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8§14 Principle Component Analysis

Principal component analysis is an effective way to suppress redundant information and
provide in only one or two composite sections most of the information from the initial
data.

Principal component analysis is used to analyze multivariate data: a sequence of (obser-
vations) vectors in R".

Example: The two-dimensional data is given by a set of weights and heights of n
college students. Let #; denote the observation vector in R? that lists the weight and
height of the i-th student.

Example: Typically, the image is 1000 x 1000 pixels, so there are 1 million pixels in the
image. The data for the image form a matrix with 3 rows and 1 million columns. In this
case, the multidimensional character of the data refers to the three spectral dimensions.




Mean and Covariance Let [X; ... X;], be a p X n matrix of observations, such as
described above.

The sample mean of the observation vectors

The sample mean of the observation vectors is the point in the center of the scatter plot.
The mean-deviation form is

The sample covariance matrix of the observation vectors is the p x p matrix S

Denote the coordinates of X by x4, ..., x,. The diagonal entry s;; in S is the variance of
x;. The variance of x; measures the spread of the values of X;.

The entry s;; in S for ¢ # j is called the covariance of z; and z;.
If s;j =0, z; and x; are called uncorrelated.

The total variance of the data is the sum of the variances on the diagonal of S, i.e.,
the trace of 5.

Example 1. Three measurements are made on each of four individuals in a random
sample from a population. The observation vectors are

Compute the sample mean and the covariance matrix.
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Sample mean is

1 1 4 7 8 1 20 5
M=- 2+ 2|+ | 8|+ |4 =—|16|=1|4
N\ 13 1 s1) 4|20 5
Subtract the sample mean from Xy, ..., Xy to obtain
i —4 i —1 [ 2 i 3
X =2, Xui=|-2|, X5= 41, Xy=10
—4 | 8 | —4 0
and B
-4 -1 2 3
B=|-2 -2 4 0
| —4 8 —4 0
The sample covariance matrix is
-4 -1 2 3 j j _;
S=—-{-2 -2 4 0
3|4 8 -4 of] 2 *+ 4
= 3 0 0
1 (30 18 0 10 6 0
=—|18 24 -24|=| 6 8 -8
3 0 —24 96 0 -8 3
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Principal Component Analysis For simplicity, assume that the matrix [X; ... X,,] is
already in mean-deviation form.

The goal of principal component analysis is to find an orthogonal p X p matrix P =
[t ... 1) that determines a change of variable, X = PY, with the property that the new
variables 11, ..., ¢y, are uncorrelated and are arranged in order of decreasing variance.

Example: Suppose associated covariance matrix of a multispectral image is given by

2382.78 2611.84 2136.20
S =1 2611.84 3106.47 2553.90
2136.20 255390 2650.71

Find the principal components of the data, and list the new variable determined by the
first principal component.

The eigenvalues of S and the associated principal components (the unit eigenvectors) are
Al =7614.23 Ay = 427.63 Az = 98.10

5417 —.4894 .6834
n = | .6295 m = | —.3026 = | —.7157
5570 8179 1441

Using two decimal places for simplicity, the variable for the first principal component is

= .54.X'1 + .63XZ -+ .5'6.X'3
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Reducing the Dimension of Multivariate Data

Principal component analysis is potentially valuable for applications in which most of
the variation, or dynamic range, in the data is due to variations in only a few of the new
variables, ¥, ..., Up.

An orthogonal change of variables, X = PY does not change the total variance of the
data.

Total variance of 1, ..., z, = Total variance of yi, ..., y, = tr(D)=A + -+ + A,.

The variance of y; is A; and the quotient \;/tr(S) measures the fraction of the total
variance that is captured by ;.

Example Compute the various percentages of variance of in the previous example.

The total variance of the data is
tr(D) = 7614.23 + 427.63 4+ 98.10 = 8139.96

[Verify that this number also equals tr(S).] The percentages of the total variance
explained by the principal components are

First component Second component Third component

7614.23 427.63 98.10
= 93.5% 3%

— ] = 2.2 == 1.2%
8139.96 8139.96 8139.96
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Example The following table lists the weights and heights of five boys:

Boy | #1 #2 #3 #4 #5
Weight (Ib) | 120 125 125 135 145
Height (in.) 61 60 64 68 72

1. Find the covariance matrix for the data.

2. Make a principal component analysis of the data to find a single size index that
explains most of the variation in the data.

1. First arrange the data in mean-deviation form. The sample mean vector is easily

seentobe M = 122 . Subtract M from the observation vectors (the columns in

the table) and obtain

-10 -5 -5 5 15
B:[—4—5 -1 3 7]

Then the sample covariance matrix is

10 —4
1 [—10 5 5 5 15] o
5-1| -4 -5 -1 3 7 5 3
15 7
_ 17400 1907 _[100.0 475
T 4| 190 100 | 47,5 25.0

(]

. The eigenvalues of S are (to two decimal places)
Ay =123.02 and A, =1.98

900 . .

436 |- (Since § is 2 x 2, the
computations can be done by hand if a matrix program is not available.) For the size
index, set

The unit eigenvector corresponding to Ay is u =

y = .900% + .436h

where @ and h are weight and height, respectively, in mean-deviation form. The
variance of this index over the data set is 123.02. Because the total variance is
tr(S) = 100 + 25 = 125, the size index accounts for practically all (98.4%) of the
variance of the data.

h
75+
70+
65+
Inches
55+
_,__.:-
A—t | | —w
120 130 140 150
Pounds
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Labl.

Data from an old census in the Madison, Wisconsin area provided information on five socioeco-
nomic variables for a collection of 14 neighborhoods. The variables are

total population (thousands)

median school years

total employment (thousands)

health services employment (hundreds)

median home values ($10,000s)

The data is summarized by the mean vector and the covariance matrix of the variables. Namely
let ¥1,..., %14 € R be the data samples from the 14 neighborhoods, then the sample mean is

1 14
ﬁi:ﬁz.‘c}

and the sample covariance is

i=1
The data are not provided, but we do have the mean and sample covariance, which are

()T = (432 1401 195 217 245)

4308 1.683 1.803 2155 —0.253

1.683 1768 0.588 0.177 0.176
5= 1803 0588 0801 1.065 —-0.158
2155 0.177 1.065 197 —-0.357

—0.253 0176 -—-0.158 -0.357 0.504

(1) Find the principal components for this data. Plot the eigenvalues of the covariance
matrix in decreasing order. How many components are needed to explain 95% of the
total sample variance?

(2) Let zy,..., 714 € R® be the projections of the data points onto the first two princi-
pal components. Compute the sample mean and the sample covariance of the points
51, cees 214 € R.
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Lab2.

The file energydata_complete.csv contains measurement data of temperature and humid-
ity: you can read about the meaning of the variables here

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

Problem 1

Consider just the temperature variables T1,...,T9. Note that each measurement x; is a point in

R? (there are approximately 20,000 data points). Use PCA in Matlab on this set of data points.
Plot the eigenvalues of the covariance matrix. Find the number of principal components needed

to explain 95% of the variation in the measurements.

Problem 2

Create a two dimensional plot showing the projections of the data points onto the plane spanned
by the first two principal components. That is, let 1 and u; be the first two principal components,
so a data point can be represented as

— 2 —
Xi =X+ciu +c.-,2u2+RESE )% + Cj1 U1 + G Uz

The coordinates of the projection of x; in the (u1, u2)-plane are (c;1,ci»). Make a scatter plot of
these coordinates for all the data points.

Problem 3
Repeat Tasks 1,2 for the nine humidity variables RH_1,...,RH_9.
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