Northeastern University, Department of Mathematics
MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

- Instructor: He Wang Email: he.wang@northeastern.edu
$\S 12$ Spectral Theorem and quadratic forms

Contents

1. Spectral Theorem
2. Quadratic forms and positive definite

1. Spectral Theorem

In this section, we deal real matrix.
An $n \times n$ matrix A is called symmetric if $A^{T}=A$, i.e.,

$$
a_{i j}=a_{j i} \quad \text { for all } i, j \in\{1,2, \ldots, n\}
$$

Example 1 (Diagonalizing a Symmetric Matrix).
$A=\left[\begin{array}{cc}10 & 6 \\ 6 & 1\end{array}\right] . \quad B=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] . \quad C=\left[\begin{array}{lll}1 & 1 & 7 \\ 1 & 7 & 1 \\ 7 & 1 & 1\end{array}\right]$.

Proposition 2. A symmetric $n \times n$ matrix A has n real eigenvalues if they are counted with their algebraic multiplicities.

Proposition 3. Let A be a symmetric matrix and let λ, μ be two distinct eigenvalues of A with associated eigenvectors \vec{v}, \vec{w}. Then

$$
\vec{v} \cdot \vec{w}=0 .
$$

E_{λ} is orthogonal to E_{μ} for distinct eigenvalues λ, μ (in that $\vec{v} \cdot \vec{w}=0$ for all $\vec{v} \in E_{\lambda}$ and $\left.\vec{w} \in E_{\mu}\right)$.

Definition 4 (Orthogonal Diagonalization). An $n \times n$ matrix is orthogonally diagonalizable if there exist diagonal matrix D and orthogonal matrix P such that

$$
A=P D P^{-1}=P D P^{T}
$$

Theorem 5 (On Orhtogonal Diagonalizability). An $n \times n$ matrix A is orthogonally diagnonalizable if and only if A is a symmetric matrix.

3. The Spectral Decomposition

Let A be an $n \times n$ matrix and let D and P be a diagonal and orthogonal matrix with $A=P D P^{-1}$.

Theorem 6 (Spectral Decomposition for Symmetric Matrices).

2. Quadratic forms and positive definite

Definition 7. A function $p\left(x_{1}, \ldots, x_{n}\right)$ from \mathbb{R}^{n} to \mathbb{R} is call a quadratic form, if it is a linear combination of forms $x_{i} x_{j}$.

So, a quadratic form can be written as

$$
p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j} c_{i j} x_{i} x_{j}
$$

Another way to write quadratic form is using symmetric matrices

$$
p\left(x_{1}, \ldots, x_{n}\right)=\vec{x} \cdot A \vec{x}=\vec{x}^{T} A \vec{x}
$$

The unique symmetric matrix A is called the matrix for the quadratic form.

Example 8. Consider $p\left(x_{1}, \ldots, x_{3}\right)=3 x_{1}^{2}+4 x_{2}^{2}-5 x_{3}^{2}-2 x_{1} x_{2}+4 x_{1} x_{3}+6 x_{2} x_{3}$

Definition 9. An real symmetric matrix A is called positive definite if the quadratic form

$$
\vec{x}^{T} A \vec{x}>0
$$

for all nonzero $\vec{x} \in \mathbb{R}^{n}$.
The matrix A is called positive semidefinite if the quadratic form

$$
\vec{x}^{T} A \vec{x} \geq 0
$$

for all $\vec{x} \in \mathbb{R}^{n}$.

Theorem 10. (1) An real symmetric matrix A is positive definite if and only if all eigenvalues of A are positive.
(2) An real symmetric matrix A is positive semidefinite if and only if all eigenvalues of A are non-negative.

Theorem 11. Let V be an inner product space over \mathbb{R} and let $\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis of V. Then the Gram matrix G is positive definite.

Here the Gram matrix G is defined by $G_{i j}=\left\langle\vec{b}_{j}, \vec{b}_{i}\right\rangle$.

Proposition 12. Let A be an $m \times n$ real matrix. Then $A^{T} A$ is positive semidefinite. Further more, if $\operatorname{rank}(A)=n$, then $A^{T} A$ is positive definite.

Positive Definite Complex Hermitian Matricies.

