above proposition, if the set is independent, $\operatorname{rank}(A)=p \leq n$.

Warning: The preceding property does not say that $p \leq n$ implies that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is linearly independent.

2. Basis of a vector space

Definition 9. Let V be vector space over \mathbb{F}. A subset $B=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ of V is called a basis for V if
(i) B is linearly independent, and
(ii) $\operatorname{Span}\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}=V$.

A subset B of a vector space V has a "greater chance" of being

- linearly independent, if it has fewer vectors;
- a spanning set of V, if it has more vectors.

A basis B for a vector space V is a set that has balanced these two competing requirements. We can think of a basis B as a spanning set that is as small as possible, and as a linearly independent set that is as large as possible.

More precisely, we have

Theorem 10. If $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is independent in V, and $V=\operatorname{Span}\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m}\right\}$, then $m \geq n$.

Proof. We add \vec{v}_{1} to the spanning set and get a dependent set

$$
\left\{\vec{v}_{1}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m}\right\}
$$

Since $\vec{v}_{1} \neq 0$, we can remove one of \vec{w}_{i} from the set.
We then add \vec{v}_{2} to the new spanning set and get a dependent set

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{w}_{1}, \ldots, \widehat{\vec{w}_{i}}, \ldots, \vec{w}_{m}\right\}
$$

Claim: One of the w 's is redundant.
Proof of claim: If all w 's are not redundant, $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+a_{3} \vec{w}_{1}+\cdots+a_{m+1} \vec{w}_{m}=\overrightarrow{0}$ has a non-trivial solutions ($a_{1}, a_{2}, 0,0, \ldots, 0$). That is $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}=0$ which is a contradiction.
So, we can remove one redundant w_{j} 's and get a new spanning set

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{w}_{1}, \ldots, \widehat{\vec{w}_{i}}, \ldots, \widehat{\vec{w}_{j}}, \ldots, \vec{w}_{m}\right\}
$$

Keep adding the rest of v 's and remove the redundant w 's. We get a spanning set with $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ and the $n w^{\prime} s$ removed. So, we must have $m \geq n$.

Example 11. The column vectors of the identity matrix $I_{n}, \vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ form a standard basis for \mathbb{F}^{n}.
Example 12. Find a basis for the vector space M_{2} of all 2×2 matrices. The standard basis for M_{2} is $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$
Example 13. Find a basis for the vector space P_{2} of all polynomials of degree ≤ 2. The standard basis for P_{2} is $\left\{1, t, t^{2}\right\}$.

Theorem 14 (Spanning Set Theorem). Let V be a vector space and let $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ be a subset of V with $\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}=H$.

- If one of the vectors in S, say \vec{v}_{k}, is a linear combination of the remaining vectors in S, then the set $S-\left\{\vec{v}_{k}\right\}$ still spans H,

$$
H=\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}=\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k-1}, \vec{v}_{k+1}, \ldots, \vec{v}_{p}\right\}
$$

- If $H \neq\{\overrightarrow{0}\}$ then some subset of S is a basis for H.

Remark 15 (Algorithm for Finding a Basis). The preceding theorem provides a recipe for finding a basis for a subspace H of a vector space V. Namely,

- Pick a generating set $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ of H.
- Keep removing vectors from S that are linear combinations of other vectors in S.
- Once there are no more vectors left in S that are linear combinations of other vectors in S, S is a basis for H.

From the algorithm, we obtained that

Proposition 16. (1) Every spanning set of a finite-dimensional vector space can be reduced to a basis.
(2) Any finite-dimensional vector space has a basis.
(3) Any independent set in a finite-dimensional vector space can be extended to a basis.

Proof. For part (3), we need the trick in the proof of Theorem 10

3. The Dimension of a Subspace

For a finite-dimensional vector space V, it has many different bases. However, they contain some common properties.

Theorem 17. If $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$ and $\mathscr{D}=\left\{\vec{d}_{1}, \ldots, \vec{d}_{m}\right\}$ are two bases for V, then $p=m$.

Proof. A basis is independent and span the space V. So, $p \leq m$ and $p \geq m$. Then $p=m$.

Definition 18 (The Dimension of a Vector Space). The dimension of a vector space V is defined as

$$
\operatorname{dim} V:=\text { The cardinality of any basis for } V
$$

i.e., the number of elements in a basis.

By convention, the dimension of the vector space $V=\overrightarrow{0}$ is 0 .
Example 19. The dimension of \mathbb{F}^{n} is n.

Lemma 20. Suppose $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$ is a basis for V. (That is $\operatorname{dim} V=p$.)
(1) Any set of more than p vectors is linearly dependent.
(2) Any set of less than p vectors can not span V.

Proof. From Theorem 10 in the last subsection.

Theorem 21 (The Basis Theorem). Let V be a vector space with $\operatorname{dim}(V)=p \geq 1$.

- Any linearly independent set of exactly p elements in V is automatically a basis for V.
- Any set of p elements in V that span V, is automatically a basis for V.

Proof. (1) Suppose $\left\{\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{p}\right\}$ is independent in V. If there is a vector $\vec{v} \in V$, such that $\vec{v} \notin \operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{p}\right\}$, then $\left\{\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{p}, \vec{v}\right\}$ is independent in V . This is a contradiction to the above Lemma.
(2) Suppose $V=\operatorname{Span}\left\{\vec{w}_{1}, \vec{w}_{2}, \cdots, \vec{w}_{p}\right\}$. If $\left\{\vec{w}_{1}, \vec{w}_{2}, \cdots, \vec{w}_{p}\right\}$ is dependent, then we can delete a redundant element from it and the rest still span V. This is a contradiction by the above Lemma.

Theorem 22. Let U be a subspace of a finite-dimensional space V. There is a subspace W such that $V=U \oplus W$.

Proof. Suppose $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right.$ is a basis of U. We can extended it to a basis of V by adding $\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\}$. Define $W:=\operatorname{Span}\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\}$. Claim: $V=U+W$ and $U \cap W=\{\overrightarrow{0}\}$. (Verify this.)

Theorem 23. Let U and V be subspaces of a finite-dimensional space. Then

$$
\operatorname{dim}(U+V)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V)
$$

Proof. Idea of the proof: Start from a basis $\vec{w}_{1}, \ldots, \vec{w}_{p}$ of $U \cap V$ and extended it to be a basis $\vec{w}_{1}, \ldots, \vec{w}_{p}, \vec{u}_{1}, \ldots, \vec{u}_{m}$ of U and a basis $\vec{w}_{1}, \ldots, \vec{w}_{p}, \vec{v}_{1}, \ldots, \vec{v}_{n}$ of V. Then $\operatorname{dim} U \cap V=p, \operatorname{dim} U=$ $p+m$, and $\operatorname{dim} V=p+n$.
Claim: $\vec{w}_{1}, \ldots, \vec{w}_{p}, \vec{u}_{1}, \ldots, \vec{u}_{m}, \vec{v}_{1}, \ldots, \vec{v}_{n}$ form a basis of $U+V$.(Verify this from definition.)

In particular, $\operatorname{dim}(U \oplus V)=\operatorname{dim} U+\operatorname{dim} V$. On the other side, we have the following theorem.

Corollary 24. Let U and W be subspaces of an n-dimensional space V. Suppose $\operatorname{dim} U+\operatorname{dim} W=n$ and $U \cap W=\{\overrightarrow{0}\}$, then $V=U \oplus W$.

Theorem 25. Suppose V is a finite dimensional and U_{1}, \ldots, U_{p} are subspaces of V such that $V=$ $U_{1}+\cdots+U_{p}$ and $\operatorname{dim} V=\operatorname{dim} U_{1}+\cdots+\operatorname{dim} U_{p}$. Then $V=U_{1} \oplus \cdots \oplus U_{p}$.

4. Basis of Null space and range

Let $T: V \rightarrow W$ be a linear transformation. The rank of T is defined as the dimension of the image of T. The nullity of T is defined as the dimension of the kernel of T.

Theorem 26. Let $T: V \rightarrow W$ be a linear transformation. Then

$$
\operatorname{dim} V=\operatorname{dim}(\operatorname{ker} T)+\operatorname{dim}(\operatorname{im} T)
$$

Proof. Suppose $\vec{w}_{1}, \ldots, \vec{w}_{p}$ is a basis for ker T. We can extended it to a basis $\left\{\vec{w}_{1}, \ldots, \vec{w}_{p}, \vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$ of V. Then, $\operatorname{dim} V=p+m$ and $\operatorname{dim} \operatorname{ker} T=p$.
Claim: $\left\{T\left(\vec{v}_{1}\right), \ldots, T\left(v_{m}\right)\right\}$ is a basis for $\operatorname{im} T$. (Verify this from definition: span and independent).

Let A be an $m \times n$ matrix. The linear transformation defined by A is $T_{A}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$. We know that $\operatorname{dim}(\operatorname{ker} T)+\operatorname{dim}(\operatorname{im} T)=n$. Now, we can also find basis for each space.

Theorem 27 (Basis for $\operatorname{im}(A))$. A basis for the image $\operatorname{im}(A)$ is given by the pivot columns of A. In particular, $\operatorname{dim}(\operatorname{im} A)=\operatorname{rank} A$.

Proof. $\operatorname{im}(A)=\operatorname{Span}\left\{\vec{a}_{1}, \cdots, \vec{a}_{n}\right\}$. Suppose the pivots columns are $\vec{a}_{c_{1}}, \vec{a}_{c_{2}}, \ldots, \vec{a}_{c_{r}}$. They are independent and all other columns are redundant columns, because they are corresponding free variables. Hence, $\operatorname{im}(A)=\operatorname{Span}\left\{\vec{a}_{c_{1}}, \vec{a}_{c_{2}}, \ldots, \vec{a}_{c_{r}}\right\}$. So, $\left\{\vec{a}_{c_{1}}, \vec{a}_{c_{2}}, \ldots, \vec{a}_{c_{r}}\right\}$ is a basis for $\operatorname{im}(A)$.

Theorem 28 (Basis for $\operatorname{ker}(A))$. Let A be an $m \times n$ matrix. Solve the matrix equation $A \vec{x}=\overrightarrow{0}$. Write \vec{x} as a linear combination of vectors $\vec{v}_{1}, \ldots, \vec{v}_{p}$ with the weights corresponding to the free variables. Then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a basis for $\operatorname{ker}(A)$.

Proof. First, we know that $\operatorname{ker}(A)=\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$. Since p is the number of free variables, so $\operatorname{dim}(\operatorname{ker} T)=n-\operatorname{dim}(\operatorname{im} A)=p$. So, $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a basis for $\operatorname{ker}(A)$.

Theorem 29 (The Dimensions of $\operatorname{ker}(A)$ and $\operatorname{im}(A))$. Let A be an $m \times n$ matrix. Then, $\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))=n$.

Proof. Consider the matrix equation $A \vec{x}=\overrightarrow{0}$. The dimension of $\operatorname{ker}(A)$ is the number of free variables in the equation $A \vec{x}=\overrightarrow{0}$. The dimension of $\operatorname{im}(A)$ is the number of pivot columns in A, which is also the rank of A. So the sum $\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))$ is the total number of variables.

Theorem 30. Let A be an $n \times n$ square matrix. A is invertible, if and only if the columns vectors span \mathbb{F}^{n}; if and only if the columns vectors of A are independent;
if and only if the columns vectors of A form a basis for \mathbb{F}^{n}.

5. Examples

Example 31. Find bases for the kernel and image of the transformation defined by $A=\left[\begin{array}{ccccc}0 & 0 & 2 & -8 & -1 \\ 1 & 6 & 2 & -5 & -2 \\ 2 & 12 & 2 & -2 & -3 \\ 1 & 6 & 0 & 3 & -2\end{array}\right]$ We already know $\operatorname{rref}(A)=\left[\begin{array}{ccccc}1 & 6 & 0 & 3 & 0 \\ 0 & 0 & 1 & -4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

A vector $\vec{b} \in \mathbb{R}^{n}$ belongs to the column space of A if and only if there exist numbers x_{1}, \ldots, x_{p} such that

$$
x_{1} \vec{a}_{1}+\cdots+x_{p} \vec{a}_{p}=\vec{b}
$$

This in turn happens if and only if the matrix equation $A \vec{x}=\vec{b}$ has at least one solution \vec{x}.
This last point shows that $\operatorname{im}(A)=\mathbb{F}^{p}$ if and only if the matrix equation $A \vec{x}=\vec{b}$ has a solution \vec{x} for every choice of $\vec{b} \in \mathbb{F}^{n}$.

Proof. Proof of the uniqueness of reduced echelon form:

Example 32. Can you find a 3×3 matrix A such that $\operatorname{dim}(\operatorname{ker} A)=\operatorname{dim}(\operatorname{im}(A))$?
Example 33. Can you find a 4×4 matrix A such that $\operatorname{dim}(\operatorname{ker} A)=\operatorname{dim}(\operatorname{im}(A))$?
Example 34. If an 4×4 matrix $A=B C$ such that B is a 4×3 matrix and C is a 3×4 matrix. Is A invertible?

Example 35. A subspace V of \mathbb{F}^{n} is called a hyperplane if V is defined by

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=0
$$

where at least one c_{i} is not zero. What is the dimension of V ?
A vector $\vec{b} \in \mathbb{R}^{n}$ belongs to the column space of A if and only if there exist numbers x_{1}, \ldots, x_{p} such that

$$
x_{1} \vec{a}_{1}+\cdots+x_{p} \vec{a}_{p}=\vec{b} .
$$

This in turn happens if and only if the matrix equation $A \vec{x}=\vec{b}$ has at least one solution \vec{x}.
This last point shows that $\operatorname{im}(A)=\mathbb{F}^{p}$ if and only if the matrix equation $A \vec{x}=\vec{b}$ has a solution \vec{x} for every choice of $\vec{b} \in \mathbb{F}^{n}$.
Example 36. Let T be the transformation defined by $A=\left[\begin{array}{cccc}-3 & 6 & -1 & 1 \\ 1 & -2 & 2 & 3 \\ 2 & -4 & 5 & 8\end{array}\right]$.

Suppose we already know $\operatorname{rref}(A)=\left[\begin{array}{cccc}1 & -2 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
Q1. Find bases for the kernel and image of T.
Q2. What are the dimensions of for the kernel and image of A ?
Q3. Is $\vec{u}=\left[\begin{array}{c}3 \\ 1 \\ -2 \\ 1\end{array}\right]$ in the kernel $\operatorname{ker}(A)$?
Q4. Is $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ in the column of A ? Is $\vec{w}=\left[\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right]$ in the column of A ?
Example 37. Let $S(n)$ be the subset of $M_{n}(\mathbb{R})$, defined by

$$
S(n)=\left\{A \in M_{n}(\mathbb{R}) \mid A=A^{T}\right\}
$$

Show that $S(n)$ is a subspace. What is a basis for $S(n)$? What is the dimension of $S(n)$?
Example 38. Let $O(n)$ be the subset of $M_{n}(\mathbb{R})$, defined by

$$
O(n)=\left\{A \in M_{n}(\mathbb{R}) \mid A=-A^{T}\right\}
$$

Show that $O(n)$ is a subspace. What is a basis for $O(n)$? What is the dimension of $O(n)$?

