Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

• Instructor: He Wang Email: he.wang@northeastern.edu

§13 Singular Value Decomposition

1. Singular Value Decomposition

Recall the spectral decomposition for symmetric matrices:

Theorem 1 (Spectral Decomposition for Symmetric Matrices). A is an $m \times m$ symmetric matrix if an only if $A = VDV^{-1}$ such that D is diagonal and V is an orthogonal matrix. Let $\lambda_1, \ldots, \lambda_m$ be the diagonal entries of D, and let $\vec{v}_1, \ldots, \vec{v}_m$ be the column vectors of V. Then $A = VDV^T$ can be written as $A = \lambda_1 \left(\vec{v}_1 \cdot (\vec{v}_1)^T \right) + \cdots + \lambda_n \left(\vec{v}_n \cdot (\vec{v}_m)^T \right)$

We want to find a similar decomposition for **any** $n \times m$ matrix M.

Definition 2 (Singular Values).

Theorem 3. If rank(M) = r, then $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_m = 0$.

Theorem 4. (1) $M\vec{v}_i \cdot M\vec{v}_j = 0$ for $i \neq j$. (2) $||M\vec{v}_i|| = \sigma_i$ for all i = 1, 2, ..., m. (3) In particular, $M\vec{v}_i = 0$ for i = r + 1, ..., m. **Theorem 5** (Singular Value Decomposition(SVD)). And $n \times m$ matrix M can be decomposed as

 $M = U\Sigma V^T$

or as

$$M = \sigma_1 \vec{u}_1 \vec{v}_1^T + \dots + \sigma_r \vec{u}_r \vec{v}_r^T$$

Example 6. Find an SVD decomposition for the matrix

$$M = \begin{bmatrix} 1 & 4 \\ 2 & 2 \\ 2 & -4 \end{bmatrix}$$

Example 7. Find an SVD decomposition for the matrix

$$M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Example 8.

$$M = \begin{bmatrix} 1 & -1 \\ 1 & 2 \\ -1 & 1 \end{bmatrix}$$

- (1). Calculate $M^T M$ and $M M^T$.
- (2). Find all eigenvalues and an eigenbasis of $M^T M$.
- (3). Find all eigenvalues and an eigenbasis of MM^{T} .
- (4). Find an SVD decomposition for the matrix M.

Applications.

1. Geometric meaning in \mathbb{R}^2 .

Theorem 9. Let M be an 2×2 invertible matrix. The image of M of the unit circle is an ellipse. The lengths of the semimajor and the semiminor axes of the ellipse are the singular values of M.

2. Solving least-squares problems.

- 3. Principal component analysis.
- 4. Digital image compressing.