Northeastern University, Department of Mathematics
MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

- Instructor: He Wang Email: he.wang@northeastern.edu

§13 Singular Value Decomposition

1. Singular Value Decomposition

Recall the spectral decomposition for symmetric matrices:

Theorem 1 (Spectral Decomposition for Symmetric Matrices). A is an $m \times m$ symmetric matrix if an only if $A=V D V^{-1}$ such that D is diagonal and V is an orthogonal matrix.
Let $\lambda_{1}, \ldots, \lambda_{m}$ be the diagonal entries of D, and let $\vec{v}_{1}, \ldots, \vec{v}_{m}$ be the column vectors of V. Then $A=V D V^{T}$ can be written as

$$
A=\lambda_{1}\left(\vec{v}_{1} \cdot\left(\vec{v}_{1}\right)^{T}\right)+\cdots+\lambda_{n}\left(\vec{v}_{n} \cdot\left(\vec{v}_{m}\right)^{T}\right)
$$

We want to find a similar decomposition for any $n \times m$ matrix M.

Definition 2 (Singular Values).

Theorem 3. If $\operatorname{rank}(M)=r$, then $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ and $\sigma_{r+1}=\cdots=\sigma_{m}=$ 0.

Theorem 4. (1) $M \vec{v}_{i} \cdot M \vec{v}_{j}=0$ for $i \neq j$.
(2) $\left\|M \vec{v}_{i}\right\|=\sigma_{i}$ for all $i=1,2, \ldots, m$.
(3) In particular, $M \vec{v}_{i}=0$ for $i=r+1, \cdots, m$.

Theorem 5 (Singular Value Decomposition(SVD)). And $n \times m$ matrix M can be decomposed as

$$
M=U \Sigma V^{T}
$$

or as

$$
M=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}+\cdots+\sigma_{r} \vec{u}_{r} \vec{v}_{r}^{T}
$$

Example 6. Find an SVD decomposition for the matrix

$$
M=\left[\begin{array}{cc}
1 & 4 \\
2 & 2 \\
2 & -4
\end{array}\right]
$$

Example 7. Find an SVD decomposition for the matrix

$$
M=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Example 8.

$$
M=\left[\begin{array}{cc}
1 & -1 \\
1 & 2 \\
-1 & 1
\end{array}\right]
$$

(1). Calculate $M^{T} M$ and $M M^{T}$.
(2). Find all eigenvalues and an eigenbasis of $M^{T} M$.
(3). Find all eigenvalues and an eigenbasis of $M M^{T}$.
(4). Find an SVD decomposition for the matrix M.

Applications.

1. Geometric meaning in \mathbb{R}^{2}.

Theorem 9. Let M be an 2×2 invertible matrix. The image of M of the unit circle is an ellipse. The lengths of the semimajor and the semiminor axes of the ellipse are the singular values of M.
2. Solving least-squares problems.
3. Principal component analysis.
4. Digital image compressing.

