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1. Sum and scalar product

Definition 1. e The sum A-+ B of m xn matrices A and B is the new m X n matrix obtained
by adding corresponding entries of A and B.
e The scalar product r - A of a scalar r € F and a matrix A is the matrix obtained by
multiplying each entry of A by r.

For example, A + B = {011 CL12} n [bn b12} _ {au + b1y az + by

Q21 Q22 ba1  bao az1 + ba1  ag + b

Q21 Q22 kagr  kag

EA — k {an a12:| _ [kan kau]

Theorem 2. For n x m matrices A, B,C and scalar r, s, the following hold.
(1) A+ B=B+ A;

(2)(A+ B)+C=A+ (B+(C);

(3) A+0=A;

(5) r(A+ B) =rA+rB;

(6) (r+s)A=rA+sA;

(7) r(sA) = (rs)A;

(8) 1A = A.

Proof. By direct verification. O




Because vectors are special matrices, the operations sum and scalar products are also defined. In particular,
we denote — for (—1) - 7.

Geometric meanings of vectors: The sum of two vectors satisfies the Parallelogram Rule. The scalar

product means the scaling of the length and keep the direction.

There is an extra operation on vectors.

7

Definition 3. The dot product of two vectors

U U1
U= . and ¥ =
Unp, Un

is defined as
U-U = UV + UV + * - Uy,

2. Matrix Product

e Product of a matrix A and a vector Z.

Let A be an m x n matrix with columns ay, ds, ..., d, and rows Ry, Rs,..

., R,,. Let ¥ be a vector in F".

N\

Definition 4. The product of A and 7 defined to be

I
Ax:[al s ... an} . = 2101 + Loy + - -+ + Tpdy,.
L xn
R1 R1 T a11T1 + A12T2 + - + A1pTh
Ry Ry -7 2171 + Q22X + +++ + A2 Ty
Rm Rm T ] Am1Z1 + ApmaZ2 + -+ ATy

Definition 5. A vector b in F™ is called linear combination of U1, Ug, . .., U, in F™ if there exist

scalars x1, xs, ..., x, such that
b=x101 + o0 + -+ + T, Uy

Page 2



Theorem 6. Let A be an m X n matrix with columns dy,ds, ... ,d,, and let b be a vector in F™.
Then the matrixz equation
AZ =0
has the same solution set as the vector equation
018y + Doy + o+ Tl = b,

which has the same solution set as the linear system with augmented matriz

Theorem 7 (Algebraic Rules for AZ). If A is an m x n matriz, @ and U are vectors in F" and
c is a scalar, then

(1.) AU +7) = Au + AT

(2.) A(cti) = c(Aq).

Proof. Direct calculation. U

We previously defined the multiplication of an m x n matrix A and an n-dimensional vector ¥, which is
itself a n x 1 matrix. The result A - ¥ is an m-dimensional vector, which is the same as an m x 1 matrix.

(m X n matrix) - (n x 1 matrix) = m x 1 matrix.

We shall next generalize this to multiplying more general matrices.

Definition 8. Let A be an m X n matrix and B be a n X p matrix with columns 51, e ,gp. We then
define the product of A and B, to be the m x p matrix
AB:=[Ab, Aby, ... Ab)

If the number of columns of A does not equal the number of rows of B, then AB is not defined.
e The Row-Column Rule for Computing A - B

Let A be an m x n matrix whose (4, j)-th entry is a;;.

Let B be an n x p matrix whose (4, j)-th entry is b;;.

Then the (7, j)-th entry of AB is

n
E Qikbg; = anbij + aizba; + -+ + inbyy,
k=1

which equals the dot product of the i-th row of A with the j-th column of B

by
by
[Cm iz * am] N

by,
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Example 9. Calculate ABfor A= |4 2| and B = { 2 _4}.

Theorem 10 (Properties of Matrix Multiplication). Let A be an m x n matriz, and let B and C
be matrices for which the indicated operations are defined. Let I,, denote the n X n identity matriz.

e A(BC) = (AB)C. (Associativity of matriz multiplication)
e A(B+C)=AB+ AC. (Left Distributive Law)

e (A+ B)C = AC + BC. (Right Distributive Law)

e r(AB) = (rA)B where 1 is any scalar.

o [, A= A= Al,. (ldentity Law for Matrix Multiplication)

Proof. Each one is proved by direct verification. Let us verify the first associativity property. The
rest verifications are easy. Suppose B is a n X p matrix and C'is a p X ¢ matrix. We compare the
(1, 7) position of both sides, using the sum notation.

Forany 1 <i<mand 1< j <g,

n n P
[A(BC)];; = Zazk(BC Zazk (Z bklcl]) = Zaikbklclj
k

k=1 k=1 =1 [=1

[(AB)C);; Z(AB acy = Z (Z azkbkl> = Z Z airbricyy = Z Z @ikbricij

=1 k=1 [=1

So, A(BC) = (AB)C. 0

Remark (Non-Properties of Matrix Multiplication)

Some familiar arithmetic properties of real numbers do not translate to analogue properties of matrices.
e Even when both AB and BA are defined, generally AB # BA.
e If AB = AC it does not generally follow that B = C' (even when A # 0).

o If AB =0, it does not generally follow that either A or B is the zero matrix.

1 211 1
Example 11. AB:{3 4] 0 1]7&BA
o 111 2] [o 1][o o
AB_OO__34_00_[34}_AC
0 1] [3 4] 00
AB:oo_oo_:oo

Example 12. Find all matrices commute with A =

2 3
-3 2
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Definition 13. If A is an n x n matrix and k£ > 1 an integer, we define the k-th power of A, denoted
by A*. as

k factors

Example 14. Calculate X2, X3, X* ... for the following matrices

1 1 1 01 2 1 00
f] B:[] C=100 3 D=10 2 0
2 01 000 00 3
Remark 15. The power of a matrix is useful in discrete Markov chain (dynamical system). Direct

calculation of power of a matrix is tedious. Diagonalization using eigenvalue and eigenvector can simplify
the calculation significantly.

A:

N= N

Definition 16 (Elementary matrices). E;; denotes the elementary matrix obtained by switching
the i-th and j-th rows of the identity matrix.
] RiHR]‘ El
E;(c) denotes the elementary matrix obtained by multiplying the i-th row by the nonzero constant
c.

I <5 Ey(c)
E;;(d) denotes the elementary matrix adding d times the j-th row to the i-th row. (The order is

from right to left)

R;+dR,;

I Ei;(d)

010 1
Example 17. 3 x 3 matrices: E;o = [1 0 0], Es(k) = |0
0 0 1 0

o O
—_ o O
&
[\
=
—~
N
SN—

I
[
O = O
_— o O

Proposition 18 (Elementary matrices multiplications). Multiply a matriz A with an elementary
on the left side is equivalent to an elementary row operation is performed on the matriz A.

Example 19. E;; A is the matrix obtained from A by switch the i-th row and the j-the row.
AN poA

Example 20. F;(c)A is the matrix obtained from A by multiplying the i-th row by the nonzero constant
c.

A Bie)A
Example 21. E;;(d)A is the matrix obtained from A by adding d times the j-th row to the i-th row.

A po(d)A

Product of block matrices.

A A
AS A4

By By

] and B = [ ] , and all products in the following formulas exist, then
AB — A1By + AyBy A1By + AyBy
A3By + AyBs A3By + AyBy| -
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3. Inverse of a matrix

Definition 22. An n x n matrix A is called invertible if there exists an n X n matrix B such that
AB = BA=1,.

Since the role of A and B in the definition is symmetric, if B is the inverse of A, then A is the inverse of
B.

Proposition 23. If A is invertible, then it has only one inverse.

Proof. If A have two inverses B and C', then
B = BI =B(AC) = (BA)C =1IC =C.

In this case, we will denote the inverse of A as A™! = B.

Theorem 24. Let A and B be n X n matrices.
o If A is invertible, then so is A~ and

(A H = A

o If A is invertible, then so is AT and

(AT = (41T,
o If A and B are invertible, then so is AB and

(AB) ' =pBtA™!
o If A is invertible and k # 0, then so is kA and

1
(kA = EA L

o Suppose A is invertible. If AB = AC, or BA= CA, then B=C.
o If A is invertible, then A™ is invertible and (A™)™! = (A=H)™.

Proof. Each one property is a easy verification using definition. We use the product as an example,
(AB)(B™'A™') = ABB™'A™! = AIA™! = AA™' = | by associativity of products. Similarly,
(B'A Y (AB) = B'A7'AB = BIB™! = BB~! = 1. So AB is invertible and (AB)™! = B7t1A~L.

O

Proposition 25. Suppose A and B are n x n matrices. If AB is invertible, then both A and B are
wnvertible.

Example 26. If A and B are n x n invertible matrices, is A + B invertible?
Example 27. The inverse of the elementary matrices.

E;' = Ey,  Ei(o)' = E(1/c), Eij(d)~ = Ej(—d)
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Theorem 28 (The inverse matrix theorem). Let A be an n x n matriz. Then the next statements
are all equivalent (that is, they are either all true or all false).

(1) The matriz A is invertible.

(2) There is a square matriz B such that BA = 1.

(3) The linear system AZ = 0 has only the trivial solution.

(4) rank A = n.

(5) The reduced row echelon form of A is identity matriz, i.e. rref(A) = I,.

(6) The matriz A is a product of elementary matrices.

(7) There is a square matriz C' such that AC' = I,,.

(8) The linear system AZ = b has a unique solution for every b € F".

Proof. (1)=(2) Obvious.

(2)=(3) Multiply B on left, we get BAZ = 0. So Z = 0 is the only solution.

(3)=(4) by example in the last class.

(4)=-(5) Obvious.

(5)=(6) EA = rref(A) = I, where E = F;--- E is a product of elementary matrices. So, A =
E;'---E;'is a product of elementary matrices.

(6)=-(1) The reason is that elementary matrices are invertible matrices and product of invertible
matrices are invertible.

We have proved that (1)=-(2)=-(3)=(4)=(5)=(6)=>(1). So, the first six statements are equivalent.
(1)=(7) is obvious. (7)=-(4): rank(AC) = rank(l,) = n. So by Theorem 34, rank A > n. This
shows that (7) is also equivalent to the above six statements.

(8)=(6) is obviously. (1)=-(8). Since A™A = I and A~ is unique, then # = A~} is the unique
solution. Hence the first eight statements are equivalent.

0

This is a standard method to show equivalent statements. We don’t have to show the other directions.

Some of them may hard to show directly.

Question: If A, B and C' are n x n matrices and ABC = I,,, is each of the matrices invertible? What are

their inverses?

Theorem 29 (Algorithm for Computing A™'). Given an n x n matriz A.
1. Define an n X 2n “augmented matrix ”

[A [ 1]

2. Using elementary row operations to find rreflA | I,)].
(1). If rreflA | I,] = [I,, | C], then C = A~L.
(7). If this is not possible, then A is not invertible.

Example. Find the inverse of matrix A =

W N =
co W =
DN DN =
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Theorem 30 (Invertibility of 2 x 2 Matrices). A 2 x 2 matriz A = {CCL Z} is invertible if and only
if ad — be # 0.

The formula for the inverse matriz of A is
1 d —b
At = . .
ad — bc {—C a 1

We call ad — be the determinant of A, denoted by det(A) or |A].

4. The transpose A"

Definition: Given an m x n matrix A, we define the transpose matriz A", as the n x m matrix whose
(1, 7)-th entry is the (j,4)-th entry of A

Said differently, the rows of AT are the columns of A, and the columns of AT are the rows of A.

Theorem 31 (Properties of Matrix Transposition). Let A and B be matrices such that the indicated
operations are well defined.

o (AT)T = A.
o (A+B)T = AT 4+ BT.
o (rA)T =rAT for any scalar r.
o (AB)T = BT AT.

Proof. Let’s verify the last equality. The rest are easy. We compare the (i, j)-entry of the matrix.
[(AB)T] AB]]Z Z a’]kbkz

[BTAT]ij = Z[BT]HC AT Z bkla]k = Z ajkbkz

k
So, (AB)T = BTAT. 0

Theorem 32. If AB is defined, then rank(AB) < rank A.

Proof. Suppose rank(A) = r, so EA = rref(A) with only the first » non-zero rows, where E is
products of elementary matrices. Then rank(AB) = rank(FAB) = rank(rref(A)B). However,
rref(A)B only has r non-zero rows. So, rank(rref(A)B) < r, that is rank(AB) < rank(A). O

Theorem 33. rank(A) = rank(A7).
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Proof. Suppose rank(A) = r, so EA = rref(A) with only the first » non-zero rows, where E' is
products of elementary matrices.

Take the transpose AT ET = rref(A)” which has rank 7. So, by Theorem 32, rank(A) < rank(AT).
Hence rank(A”) < rank((A”)T) = rank(A), since (A7) = A. O

Theorem 34. If AB is defined, then rank(AB) < min{rank A, rank B}.

Proof. By the above three theorems, rank(AB) = rank((AB)T) = rank(BTAT) < rank(BT)
rank(B).

O

Definition 35 (Symmetric Matrices ). An n x n matrix A is called symmetric if AT = A.

If we write A = [a;;], then A is symmetric if and only if

Q55 = Aj; for all Z,] € {1,2, ,n}

5. LU factorizations and Gaussian elimination

LU-decomposition is a matrix product version of Gaussian elimination.

Definition 36. An m X m matrix L with entries [;; is called

e lower triangular if /;; = 0 whenever j > 4, that is if all entries /;; above the main diagonal are
Zero.

e unit lower triangular if it is lower triangular with the extra property that [; = 1 for each
i1=1,...,m.

Remark: (1) Unit lower triangular is preserved by matrix product and inverse.
(2) Elementary matrices E;;(d) is a unit lower triangular matrix if ¢ > j.

Using only replacement operations, suppose we can reduce an m x n matrix A to an echelon form ref(A).
Each operation is a left multiplication by an elementary matrix L = E;;(d) for i > j. So,

ref(A) = Lpr—l cee LlA

Hence

A=L7'Lyt - LY L 'ref(A)

Definition 37. Let A be an m x n matrix. An LU factorization for A is given by writing A as
the product
A=L-U

with L a unit lower triangular m x m matrix, and with U an m x n matrix in echelon form.
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Use of LU factorizations: Suppose A = L-U with L unit lower triangular and with U in echelon from,
and consider the linear system Ax = b.

Upshot The original system Ax = b has been replaced by the equivalent system Ur = L5 whose
coefficient matrix U is in echelon form, and is therefore easier to solve than Ax = b.

Algorithm for Finding an LU Factorization:

Suppose A is an m X n matrix that can be transformed into a matrix in echelon form by using only
Row-Replacement operations. Then an LU factorization of A can be obtained as follows.

1. Reduce A to echelon form U using only Row-Replacement operations.

2. Let L be the matrix obtained from I,, by applying the inverse Row-Replacement operations from Step
1, in reverse order.

Then A = L - U with L unit lower triangular and U in echelon form.

Remark: Not ever matrix has a LU-factorization.

Example There is no LU-factorization for matrix {(1) (1)}

Remark: There are several variations of LU-factorization: e.g.,

1. LDU-decomposition. A = LDU. Here D means a diagonal matrix and U is an unit upper triangular
matrix.

2. LU-factorization with pivoting. PA = LU. Here P is a permutation matrix, obtained by multiplication
of elementary matrices Ej;.
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