Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

• Instructor: He Wang Email: he.wang@northeastern.edu

§6 Least Squares and Data Fitting

Contents

1

6

- 1. Least Squares
- 2. Data Fitting

1. Least Squares

Approximate Solutions to Inconsistent Systems

• Let A be an $n \times m$ matrix and let \vec{b} be an n-dimensional vector such that the system

$$A\vec{x} = \vec{b}$$

is inconsistent (no solution). (if and only if $\vec{b} \notin \operatorname{Col} A = \operatorname{im} A = \operatorname{Span}(\vec{a}_1, \cdots, \vec{a}_m)$).

• In this case a natural question to ask is which *m*-dimensional vector(s) \vec{x}^* has/have the property that $A\vec{x}^*$ is closest to \vec{b} . Here "closeness" of $A\vec{x}^*$ to \vec{b} is measured by the smallness of

$$||A\vec{x}^* - \vec{b}||$$

[Least-Squares Problem/Solutions]

For an $n \times m$ matrix A and an inconsistent system $A\vec{x} = \vec{b}$, find the vector(s) $\vec{x}^* \in \mathbb{R}^m$ such that $||A\vec{x}^* - \vec{b}|| \le ||A\vec{x} - \vec{b}||$

for all $x \in \mathbb{R}^m$.

 $||A\vec{x}^* - \vec{b}||$ is the least squares error.

• To find the Least Square solution(s) \vec{x}^* of an inconsistent system $A\vec{x} = \vec{b}$, we replace the system by the consistent system $A\vec{x} = \vec{b}_1$ with \vec{b}_1 the closest vector in Col A to \vec{b} , namely $\vec{b}_1 = \text{proj}_{\text{Col }A}(\vec{b})$.

Theorem 1 (Solution to the Least-Squares Problem). Let A be an $n \times m$ matrix. Let $\vec{b} \in \mathbb{R}^n$ and $\vec{b_1} = \operatorname{proj}_{\operatorname{Col} A}(\vec{b})$. Then, any solutions \vec{x}^* of the consistent system $A\vec{x} = \vec{b_1}$ is a least-squares solution.

Example 2. Find the least-squares solutions for the system $A\vec{x} = \vec{b}$, where $A = \begin{bmatrix} -1 & 4 \\ 1 & 8 \\ -1 & 4 \end{bmatrix}$ and $\begin{bmatrix} 14 \\ -4 \\ 0 \end{bmatrix}$

$$\left\{ \overrightarrow{a_{1}}, \overrightarrow{a_{1}} \right\} \text{ is on orthogonal basis for Co((A). Suc $\overrightarrow{a_{1}}, \overrightarrow{a_{2}} = 0$

$$\left\{ \overrightarrow{a_{1}}, \overrightarrow{a_{1}} \right\} = \frac{\overrightarrow{b} \cdot \overrightarrow{a_{1}}}{\overrightarrow{a_{1}} \cdot \overrightarrow{a_{1}}} \cdot \overrightarrow{a_{1}} + \frac{\overrightarrow{b} \cdot \overrightarrow{a_{2}}}{\overrightarrow{a_{2}} \cdot \overrightarrow{a_{2}}} \cdot \overrightarrow{a_{2}}$$

$$= -\frac{18}{3} \overrightarrow{a_{1}} + \frac{24}{96} \overrightarrow{a_{2}} = -6 \overrightarrow{a_{1}} + \frac{1}{4} \overrightarrow{a_{2}} = \begin{bmatrix} 7\\-4\\-7 \end{bmatrix}$$

$$\left\{ \overrightarrow{a_{1}}, \overrightarrow{a_{2}} \right\} \begin{bmatrix} x_{1}\\-x_{2} \end{bmatrix} = \overrightarrow{b_{1}}$$

$$\left\{ \overrightarrow{a_{1}}, \overrightarrow{a_{1}} \right\} \begin{bmatrix} x_{1}\\-x_{2} \end{bmatrix} = \overrightarrow{b_{1}}$$

$$\pi_{1} \overrightarrow{a_{1}} + x_{1} \overrightarrow{a_{2}} = \overrightarrow{b_{1}}$$

$$S_{2} = \overrightarrow{a_{2}} = \overrightarrow{a_{1}} = \overrightarrow{a_{2}} = \overrightarrow{a_{1}} = \overrightarrow{a_{2}} = \overrightarrow{$$$$

Theorem 3. (Normal Equation) The set of Least-Square solutions of the inconsistent system $A\vec{x} = \vec{b}$ coincides with the solution set of the consistent system of **normal equations**

$$(A^T A)\vec{x} = A^T \vec{b}.$$

Proof. Proof: Let $V = \operatorname{im} A$. \vec{x}_* is a least-squares solution for $A\vec{x} = \vec{b} \iff A\vec{x}_* = \operatorname{proj}_V \vec{b}$ $\iff \vec{b} - A\vec{x}_* = \vec{b}^{\perp} \in (\operatorname{im} A)^{\perp} = \ker A^T$ $\iff A^T(\vec{b} - A\vec{x}_*) = \vec{0}$ $\iff A^T\vec{b} - A^TA\vec{x}_* = \vec{0}$ $\iff A^TA\vec{x}_* = A^T\vec{b}$

Example 4. Find the least-squares solutions for the system $A\vec{x} = \vec{b}$, where $A = \begin{bmatrix} -1 & 4\\ 1 & 8\\ -1 & 4 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 14\\ -4\\ 0 \end{bmatrix}$

Page 2

$$A^{T}A = \begin{bmatrix} -1 & 1 & -1 \\ 4 & 8 & 4 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 1 & 9 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 96 \end{bmatrix}$$

$$A^{T}\vec{b} = \begin{bmatrix} -1 & 1 & -1 \\ 4 & 8 & 4 \end{bmatrix} \begin{bmatrix} 14 \\ -4 \\ 0 \end{bmatrix} = \begin{bmatrix} -18 \\ 24 \end{bmatrix}$$
Solve the normal equation $A^{T}A \vec{x} = A^{T}\vec{b}$

$$\begin{bmatrix} 3 & 0 & | & -18 \\ 0 & 96 & 24 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & | & -6 \\ 0 & 1 & | & 4 \end{bmatrix}$$

$$S_{0} = \begin{bmatrix} -6 \\ 2 & 96 & 24 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & | & -6 \\ 0 & 1 & | & 4 \end{bmatrix}$$

$$S_{0} = \begin{bmatrix} -6 \\ 2 & 76 & 24 \end{bmatrix} \text{ is the least-squares solution}$$

(2) The image im(A) is a plane in \mathbb{R}^3 passing the origin. Find the distance from the vector \vec{b} (or the point (14, -4, 0)) to the plane im(A). (Hint: Use the geometric meaning of the least-squares solution in (1))

The distance is given be the norm of
$$\vec{b}^{\perp} = \vec{b} - \operatorname{proj}_{\operatorname{im}(A)} \vec{b}$$
.
We know that $\operatorname{proj}_{\operatorname{im}(A)} \vec{b} = Ax^* = \begin{bmatrix} -1 & 4\\ 1 & 8\\ -1 & 4 \end{bmatrix} \begin{bmatrix} -6\\ 1/4 \end{bmatrix} = \begin{bmatrix} 7\\ -4\\ 7 \end{bmatrix}$.
So, $\vec{b}^{\perp} = \begin{bmatrix} 14\\ -4\\ 0 \end{bmatrix} - \begin{bmatrix} 7\\ -4\\ 7 \end{bmatrix} = \begin{bmatrix} 7\\ 0\\ -7 \end{bmatrix}$. So the distance is $||\vec{b}^{\perp}|| = 7\sqrt{2}$.

Example 5. Find the least-squares solutions for the system $A\vec{x} = \vec{b}$, where $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 4 \end{bmatrix}$

Sep]. Construct the normal equation
$$A^{T}A \overrightarrow{x} = A^{T}\overrightarrow{b}$$

 $A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$
 $A^{T}\overrightarrow{b} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 10 \\ 4 \\ 6 \end{bmatrix}$
Solue the normal equation
 $\begin{bmatrix} 4 & 2 & 2 \\ 1 & 0 & 0 \\ 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \\ 4 \\ 5 \end{bmatrix} \longrightarrow \text{Tref} = \begin{bmatrix} 1 & 0 & 1 & | & 3 \\ 0 & 1 & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$
 $x_{1} = 3 - x_{3}$
 $x_{2} = 1 + x_{3}$
 $x_{3} = \begin{bmatrix} 3 \\ -1 \\ x_{3} \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix} + x_{3} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$

A technical property:

Proposition 6. Let A be an $n \times m$ matrix.

- $\ker(A) = \ker(A^T A)$
- If $\ker(A) = \{0\}$, then $A^T A$ is an invertible matrix.

Proof.

Corollary 7. If rank A = m, then ker $(A) = \{0\}$, then $A^T A$ is an $m \times m$ invertible matrix. In this case, the normal equation $(A^T A)\vec{x} = A^T \vec{b}$ has a unique solution:

$$\vec{x} = (A^T A)^{-1} A^T \vec{b}$$

QR factorization method Suppose A is $n \times m$ matrix with full column rank. Solve the least squares solution using QR factorization A = QR where Q is an orthogonal matrix $n \times m$ and R is an $m \times m$ upper triangular matrix with rank m.

$$\begin{split} \vec{x} &= (A^{T}A)^{-1}A^{T}\vec{b} \\ &= ((QR)^{T}QR)^{-1}(QR)^{T}\vec{b} \\ &= (R^{T}Q^{T}QR)^{-1}R^{T}Q^{T}\vec{b} \\ &= (R^{T}R)^{-1}R^{T}Q^{T}\vec{b} \\ &= (R^{T}R)^{-1}R^{T}Q^{T}\vec{b} \\ &= R^{-1}Q^{T}\vec{b} \end{split}$$

Example 8.

2. Data Fitting

Problem: Fitting a function of a certain type of data. We use the following three example to illustrate this application.

Example 9. Find a cubic polynomial $f(t) = c_0 + c_1t + c_2t^2 + c_3t^3$ whose graph passes through the points (0, 5), (1, 3), (-1, 13), (2, 1)

Solution:

We need to solve the linear system

$$\operatorname{em} \begin{cases} c_0 = 5\\ c_0 + c_1 + c_2 + c_3 = 3\\ c_0 - c_1 + c_2 - c_3 = 13\\ c_0 + 2c_1 + 4c_2 + 8c_3 = 1 \end{cases}$$

$$[A|\vec{b}] = \begin{bmatrix} 1 & 0 & 0 & 0 & 5\\ 1 & 1 & 1 & 1 & 3\\ 1 & -1 & 1 & -1 & 13\\ 1 & 2 & 4 & 8 & 1 \end{bmatrix} \to \dots \to \mathbf{rref}[A|\vec{b}] = \begin{bmatrix} 1 & 0 & 0 & 0 & 5\\ 0 & 1 & 0 & 0 & -4\\ 0 & 0 & 1 & 0 & 3\\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

So, the linear system has the unique solution $\begin{vmatrix} c_1 \\ c_2 \end{vmatrix} =$

 $3t^2 - t^3$.

Example 10. Fit a quadratic function $g(t) = c_0 + c_1 t + c_2 t^2$ to the four data points (0, 5), (1, 3), (-1, 13), (2, 1)

We need to solve the linear system

As matrix equation
$$A\vec{x} = \vec{b}$$
, where $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 5 \\ 3 \\ 13 \\ 1 \end{bmatrix}$

$$AA = \begin{bmatrix} 4 & 2 & 6 \\ 2 & 6 & 7 \\ 6 & 8 & 78 \end{bmatrix} \quad A^{T} \vec{b} = \begin{bmatrix} 22 \\ -8 \\ 20 \end{bmatrix}$$
Solve the normal equation $A^{T} A \vec{x} = A^{T} \vec{b}$ $\vec{x}^{2} = \begin{bmatrix} 5 & 9 \\ -5 & 3 \\ 1 & 5 \end{bmatrix} = \vec{c}^{*}$
So, the quadretic function $g(t) = 5, 9 - 53t + 15t^{2}$

$$Ac^{*} = \begin{bmatrix} 3(av) \\ g(a) \\ 3(av) \end{bmatrix} \quad \vec{b} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

$$\|\vec{b} - Ac^{*}\|^{2} = (b_{1} - 3(a))^{2} + (b_{2} - 3(a))^{2} + (b_{3} - 3(a))^{2}$$

$$H = Sum ef the sum of the sum between the graph and dots parts is minimal.$$

Example 11. Fit a linear function $h(t) = c_0 + c_1 t$ to the four data points (0, 5), (1, 3), (-1, 13), (2, 1)

We need to solve the linear system

We need to solve the inleaf system
$$\begin{cases} c_0 &= 5\\ c_0 + c_1 &= 3\\ c_0 - c_1 &= 13\\ c_0 + 2c_1 &= 1 \end{cases}$$

As matrix equation $A\vec{x} = \vec{b}$, where $A = \begin{bmatrix} 1 & 0\\ 1 & 1\\ 1 & -1\\ 1 & 2 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 5\\ 3\\ 13\\ 1 \end{bmatrix}$

$$AA = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & +2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & +2 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & +2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ -8 \end{bmatrix}$$
Solve the mormal equation $ATA = ATB$ $\vec{x} = \begin{bmatrix} 7.4 \\ -3.8 \end{bmatrix}$
So the linear function is $h(t) = 7.4 - 3.8t$

$$Remark: More generally, we can consubsrime on the second s$$

More generally, the following question is very standard in statistics.

Example 12. Consider the data with n points (a_1, b_1) , (a_2, b_2) , ..., (a_n, b_n) . Find a linear function $h(t) = c_0 + c_1 t$ fits the data by the least squares. (Suppose $a_1 \neq a_2$)

We need to solve the least-squares problem for $A\vec{x} = \vec{b}$, for $A = \begin{bmatrix} 1 & a_1 \\ 1 & a_2 \\ \vdots \\ 1 & a_n \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ 1 & a_n \end{bmatrix}$ $A^T A = \begin{bmatrix} 1 & a_1 \\ 1 & a_2 \\ \vdots \\ 1 & a_n \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} n & \sum_{i=1}^n a_i \\ \sum_{i=1}^n a_i & \sum_{i=1}^n a_i^i \end{bmatrix}$ $A^T b = \begin{bmatrix} 1 & a_1 \\ 1 & a_2 \\ \vdots \\ 1 & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n b_i \\ \sum_{i=1}^n a_i a_i \end{bmatrix}$ Since $a_1 \neq a_2$, we know that rank A = 2. The normal equation $A^T A \vec{x} = A^T \vec{b}$ has a unique solution $\vec{x}_* = (A^T A)^{-1} A^T \vec{b} = \frac{1}{n \sum_{i=1}^n a_i^2 - (\sum_{i=1}^n a_i)^2} \begin{bmatrix} \sum_{i=1}^n a_i^2 & -\sum_{i=1}^n a_i \end{bmatrix} \begin{bmatrix} \sum_{i=1}^n b_i \\ \sum_{i=1}^n a_i a_i a_i \end{bmatrix}$ $= \frac{1}{n \sum_{i=1}^n a_i^2 - (\sum_{i=1}^n a_i)^2} \begin{bmatrix} (\sum_{i=1}^n a_i^2) (\sum_{i=1}^n b_i) - (\sum_{i=1}^n a_i) (\sum_{i=1}^n a_i a_i) \\ -(\sum_{i=1}^n a_i) (\sum_{i=1}^n a_i) a_i a_i \end{bmatrix}$ **Example 13.** Consider the data with m inputs and 1 output:

 $(a_{11}, a_{12}, \dots, a_{1m}, b_1), (a_{21}, a_{22}, \dots, a_{2m}, b_2), \dots, (a_{n1}, a_{n2}, \dots, a_{nm}, b_n).$

Find a linear function $h(t_1, t_2, ..., t_n) = c_0 + c_1 t_1 + c_2 t_2 + \cdots + c_n t_n$ fits the data by the least squares.

For example, when m = 2,

We need to solve the least-squares problem for $A\vec{x} = \vec{b}$, for $A = \begin{bmatrix} 1 & a_{11} & a_{12} & \dots & a_{1m} \\ 1 & a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$

Example 14. Consider the data with m inputs and s outputs:

 $(a_{11}, a_{12}, \dots, a_{1m}, b_{11}, \dots, b_{1s}), (a_{21}, a_{22}, \dots, a_{2m}, b_{21}, \dots, b_{2s}), \dots, (a_{n1}, a_{n2}, \dots, a_{nm}, b_{n1}, \dots, b_{ns}).$

Find a linear function $H(\vec{t}) = \vec{c}_0 + C\vec{t}$ fits the data by the least squares.