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§14 Principle Component Analysis

Principal component analysis is an effective way to suppress redundant information and
provide in only one or two composite sections most of the information from the initial
data.

Principal component analysis is used to analyze multivariate data: a sequence of (obser-
vations) vectors in Rn.

Example: The two-dimensional data is given by a set of weights and heights of n
college students. Let ~xi denote the observation vector in R2 that lists the weight and
height of the i-th student.

Example: Typically, the image is 1000×1000 pixels, so there are 1 million pixels in the
image. The data for the image form a matrix with 3 rows and 1 million columns. In this
case, the multidimensional character of the data refers to the three spectral dimensions.
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Mean and Covariance Let [X1 ... Xn], be a p × n matrix of observations, such as
described above.

The sample mean of the observation vectors

The sample mean of the observation vectors is the point in the center of the scatter plot.
The mean-deviation form is

The sample covariance matrix of the observation vectors is the p× p matrix S

Denote the coordinates of X by x1, ..., xp. The diagonal entry sii in S is the variance of
xi. The variance of xi measures the spread of the values of Xi.

The entry sij in S for i 6= j is called the covariance of xi and xj.

If sij = 0, xi and xj are called uncorrelated.

The total variance of the data is the sum of the variances on the diagonal of S, i.e.,
the trace of S.

Example 1. Three measurements are made on each of four individuals in a random
sample from a population. The observation vectors are

X1 =

1
2
1

 , X2 =

 4
2
13

 , X3 =

7
8
1

 , X4 =

8
4
5



Compute the sample mean and the covariance matrix.
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Sample mean is
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Principal Component Analysis For simplicity, assume that the matrix [X1 ... Xn] is
already in mean-deviation form.

The goal of principal component analysis is to find an orthogonal p × p matrix P =
[~u1 ... ~up] that determines a change of variable, X = PY , with the property that the new
variables ~y1, ..., ~yp are uncorrelated and are arranged in order of decreasing variance.

Example: Suppose associated covariance matrix of a multispectral image is given by

The eigenvalues of S and the associated principal components (the unit eigenvectors) are
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Reducing the Dimension of Multivariate Data

Principal component analysis is potentially valuable for applications in which most of
the variation, or dynamic range, in the data is due to variations in only a few of the new
variables, ~y1, ..., ~yp.

An orthogonal change of variables, X = PY does not change the total variance of the
data.

Total variance of x1, ..., xp = Total variance of y1, ..., yp = tr(D)=λ1 + · · ·+ λp.

The variance of yi is λi and the quotient λi/tr(S) measures the fraction of the total
variance that is captured by yi.

Example Compute the various percentages of variance of in the previous example.

The total variance of the data is
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Example The following table lists the weights and heights of five boys:
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Lab1.

(1) Find the principal components for this data. Plot the eigenvalues of the covariance
matrix in decreasing order. How many components are needed to explain 95% of the
total sample variance?

(2) Let ~z1, ..., ~z14 ∈ R5 be the projections of the data points onto the first two princi-
pal components. Compute the sample mean and the sample covariance of the points
~z1, ..., ~z14 ∈ R5.
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Lab2.

The file energydata complete.csv contains measurement data of temperature and humid-
ity: you can read about the meaning of the variables here

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
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