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1. Linear Spaces

We already met real vector spaces Rn, or complex vector spaces Cn. Now, let us study a more general
definition of abstract vector spaces.

Definition 1 ((abstract) vector space, or linear spaces). Let F be a field. A vector space over F
is any nonempty set V of objects, called vectors, on which there are defined two closed operations,
• vector addition (sum) ~u + ~v ∈ V , and
• multiplication by a scalar c ∈ F, c~u ∈ V (scalar product),
subject to the rules below, called axioms of a vector space:
1.) ~u + ~v = ~v + ~u.
2.) (~u + ~v) + ~w = ~v + (~u + ~w).

3.) There is a zero vector ~0 ∈ V such that ~u +~0 = ~u.

4.) For each ~u ∈ V , there is a vector −~u ∈ V such that ~u + (−~u) = ~0.
5.) c · (~u + ~v) = c · ~u + c · ~v.
6.) (c + d) · ~u = c · ~u + d · ~v.
7.) c(d · ~u) = (cd)~u.
8.) 1 · ~u = ~u.
These must hold for all ~u,~v, ~w ∈ V and all c, d ∈ F.

Axioms 1-4 implies that (V,+) is a abelian group.

Some nice properties seems obvious in Rn, but need a proof in general starting from the axioms.

Proposition 2. (1) Zero vector is unique.
(2) For any ~u, the inverse vector −~u is unique.

Proof. Since (V,+) is an abelian group, we have proved this in §1. �

Proposition 3. 0 · ~u = ~0,

Proof. ~0 = ~u + (−~u) = 1 · ~u + (−~u) = (0 + 1) · ~u + (−~u) = 0 · ~u + 1 · ~u + (−~u) = 0 · ~u +~0 = 0 · ~u
In the proof, we used axioms 4, 8, 6, 2, 3. �

Proposition 4. c ·~0 = ~0
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Proof. c ·~0 = c · (0 · ~u) = (c0) · ~u = 0 · ~u = ~0 �

Proposition 5. −~u = (−1)~u.

Proof. ~0 = 0 · ~u = (1 − 1) · ~u = 1~u + (−1)~u = ~u + (−1)~u. So −~u = (−1)~u since inverse is unique.
�

We have the following examples of vector spaces with the corresponding sum and scalar product.

1. Fn is a vector space.

2. The set of all m× n matrices (denoted as Fm×n) with matrix sum and scalar product is a vector space
with entries in F.

3. The set of all functions f : F→ F with sum and scalar product is a vector space. (Infinite dimensional)

4. The set of all continuous functions f : R→ R with sum and scalar product is a vector space. (Infinite
dimensional)

4. The set of all functions(transformations) Fm → Fn is a vector space.

It is not hard but we need to verify that those two operations are closed and all those eight axioms are
satisfied.

Once we already have some vector spaces, we will consider subsets of the vector space with the same sum
and scalar product operations. It will be easier to check using the following definition.

2. Subspaces

Definition 6. (Subspace) A subspace of the vector space V is a subset H of V that satisfies the
following three properties.
(1). ~0 ∈ H.
(2). If ~u,~v ∈ H then ~u + ~v ∈ H. (Closed under addition)
(3). If ~u,~v ∈ H and c ∈ F, then c~u ∈ H. (Closed under scalar product)

Theorem 7. A subspace H of a linear space V is a linear space.

Remark: In the definition, we can put non-empty subset and omit (1).

Proposition 8. {~0} is a subspace of linear space V , called zero space.

Example 9. Determine which of the following set is a subspace (vector space).

1. Let P be the set of all polynomials.
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2. Let Pn be the set of all polynomials of degree ≤ n.

Proof. The set of polynomials of degree ≤ n, Pn = {a0 + a1t + · · · antn|ai ∈ F} is a vector space.
First, 0 ∈ Pn.
Second, For any two such polynomials a0 + a1t + · · · antn and b0 + b1t + · · · bntn ∈ Pn, the sum
a0 + a1t + · · · antn + b0 + b1t + · · · bntn = (a0 + b0) + (a1 + b2)t + · · · (an + bn)tn is in Pn.
Third, for any polynomials a0 + a1t + · · · antn ∈ Pn and any c ∈ F , the scalar product c(a0 + a1t +
· · · antn) = ca0 + ca1t + · · · cantn is in Pn. So Pn is a subspace of the linear space of all functions
F → F . �

3. Let H be the set of all polynomials of degree exactly 3, with real coefficients.

4. Let H = {ax4 + b | a, b ∈ R}. Is H a subspace of P4?

5. Let H = {x2 + a | a ∈ R}. Is H a subspace of P?

6. The set Un×n of all n× n upper triangular matrices with real entries.

7. The set Ln×n of all n× n lower triangular matrices with real entries.

8. The set Dn×n of all n× n diagonal matrices with real entries.

9. The set Tm×n of all n× n triangular matrices with real entries.

Yes: 1, 2, 4,6, 7, 8,
No: 3, 5, 9

Example 10. Determine which of the following set is a subspace (vector space).

1. Let L be the set of vectors on the line 2x1 − x2 = 0.

2. Let L be the set of vectors on the line 2x1 − x2 = 1.

3. Let H be the set of vectors on the plane 3x1 − 5x2 + x3 = 0.

4. Let V =

{[
x1

x2

]
∈ R2 : x1 ≥ 0, x2 ≥ 0

}
.

5. The union of the first and second quadrants in the xy-plane: W =

{[
x
y

] ∣∣∣∣ y ≥ 0

}
6. Any line or plane passing zero in Rn.

Yes: 1, 3, 6
No: 2, 4,5
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Definition 11. A linear combination of ~v1, ~v2, . . . , ~vm in V is a vector in V defined as

c1~v1 + c2~v2 + · · ·+ cm~vm

where c1, . . . , cm ∈ F. The set of all linear combinations of ~v1, ~v2, . . . , ~vm in V is called the span of
~v1, ~v2, . . . , ~vm, denoted as

Span(~v1, ~v2, . . . , ~vm) := {c1~v1 + c2~v2 + · · ·+ cm~vm| all ci ∈ F}

Theorem 12. Let ~u1, ~v2, . . . , ~vm be vectors in a linear space V . Then Span(~v1, ~v2, . . . , ~vm) is a
subspace of V .

Proof. We prove the theorem by verifying the definition.
1. Choose all ci = 0 so ~0 ∈ Span(~u1, ~u2, . . . , ~um)
2. For any two vectors c1~v1 + c2~v2 + · · ·+ cm~vm and d1~v1 +d2~v2 + · · ·+dm~vm in Span(~u1, ~u2, . . . , ~um),
the sum c1~v1+c2~v2+· · ·+cm~vm+d1~v1+d2~v2+· · ·+dm~vm = (c1+d1)~v1+(c2+d2)~v2+· · ·+(cm+dm)~vm
is an element in Span(~u1, ~u2, . . . , ~um).
3. For any vector c1~v1 + c2~v2 + · · ·+ cm~vm in Span(~u1, ~u2, . . . , ~um) and any k ∈ F, the scalar product
k(c1~v1 + c2~v2 + · · ·+ cm~vm) = kc1~v1 +kc2~v2 + · · ·+kcm~vm is an element in Span(~u1, ~u2, . . . , ~um). �

The other direction is also correct:

Proposition 13. Any subspace U of V can be written as span of some vectors in V .

The choice of span is not unique. The largest is U = Span(U).

If a vector space V can be written as a span of finite number of vectors in V , then V is called a finite-
dimensional vector space. In our class, we will focus on finite-dimensional vector spaces.

3. Sum and direct sum of subspaces

Let U and W be subspaces of a vector space V .

Definition 14. The sum of U and W is defined to be the set of all possible sums of elements in U
and W ,

U + W = {u + w|u ∈ U ;w ∈ W}

Proposition 15. U + W is a subspace of V .

Definition 16. If V = U + W and each v ∈ V can be uniquely written as v = u + w, then, V is
called the direct sum of U and W , denoted by

V = U ⊕W

Example 17. U = {x, y, 0} ⊂ R3 and V = {0, y, z} ⊂ R3, then U + V = R3. However, R3 is not a direct
sum of U and V .
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In order to verify direct sum, we only need to verify that ~0 only have a unique decomposition.

Proposition 18. Let V = U + W . If ~0 = ~u + ~w implies ~u = ~w = ~0, then

V = U ⊕W

Proof. Suppose v ∈ V can be written as two decompositions ~v = ~u1 + ~w1 = ~u2 + ~w2, then (~u1−~u2)+

(~w1 − ~w2) = ~0. Then ~u1 = ~u2 and ~w1 = ~w2. Hence, V = U ⊕W .
�

Proposition 19. V = U ⊕W if and only if V = U + W and V ∩W = {~0}.

Proof. ⇒: Suppose V = U ⊕W , then V = U + W . If ~v ∈ V ∩W , then ~0 = ~v + (−~v). We also have
~0 = ~0 +~0. Hence ~v = ~0.
⇐: Suppose ~v = ~u1+~w1 = ~u2+~w2, then (~u1−~u2) = −(~w1−~w2) ∈ U∩W . So ~u1−~u2 = −(~w1−~w2) = ~0.
Hence ~u1 = ~u2 and ~w1 = ~w2. �

Example 20. R3 is a direct sum of U = {x, 0, 0} ⊂ R3 and V = {0, y, z} ⊂ R3.

Example 21. Suppose U and V are two subspaces of a vector space W .

(1) Is the union of two subspace U ∪ V a subspace?

(2) Is the intersection U ∩ V is a subspace?

4. Linear transformations

Let V and W be two vector spaces over a field F. A transformation (or function or map) T from V to
W is a rule

T : V → W

of assigning to each vector ~v ∈ V a vector T (~v) = ~w ∈ W . This is only in set level.

Definition 22. A transformation T : V → W is called linear if
(i) T (~u + ~v) = T (~u) + T (~v) for all ~u,~v ∈ V .
(ii) T (c · ~u) = c · T (~u) for all ~u ∈ V and all c ∈ F.

From definition, we can easily get the following properties for linear transformation.

Proposition 23. If T : V → W is a linear transformation, then

(i) T (~0) = ~0;

(ii) T (c1~v1 + c2~v2 + · · ·+ cp~vp) = c1T (~v1) + c2T (~v2) + · · ·+ cpT (~vp) for all scalars c1, . . . , cp ∈ F and
all vectors ~v1, . . . , ~vp ∈ V .

Example 24. 1. Zero map is linear transformation.

2. Identity map id : V → V is a linear transformation.
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5. Kernel and Image

Definition 25. Consider a transformation T : V → W . We call V the domain of T .
The set of all vectors T (~x) in W , for all ~x ∈ V , is called the image of T , denoted as im(T ), that is

im(T ) := {T (~x) | all ~x ∈ V } ⊂ W.

The kernel of T is defined as

ker(T ) := {~x ∈ V | T (~x) = ~0} ⊂ V.

Recall that a transformation T : V → W is called surjective (or onto) if for any vectors ~b ∈ V , T (~x) = ~b

has at least a solution. T is called injective (or one-to-one) if T (~a) = T (~b) implies ~a = ~b for any vectors

~a,~b ∈ V .

We can use kernel and image to describe injective and surjective.

Proposition 26. A linear transformation T : V → W is injective if and only if ker(T ) = {~0}, (

i.e., T (~v) = ~0 implies ~v = ~0.)
T : V → W is surjective if and only if im(T ) = W .

Proof. The forward direction (⇒) is clear. Let’s show the backward direction (⇐). For any vectors

~a,~b ∈ Rn, if T (~a) = T (~b), then T (~a−~b) = ~0. So, ~a−~b = ~0, that is ~a = ~b. Hence T is injective. �

Theorem 27. Let T : V → W be a linear transformation. Then im(T ) is a subspace of W and
ker(T ) is a subspace of V .

(Vector space ker(T ) is also called Null space and im(T ) is called range of T )

Proof. (1) First, ~0 ∈ im(T ) since T (~0) = ~0. Second, if ~a and ~b ∈ im(T ), then there exists ~u,~v ∈ V

such that T (~u) = ~a and T (~v) = ~b. So, T (~u+~v) = T (~u) +T (~v) = ~a+~b. Hence ~a+~b ∈ im(T ). Third,
if ~a ∈ im(T ) and c ∈ F , then there exists ~u ∈ V such that T (~u) = ~a. So, T (c~u) = cT (~u) = c~a.
Hence, c~a ∈ im(T ). Hence, im(T ) is a subspace of W .

(2) First, ~0 ∈ ker(T ) since T (~0) = ~0. Second, if ~a and ~b ∈ ker(T ), then T (~a) = T (~b) = ~0. So,

T (~a +~b) = T (~a) + T (~b) = ~0. Hence ~a +~b ∈ ker(T ). Third, if ~a ∈ ker(T ) and c ∈ F , then T (~a) = ~0.

So, T (c~a) = cT (~a) = ~0. Hence, c~a ∈ ker(T ). Hence, ker(T ) is a subspace of V . �

A linear transformation T : X → Y is said to be invertible (or bijective) if the equation T (~x) = ~y has a
unique solution ~x for any ~y ∈ Y . Equivalently, there is a transformation S : Y → X such that

S(T (~x)) = ~x, for all ~x ∈ X;

T (S(~y)) = ~y, for all ~y ∈ Y.

Remark. Such a transformation S : Y → X, if it exists is unique and linear, is called the inverse
transformation of T . We shall use the notion S = T−1 to denote the inverse transformation of T .
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Definition 28. Two vector spaces V and W are called isomorphic, denoted as V ∼= W , if there is
an invertible linear transformation T : V → W .

Let V and W be vector spaces. Denote L (V,W ) the set of all linear transformations from V to W . Thus
T ∈ L (V,W ) if and only if

(i) T : V → W ,
(ii) T (~v1 + ~v2) = T (~v1) + T (~v2) for ~v1, ~v2 ∈ V ,

(iii) T (a~v) = aT (~v) for ~v ∈ V , a ∈ F.

Theorem 29. L (V,W ) is a vector space.

Proof. All transformations from V to W form a vector space under the sum and scalar products.
We only need to show L (V,W ) is a subspace by verifying the three conditions. Zero transformation
is a linear transformation. Sum and scalar product preserve linearity. (verify). �

6. Quotient spaces.

Let V be a vector space over a field F.

An equivalent relation ∼ on V is a binary relation such that reflexive, symmetric and transitive. That
is, for any ~u, ~v, ~w ∈ V ,

• ~v ∼ ~v.
• If ~v ∼ ~w, then ~w ∼ ~v.
• If ~u ∼ ~v and ~v ∼ ~w, then ~u ∼ ~w.

Let N be a subspace of V . We can define an equivalence relation on V by defining that

~v ∼ ~w if ~v − ~w ∈ N

The equivalence class (or, called the coset) of ~v is defined [~v] := ~v + N = {~v + ~a | ~a ∈ N}.

The quotient space V/N is a the set of all cosets by the equivalent relation. Addition and scalar product
is defined as

• [~v] + [~w] = [~v + ~w].
• c[~v] = [c~v].

Check that this definition is not depending on the choice of representative.

Quotient space V/N is a vector space.

There is a natural epimorphism from p : V → V/N defined by p(~v) = [~v]. The kernel is ker p = N . There
exists a short exact sequence

0→ N → V → V/N → 0

Here, exact means ker=im at each connecting place.
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On the level of dimension, dim(V/N) = dim(V )− dim(N).

The idea of quotient is used in almost all mathematics, e.g., quotient group, quotient ring, quotient field,
quotient module, quotient algebra, quotient space in topology, etc.

7. Linear transformations and matrices

Theorem 30. Given an m× n matrix A. There is a linear transformation T : Fn → Fm defined as

T (~x) = A · ~x

Proof. If A is an m×n matrix, ~u and ~v are vectors in Rm and c is a scalar, then A(~u+~v) = A~u+A~v
and A(c~u) = c(A~u). So, T is a linear transformation. �

Denote ~e1, ~e2, ... , ~em be the column vectors of the identity matrix Im. We call them the standard vectors
in Fm.

~e1 =


1
0
0
...
0

 ~e2 =


0
1
0
...
0

 · · · ~em =


0
0
...
0
1



The next theorem is very effective for finding the matrix for a given linear transformation.

Theorem 31 (Transformation matrix). Let T : Fn → Fm be a linear transformation. There exists
an m× n matrix A such that T (~x) = A · ~x. Further more, the matrix of T is given by

A = [T (~e1) T (~e2) · · · T (~en)].

Proof. For any ~x = x1~e1 + x2~e2 + · · ·+ xn~en ∈ Fn,

T (~x) = T (x1~e1 + x2~e2 + · · ·+ xn~en)

= x1T (~e1) + x2T (~e2) + · · ·+ xnT (~en)

= [T (~e1) T (~e2) · · · T (~en)]~x

= A~x

�

Theorem 32. L (Fn,Fm) is isomorphic to the matrix space Fm×n.

Proof. Define a map f : Fm×n → L (F n, Fm) send matrix A to the linear transformation TA.
f is linear, since f(A + B) = f(A) + f(B) and f(cA) = cf(A).
ker(f) = {0} is the zero matrix.
By the above theorem, f is surjective. So, f is a isomrophism. �
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Definition 33. The vector space V ∗ := L (V,F) is called the dual space of the vector space V .

In particular,

Theorem 34. An n× n matrix A is invertible
if and only if the linear transformation TA is injective;
if and only if the linear transformation TA is surjective.

Proof. TA is injective if and only if the linear system A~x = ~0 has only the trivial solution.

TA is surjective if and only if the TA(~x) = ~b has at least a solution for any ~b ∈ Fn. �

Theorem 35 (Matrix product and composition of transformations). Let A be an m×n matrix and
B be a n× p matrix. Then the product AB is the matrix of the transformation composition TA ◦TB.

Proof. (TA ◦ TB)(~x) = TA(B~x) = A(B~x) = AB~x. �

Corollary 36. An n× n matrix A is invertible if and only if TA is invertible. Moreover, (TA)−1 =
TA−1.

We know that any linear transformation from Rn to Rm is defined by an m×n matrix A = [~a1 ~a2 · · · ~an].
So, the image of T is

im(T ) = {A(~x) | all ~x ∈ Rn}
= {x1~a1 + x2~a2 + · · ·+ xn~an | all real numbers xi}
= {all linear combinations of ~a1,~a2, · · · ,~an}
= Span(~a1,~a2, · · · ,~an)

The kernel of T is the solution set

ker(T ) = {~x ∈ Rn | A(~x) = ~0} = {all solutions of A(~x) = ~0}

Proposition 37. For an m× n matrix A,

(1.) ker(A) = {~0} if and only if A~x = ~0 only has zero solution; if and only if rank(A) = n (i.e.,
no free variable).

(2.) If ker(A) = {~0} (TA is injective), then m ≥ n (i.e., more equations than variables).
(3) If im(TA) is surjective, then n ≥ m.

Proof. Proof of (1) and (2) is clear. For proof of (3), im(A) = Span(~a1,~a2, · · · ,~an) = Rm. We will
finish the argument in next section using basis and dimension. �

Example 38. Find a transformation which has kernel as a plane

2x− y + 3z = 0.

How many such transformation can we find?
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Example 39. What is the geometry of image and kernel of the transformation defined by T (~x) = ~v · ~x

for ~v =

 2
−1
3

?

Example 40. Find the image and kernel of the linear transformation T : R4 → R3 defined by matrix

A =

0 0 2 8
1 5 2 −5
2 10 6 −2

 = [~a1 ~a2 ~a3 ~a4]. Answer: The image of T is im(T ) = Span(~a1,~a2,~a3,~a4).

We can calculated that rref(A) =

1 5 0 −13
0 0 1 4
0 0 0 0

. The solutions of A(~x) = ~0 can be described as vector

form:

~x = x2


−5
1
0
0

+ x4


13
0
−4
1

 = x2~v1 + x4~v2

So the kernel is ker(T ) = Span{v1, v2}.

Consider an m× n matrix. We know that ker(T ) is the set of all solutions of A(~x) = ~0.
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