Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

\author{

- Instructor: He Wang
}

Email: he.wang@northeastern.edu

$\S 6$ Inner product spaces

Contents

1. Inner Product Spaces 1
2. Norms 2
3. Orthogonal Projections and Orthonormal Bases 5
4. Gram-Schmidt process and QR-factorization 7
5. Orthogonal Transformations and Orthogonal Matrices 9
6. The adjoint of a linear operator 12

1. Inner Product Spaces

Recall that for vectors $\vec{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ in \mathbb{R}^{n}, the dot product of \vec{u} and \vec{v} is

$$
\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} .
$$

Similarly the dot product of \vec{u} and \vec{v} in \mathbb{C}^{n} is $\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} \overline{v_{i}}$

Theorem 1 (Properties of the dot Product). For vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$ and a scalar $c \in \mathbb{R}$, the following hold:
(1.) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$.
(2.) $(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}$.
(3.) $(c \vec{u}) \cdot \vec{v}=c(\vec{u} \cdot \vec{v})=\vec{u} \cdot(c \vec{v})$.
(4.) $\vec{u} \cdot \vec{u} \geq 0$, and $\vec{u} \cdot \vec{u}=0$ if and only if $\vec{u}=\overrightarrow{0}$.

More generally, we can define inner product on a general vector space V over \mathbb{R} as

Definition 2 (Inner Product). Let V be a real vector space. An inner product on V is a binary function

$$
\langle-,-\rangle: V \times V \rightarrow \mathbb{R}
$$

such that for vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and a scalar $c \in \mathbb{R}$, the following hold:
(1.) $\langle\vec{u}, \vec{v}\rangle=\langle\vec{v}, \vec{u}\rangle$.
(2.) $\langle\vec{u}+\vec{v}, \vec{w}\rangle=\langle\vec{u}, \vec{w}\rangle+\langle\vec{v}, \vec{w}\rangle$.
(3.) $\langle c \vec{u}, \vec{v}\rangle=c\langle\vec{u}, \vec{v}\rangle$.
(4.) $\langle\vec{u}, \vec{u}\rangle \geq 0$
(5.) $\langle\vec{u}, \vec{u}\rangle=0$ if and only if $\vec{u}=\overrightarrow{0}$.

We call V an inner product space.

Remark: For complex number field \mathbb{C}, item (1) is conjugate symmetry $\langle\vec{u}, \vec{v}\rangle=\overline{\langle\vec{v}, \vec{u}\rangle}$.
Over \mathbb{R}, by symmetry, $\langle\vec{u}, c \vec{v}\rangle=c\langle\vec{u}, \vec{v}\rangle$.
Over \mathbb{C}, by conjugate symmetry, $\langle\vec{u}, c \vec{v}\rangle=\overline{\langle c \vec{v}, \vec{u}\rangle}=\overline{c\langle\vec{v}, \vec{u}\rangle}=\bar{c} \overline{\vec{v}}, \vec{u}\rangle=\bar{c}\langle\vec{u}, \vec{v}\rangle$.
Example 3. (Weighted dot products) Let c_{1}, \ldots, c_{n} be positive numbers. The weighted inner product on \mathbb{F}^{n} is

$$
\langle\vec{v}, \vec{w}\rangle:=\sum_{i=1}^{n} c_{i} v_{i} \overline{w_{i}}
$$

Check that it satisfies all axioms.
On \mathbb{R}^{n}, we don't have to put conjugate.
Example 4. Let $P_{n}(\mathbb{F})$ be the vector space of polynomials of degree at most n with coefficient in \mathbb{F}.
An inner product on $P_{n}(\mathbb{R})$ can be defined as

$$
\langle p, q\rangle=\int_{0}^{1} p(t) q(t) d t
$$

or as $\langle p, q\rangle=\int_{0}^{1} p(t) \overline{q(t)} d t$ on $P_{n}(\mathbb{C})$.

In a inner product space, we have geometry and more tools to work with. Most properties of inner product space are similar as dot products.

Definition 5. Two vectors \vec{u} and \vec{v} are called orthogonal if $\langle\vec{v}, \vec{u}\rangle=0$.

2. Norms

Definition 6 (Norm of a Vector). Let V be a inner product space over \mathbb{F}. The length or norm of a vector $\vec{v} \in V$, denoted by $\|\vec{v}\|$, is defined as

$$
\|\vec{v}\|=\sqrt{\langle\vec{v}, \vec{v}\rangle}
$$

where v_{1}, \ldots, v_{n} are the coordinates of \vec{v}.
$\|\vec{v}\|=0$ if and only if $\vec{v}=0$.

A vector \vec{u} is called an unit vector if $\|\vec{u}\|=1$.
If a vector \vec{w} is not an unit vector, we can find a unit vector on the same direction defined by

$$
\frac{\vec{w}}{\|\vec{w}\|}
$$

and called the normalization of \vec{w}.

Proposition 7. For any vector $\vec{v} \in V$ and any scalar $c \in \mathbb{F}$ one obtains

$$
\|c \cdot \vec{v}\|=|c| \cdot\|\vec{v}\| .
$$

Proof. The proof is the same for $\mathbb{F}=\mathbb{R}$ or \mathbb{C}.

$$
\|c \vec{v}\|^{2}=\langle c \vec{v}, c \vec{v}\rangle=c \bar{c}\langle\vec{v}, \vec{v}\rangle=|c|^{2}\|\vec{v}\| .
$$

Theorem 8 (Pythagorean Theorem). If two vectors $\vec{u}, \vec{v} \in V$ are orthogonal, then they satisfy the Pythagorean Relation

$$
\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2} .
$$

Proof. Proof: Two vectors $\vec{u}, \vec{v} \in V$ are orthogonal if and only if $\langle\vec{u}, \vec{v}\rangle=0$.

$$
\|\vec{u}+\vec{v}\|^{2}=\langle\vec{u}+\vec{v}, \vec{u}+\vec{v}\rangle=\langle\vec{u}, \vec{u}\rangle+\langle\vec{u}, \vec{v}\rangle+\langle\vec{v}, \vec{u}\rangle+\langle\vec{v}, \vec{v}\rangle=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}
$$

Definition 9. Let $L=\operatorname{Span}\{\vec{w}\}$ be the subspace in V spanned by $\vec{w} \in V$. For a given vector $\vec{y} \in V$, the vector

$$
\operatorname{proj}_{L}(\vec{y}):=\left(\frac{\langle\vec{y}, \vec{w}\rangle}{\langle\vec{w}, \vec{w}\rangle}\right) \vec{w}
$$

is called the orthogonal projection of \vec{y} onto L (or onto \vec{w}) and

$$
\vec{y}^{\perp}:=\vec{y}-\operatorname{proj}_{L}(\vec{y})
$$

the component of \vec{y} orthogonal to L (or \vec{w}).

Proposition 10. Let \vec{w} be a nonzero vector in V. Any vector $\vec{y} \in V$ can be uniquely written as the sum of a scalar product of $\vec{w} \in V$ and a vector orthogonal to \vec{w}.

Proof. $\vec{y}=\operatorname{proj}_{L}(\vec{y})+\vec{y}^{\perp}$. Suppose there is another decomposition $\vec{y}=\vec{a}+\vec{b}$ such that $\vec{a}=c \vec{w}$ and \vec{b} is orthogonal to \vec{w}. Then $\langle\vec{y}, \vec{w}\rangle=\langle\vec{a}+\vec{b}, \vec{w}\rangle=\langle c \vec{w}, \vec{w}\rangle+\langle\vec{b}, \vec{w}\rangle=c\langle\vec{w}, \vec{w}\rangle$. Hence $c=\frac{\langle\vec{y}, \vec{w}\rangle}{\langle\vec{w}, \vec{w}\rangle}$

Theorem 11 (Cauchy-Schwarz inequality).

$$
|\langle\vec{x}, \vec{y}\rangle| \leq\|\vec{x}\| \cdot\|\vec{y}\|
$$

The equality holds if and only if $\vec{y}=c \vec{x}$.

Proof. $\vec{y}=\operatorname{proj}_{\vec{x}}(\vec{y})+\vec{y}^{\perp}$.
$\|\vec{y}\|^{2}=\langle\vec{y}, \vec{y}\rangle=\left\|\operatorname{proj}_{\vec{x}}(\vec{y})\right\|^{2}+\left\|\vec{y}^{\perp}\right\|^{2}=\frac{\langle\vec{y}, \vec{x}\rangle^{2}}{\langle\vec{x}, \vec{x}\rangle}+\left\|\vec{y}^{\perp}\right\|^{2} \geq \frac{\langle\vec{y}, \vec{x}\rangle^{2}}{\langle\vec{x}, \vec{x}\rangle}$.
The equality holds if and only if $\vec{y}^{\perp}=\overrightarrow{0}$.

In particular, $\|\vec{y}\| \geq\left\|\operatorname{proj}_{\vec{x}}(\vec{y})\right\|$.

Proposition 12 (Triangle Inequality). Two vectors $\vec{u}, \vec{v} \in V$ satisfy

$$
\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\| .
$$

Proof.

$$
\begin{gathered}
\|\vec{u}+\vec{v}\|^{2}=\langle\vec{u}+\vec{v}, \vec{u}+\vec{v}\rangle=\langle\vec{u}, \vec{u}\rangle+\langle\vec{u}, \vec{v}\rangle+\langle\vec{v}, \vec{u}\rangle+\langle\vec{v}, \vec{v}\rangle=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2 \operatorname{Re}\langle\vec{u}, \vec{v}\rangle \\
\leq\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2|\langle\vec{u}, \vec{v}\rangle| \leq\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2\|\vec{u}\| \cdot\|\vec{v}\|=(\|\vec{u}\|+\|\vec{v}\|)^{2}
\end{gathered}
$$

Definition 13. (Angles Between Vectors) The angle between two nonzero vectors $\vec{u}, \vec{v} \in V$ is the the angle $0 \leq \theta \leq \pi$ satisfying

$$
\langle\vec{u}, \vec{v}\rangle=\|\vec{u}\| \cdot\|\vec{v}\| \cdot \cos \theta .
$$

Or we can write

$$
\theta=\arccos \frac{\langle\vec{u}, \vec{v}\rangle}{\|\vec{u}\| \cdot\|\vec{v}\|}
$$

In particular, when $\langle\vec{u}, \vec{v}\rangle=0$, the angle $\theta=\frac{\pi}{2}$.
A vector space V with norm is called a normed vector space. In fact, not every norm is defined by inner product. More generally, one can define normed space by axioms:

Definition 14. A norm on V is a map from V to \mathbb{F} such that
(1) $\|\vec{x}\| \geq 0$ for all $\vec{x} \in V .\|\vec{x}\|=0$ if and only if $\vec{x}=\overrightarrow{0}$.
(2) $\|c \vec{x}\|=|c| \cdot| | \vec{x} \|$ for all $\vec{x} \in V$ and $c \in \mathbb{F}$.
(3) The triangle inequality $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|$ holds for all vectors in V.

Definition 15 (Distance Between Vectors). The distance $\operatorname{dist}(\vec{u}, \vec{v})$ between vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ is defined as

$$
\operatorname{dist}(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|
$$

Note that $\operatorname{dist}(\vec{u}, \vec{v}) \geq 0$ for any pair of vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$, and $\operatorname{dist}(\vec{u}, \vec{v})=0$ if and only if $\vec{u}=\vec{v}$. Also, $\operatorname{dist}(\vec{u}, \vec{v})=\operatorname{dist}(\vec{v}, \vec{u})$.

Example 16. (l^{p} spaces) Let $1 \leq p<\infty$, it is natural to define l^{p} norms on \mathbb{F}^{n}

$$
\|\vec{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

When $p=2$, it is the norm induced by the dot product.
Example 17. (l^{∞} spaces) It is natural to define l^{∞} norms on \mathbb{F}^{n}

$$
\|\vec{x}\|_{\infty}=\max _{1 \leq i \leq n}\left\{\left|x_{i}\right|\right\}
$$

Example 18. (Norms on $\mathbb{F}^{m \times n}$ induced by norms on \mathbb{F}^{n}) Normed matrix vector spaces $\mathbb{F}^{m \times n}$. Using norms on \mathbb{F}^{n}, one can define norms on matrix vector spaces

$$
\|A\|=\sup \left\{\|A \vec{x}\| \mid \vec{x} \in \mathbb{F}^{n} \text { with }\|\vec{x}\|=1\right\}=\sup \left\{\left.\frac{\|A \vec{x}\|}{\|\vec{x}\|} \right\rvert\, \vec{x} \neq \overrightarrow{0} \in \mathbb{F}^{n}\right\}
$$

Example 19. Infinity norm on $\mathbb{F}^{m \times n}$.

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}
$$

3. Orthogonal Projections and Orthonormal Bases

Definition 20 (Orthogonal Set). A set $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ of vectors in a inner vector space V is called orthogonal if $\left\langle\vec{u}_{i}, \vec{u}_{j}\right\rangle=0$ for any choice of indices $i \neq j$.

Proposition 21. - Orthogonal vectors are linear independent.

- Orthonormal vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ in \mathbb{R}^{n} form a basis of \mathbb{R}^{n}.

Proof. Suppose $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is orthogonal and $c_{1} \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p}=\overrightarrow{0}$. Then $\left\langle c_{i} \vec{u}_{i}, \vec{u}_{i}\right\rangle=c_{i}\left\langle\vec{u}_{i}, \vec{u}_{i}\right\rangle=0$ for each $i=1,2, \ldots, p$. So, $c_{i}=0$.

Definition 22.

- An orthogonal basis for a subspace W of an inner product space V is any basis for W which is also an orthogonal set.
- If each vector is a unit vector in an orthogonal basis, then it is an orthonormal basis.

Theorem 23 (Coordinates with respect to an orthogonal basis). Let $\mathscr{B}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal basis for a subspace W of an inner product space V, and let \vec{y} be any vector in W. Then

$$
\vec{y}=\left(\frac{\left\langle\vec{y}, \vec{u}_{1}\right\rangle}{\left\langle\vec{u}_{1}, \vec{u}_{1}\right\rangle}\right) \vec{u}_{1}+\cdots+\left(\frac{\left\langle\vec{y}, \vec{u}_{p}\right\rangle}{\left\langle\vec{u}_{p}, \vec{u}_{p}\right\rangle}\right) \vec{u}_{p}
$$

If $W=\mathbb{R}^{n}$, then the \mathscr{B}-coordinates of \vec{y} are given by:

$$
[\vec{y}]_{\mathscr{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] \quad \text { with } \quad c_{i}=\frac{\left\langle\vec{y}, \vec{u}_{i}\right\rangle}{\left\langle\vec{u}_{i}, \vec{u}_{i}\right\rangle}=\frac{\left\langle\vec{y}, \vec{u}_{i}\right\rangle}{\left\|\vec{u}_{i}\right\|^{2}}
$$

In particular, let $\mathscr{B}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthonormal basis for a subspace W of \mathbb{R}^{n}, and let \vec{y} be any vector in W. Then

$$
\vec{y}=\left\langle\vec{y}, \vec{u}_{1}\right\rangle \vec{u}_{1}+\cdots+\left\langle\vec{y}, \vec{u}_{p}\right\rangle \vec{u}_{p}
$$

Proof. Suppose $\vec{y}=c_{1} \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p}$.

Let V be an inner product space.
We have defined orthogonal projection onto a vector in V. We can define the orthogonal projection on to an subspace W of V.

More generally, given a subspace W of V and a vector $\vec{y} \in V$, we can ask if/how one can find a decomposition of \vec{y} as

$$
\vec{y}=\operatorname{proj}_{W}(\vec{y})+\vec{y}^{\perp}
$$

with $\operatorname{proj}_{W}(\vec{y}) \in W$ (the orthogonal projection of \vec{y} on to W) and \vec{y}^{\perp} is the component of \vec{y} perpendicular to W.

Theorem 24 (Orthogonal Decomposition). Let W be any subspace of V and let $\vec{y} \in V$ be any vector. Then there exists a unique decomposition

$$
\vec{y}=\operatorname{proj}_{W}(\vec{y})+\vec{y}^{\perp}
$$

with $\operatorname{proj}_{W}(\vec{y}) \in W$ and \vec{y}^{\perp} is perpendicular to W.

Theorem 25 (Orthogonal Decomposition). If $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is an orthogonal basis for W, then

$$
\operatorname{proj}_{W}(\vec{y})=\left(\frac{\left\langle\vec{y}, \vec{u}_{1}\right\rangle}{\left\langle\vec{u}_{1}, \vec{u}_{1}\right\rangle}\right) \vec{u}_{1}+\cdots+\left(\frac{\left\langle\vec{y}, \vec{u}_{p}\right\rangle}{\left\langle\vec{u}_{p}, \vec{u}_{p}\right\rangle}\right) \vec{u}_{p}
$$

and $\vec{y}^{\perp}=\vec{y}-\operatorname{proj}_{W}(\vec{y})$.

Definition 26 (Orthogonal Complements). Given a nonempty subset (finite or infinite) W of V, we define its orthogonal complement W^{\perp} (pronounced " W perp") as the set of all vectors $\vec{v} \in V$ such that

$$
\langle\vec{v}, \vec{w}\rangle=0, \quad \text { for all } \vec{w} \in W
$$

Expressed in set notation:

$$
W^{\perp}=\{\vec{v} \in V \mid\langle\vec{v}, \vec{w}\rangle=0 \text { for all } \vec{w} \in W\}
$$

Theorem 27. Let S be a subset of V. Let $W=\operatorname{Span}(S)$, then
(1) $S^{\perp}=W^{\perp}$
(2) If $W=\operatorname{Span}(\mathscr{B})$, then $W^{\perp}=\mathscr{B}^{\perp}$
(3) W^{\perp} is a subspace of V (even when S is not).
(4) $\left(W^{\perp}\right)^{\perp}=W$.
(5) $\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V$.

Theorem 28. Let W be a subspace of V, then

$$
V=W \oplus W^{\perp}
$$

Let A be an $m \times n$ matrix.

The row space of A is $\operatorname{Row}(A)$, spanned by the row vectors of A.
The column space of A is $\operatorname{Col}(A)$, so $\operatorname{Col}(A)=\operatorname{im}(A)$.
The kernel of A is also called the null space of A, denoted $\operatorname{Nul}(A)$.

Theorem 29. Let A be an $m \times n$ matrix, then

$$
(\operatorname{Row} A)^{\perp}=\operatorname{ker}(A) \quad \text { and } \quad(\operatorname{im} A)^{\perp}=\operatorname{ker} A^{T}
$$

More over,

$$
\mathbb{F}^{m}=\operatorname{ker} A^{T} \oplus \operatorname{im} A
$$

4. Gram-Schmidt process and QR-factorization

The Gram-Schmidt process is an algorithm that produces an orthogonal (or orthonormal) basis for any subspace W of V by starting with any basis for W.

Theorem 30 (Gram-Schmidt (Orthogonalize)). Let W be a subspace of V and let $\vec{b}_{1}, \cdots, \vec{b}_{p}$ be a basis for W. Define vectors $\vec{v}_{1}, \ldots, \vec{v}_{p}$ as

$$
\begin{aligned}
& \vec{v}_{1}=\vec{b}_{1} \\
& \vec{v}_{2}=\vec{b}_{2}-\frac{\left\langle\vec{b}_{2}, \vec{v}_{1}\right\rangle}{\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle} \vec{v}_{1} \\
& \vec{v}_{3}=\vec{b}_{3}-\frac{\left\langle\vec{b}_{3}, \vec{v}_{1}\right\rangle}{\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle} \vec{v}_{1}-\frac{\left\langle\vec{b}_{3}, \vec{v}_{2}\right\rangle}{\left\langle\vec{v}_{2}, \vec{v}_{2}\right\rangle} \vec{v}_{2} \\
& \vdots \\
& \vec{v}_{p}=\vec{b}_{p}-\frac{\left\langle\vec{b}_{p}, \vec{v}_{1}\right\rangle}{\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle} \vec{v}_{1}-\frac{\left\langle\vec{b}_{p}, \vec{v}_{2}\right\rangle}{\left\langle\vec{v}_{2}, \vec{v}_{2}\right\rangle} \vec{v}_{2}-\cdots-\frac{\left\langle\vec{b}_{p}, \vec{v}_{p-1}\right\rangle}{\left\langle\vec{v}_{p-1}, \vec{v}_{p-1}\right\rangle} \vec{v}_{p-1}
\end{aligned}
$$

Then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an orthogonal basis for W and

$$
\operatorname{Span}\left\{\vec{b}_{1}, \cdots, \vec{b}_{k}\right\}=\operatorname{Span}\left\{\vec{v}_{1}, \cdots, \vec{v}_{k}\right\}
$$

for and $k=1, \ldots, p$.

Theorem 31 (Gram-Schmidt (Normalize)). If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an orthogonal basis for W, then $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is an orthonormal basis for W, where, $\vec{u}_{i}=\frac{\vec{v}_{i}}{\left\|\vec{v}_{i}\right\|}$ for $i=1, \ldots, p$.

Basis $\xrightarrow{\text { orthogonalize }}$ Orthogonal basis $\xrightarrow{\text { normalize }}$ Orthonormal basis.

- Note that the formula for computing \vec{v}_{i} for any $i=2,3, \ldots, p$ can be written as

$$
\begin{aligned}
\vec{v}_{i} & =\vec{b}_{i}-\operatorname{proj}_{\vec{v}_{1}}\left(\vec{b}_{i}\right)-\operatorname{proj}_{\vec{v}_{2}}\left(\vec{b}_{i}\right)-\cdots-\operatorname{proj}_{\vec{v}_{i-1}}\left(\vec{b}_{i}\right) \\
& =\vec{b}_{i}-\operatorname{proj}_{\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{i-1}\right\}}\left(\vec{b}_{i}\right) .
\end{aligned}
$$

So, $\vec{v}_{i}=\vec{b}_{i}^{\perp}$ respect to $\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{i-1}\right\}$.

- This formula is inductive in that the computation of \vec{v}_{i} relies on the vectors $\vec{v}_{1}, \ldots, \vec{v}_{i-1}$.

$Q R$-Factorization.

$Q R$-Factorization is the matrix version of Gram-Schmidt process for a subspace W of \mathbb{F}^{n} :

$$
\begin{aligned}
\text { Basis } \mathscr{B}= & \left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\} \xrightarrow{\text { orthogonalize }} \text { Orthogonal basis } \mathscr{V}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\} \\
& \xrightarrow{\text { normalize }} \text { Orthonormal basis } \mathscr{U}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\} .
\end{aligned}
$$

Given a vector in W, let's compare their coordinates:

Each matrix defines an isomorphism. So, $M=Q R$.
Here $M=\left[\begin{array}{lll}\vec{b}_{1} & \ldots & \vec{b}_{p}\end{array}\right]$ and $Q=\left[\vec{u}_{1}, \ldots, \vec{u}_{p}\right]$.

Theorem 32. Given a $n \times p$ matrix $M=\left[\begin{array}{lll}\vec{b}_{1} & \ldots & \vec{b}_{p}\end{array}\right]$ with independent columns. There is a unique decomposition

$$
M=Q R
$$

where, $Q=\left[\vec{u}_{1}, \ldots, \vec{u}_{p}\right]$ has orthonormal columns and R is an $p \times p$ upper triangular matrix with

$$
r_{i i}=\left\|\vec{v}_{i}\right\| \text { for } i=1, \ldots, p \text { and } r_{i j}=\left\langle\vec{u}_{i}, \vec{b}_{j}\right\rangle \text { for } i<j .
$$

Proof. Proof(for $p=3$): From Gram-Schmidt process, write \vec{b}_{i} as linear combinations of \vec{u}_{i}.

$$
\begin{aligned}
& \vec{b}_{1}=\vec{v}_{1}=\left\|\vec{v}_{1}\right\| \vec{u}_{1} \\
& \vec{b}_{2}=\vec{v}_{2}+\frac{\left\langle\vec{b}_{2}, \vec{v}_{1}\right\rangle}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}=\left\|\vec{v}_{2}\right\| \vec{u}_{2}+\left\langle\vec{b}_{2}, \vec{u}_{1}\right\rangle \vec{u}_{1} \\
& \vec{b}_{3}=\vec{v}_{3}+\frac{\left\langle\vec{b}_{3}, \vec{v}_{1}\right\rangle}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}+\frac{\left\langle\vec{b}_{3}, \vec{v}_{2}\right\rangle}{\left\|\vec{v}_{2}\right\|^{2}} \vec{v}_{2}=\left\|\vec{v}_{3}\right\| \vec{u}_{3}+\left\langle\vec{b}_{3}, \vec{u}_{1}\right\rangle \vec{u}_{1}+\left\langle\vec{b}_{3}, \vec{u}_{2}\right\rangle \vec{u}_{2}
\end{aligned}
$$

So,

$$
\left[\begin{array}{lll}
\vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right]\left[\begin{array}{ccc}
\left\|\vec{v}_{1}\right\| & \left\langle\vec{u}_{1}, \vec{b}_{2}\right\rangle & \left\langle\vec{u}_{1}, \vec{b}_{3}\right\rangle \\
0 & \left\|\vec{v}_{2}\right\| & \left\langle\vec{u}_{2}, \vec{b}_{3}\right\rangle \\
0 & 0 & \left\|\vec{v}_{3}\right\|
\end{array}\right]
$$

5. Orthogonal Transformations and Orthogonal Matrices

Let V be a inner product space.

Definition 33. A linear transformation $T: V \rightarrow V$ is called orthogonal if

$$
\|T(\vec{x})\|=\|\vec{x}\| \text { for all } \vec{x} \in V
$$

that is, T preserves the length of vectors.

Example 34. Whether or not the following transformations are orthogonal.
(1.) Rotations $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are orthogonal transformations.

The matrix of rotation $S=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal.
(2.) Reflections $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are orthogonal transformations.

The matrix of reflection matrix $R=\left[\begin{array}{cc}a & b \\ b & -a\end{array}\right]$ with $a^{2}+b^{2}=1$ is orthogonal.
(3.) Orthogonal projections $P: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are NOT orthogonal transformations.

The matrix of an orthogonal transformation $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is called an orthogonal matrix.

Theorem 35. Let U be an $n \times n$ orthogonal matrix and let \vec{x} and \vec{y} be any vectors in \mathbb{F}^{n}. Then
(1) $\|U \vec{x}\|=\|\vec{x}\|$.
(2) $\langle U \vec{x}, U \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle$.
(3) $\langle U \vec{x}, U \vec{y}\rangle=0$ if and only if $\langle\vec{x}, \vec{y}\rangle=0$.

Proof. The transformation $T(\vec{x})=U \vec{x}$ is orthogonal. So, we have 1 .
For 2. $\|U(\vec{x}+\vec{y})\|^{2}=\|\vec{x}+\vec{y}\|^{2}=(\vec{x}+\vec{y}) \cdot(\vec{x}+\vec{y})=\|\vec{x}\|^{2}+2 \vec{x} \cdot \vec{y}+\|\vec{y}\|^{2}$
$\|U(\vec{x}+\vec{y})\|^{2}=\|U(\vec{x})+U(\vec{y})\|^{2}=\|U(\vec{x})\|^{2}+\|U(\vec{y})\|^{2}+2\langle U \vec{x}, U \vec{y}\rangle$.
Compare two formulas, we have $\langle U \vec{x}, U \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle$.

Proposition 36. U is an orthogonal matrix if and only if $\langle U \vec{x}, U \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle$ for any \vec{x} and \vec{y} in \mathbb{R}^{n}.

The above theorem says that orthogonal transformations preserve inner products, hence also preserve angles and orthogonality.

Using the geometric meaning of the orthogonal transformation, we have

Theorem 37. 1. If A is orthogonal, then A is invertible and A^{-1} is orthogonal. 2. If A and B are orthogonal, then $A B$ is orthogonal.

Theorem 38. The $n \times n$ matrix U is orthogonal if and only if $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal set.

Proof. Proof. " \Rightarrow " Suppose U is an orthogonal matrix. We prove that $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal set.
Use the property that U is orthogonal if and only if $\langle U \vec{x}, U \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle$. Apply the formula to standard vectors $\vec{x}=\vec{e}_{i}$ and $\vec{y}=\vec{e}_{j}$.
$U \vec{e}_{i}=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{n}\end{array}\right]\left[\begin{array}{c}0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right]=\vec{u}_{i}$
Hence $\left\langle\vec{u}_{i}, \vec{u}_{j}\right\rangle=\left\langle U \vec{e}_{i}, U \vec{e}_{j}\right\rangle=\left\langle\vec{e}_{i}, \vec{e}_{j}\right\rangle= \begin{cases}0 & \text { when } i \neq j \\ 1 & \text { when } i=j\end{cases}$
So, $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is orthonormal.
" \Leftarrow " Suppose $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal set. We show that U is an orthogonal matrix.
For any $\vec{x} \in \mathbb{R}^{n}, U \vec{x}=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}+\cdots+x_{n} \vec{u}_{n}$
$\|U \vec{x}\|^{2}=\left\langle\left(x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}+\cdots+x_{n} \vec{u}_{n}\right),\left(x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}+\cdots+x_{n} \vec{u}_{n}\right)\right\rangle=x_{1}^{2}+\cdots+x_{n}^{2}=\|\vec{x}\|^{2}$
So, $\|U \vec{x}\|=\|\vec{x}\|$ and hence U is an orthogonal matrix.

Recall the transpose of a matrix: Given an $m \times n$ matrix A, we define the transpose matrix A^{T} as the $n \times m$ matrix whose (i, j)-th entry is the (j, i)-th entry of A. The dot product can be written as matrix product

$$
\vec{v} \cdot \vec{w}=\vec{v}^{T} \vec{w}
$$

Theorem 39. The $n \times n$ matrix A is orthogonal if and only if $A^{T} A=I_{n}$; if and only if $A^{-1}=A^{T}$.

Proof. Proof. A is orthogonal if and only if $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ is orthonormal, i.e., $\vec{a}_{i} \cdot \vec{a}_{j}=1$ if $i \neq j$ and $\left\|\vec{a}_{i}\right\|=1$.
On the other side, (write for the case $n=3$)

$$
A^{T} A=\left[\begin{array}{l}
\vec{a}_{1}^{T} \\
\vec{a}_{2}^{T} \\
\vec{a}_{3}^{T}
\end{array}\right]\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a}_{1}^{T} \vec{a}_{1} & \vec{a}_{1}^{T} \vec{a}_{2} & \vec{a}_{1}^{T} \vec{a}_{3} \\
\vec{a}_{2}^{T} \vec{a}_{1} & \vec{a}_{2}^{T} \vec{a}_{2} & \vec{a}_{2}^{T} \vec{a}_{3} \\
\vec{a}_{3}^{T} \vec{a}_{1} & \vec{a}_{3}^{T} \vec{a}_{2} & \vec{a}_{3}^{T} \vec{a}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a}_{1} \cdot \vec{a}_{1} & \vec{a}_{1} \cdot \vec{a}_{2} & \vec{a}_{1} \cdot \vec{a}_{3} \\
\vec{a}_{2} \cdot \vec{a}_{1} & \vec{a}_{2} \cdot \vec{a}_{2} & \vec{a}_{2} \cdot \vec{a}_{3} \\
\vec{a}_{3} \cdot \vec{a}_{1} & \vec{a}_{3} \cdot \vec{a}_{2} & \vec{a}_{3} \cdot \vec{a}_{3}
\end{array}\right]=I_{3}
$$

Theorem 40. Let W be any subspace of \mathbb{R}^{n} with an orthonormal basis $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$. Let $U=$ $\left[\vec{u}_{1} \quad \vec{u}_{2} \cdots \vec{u}_{p}\right]$. For any $\vec{y} \in \mathbb{R}^{n}$,

$$
\operatorname{proj}_{W}(\vec{y})=U U^{T} \vec{y}
$$

That is, the matrix of the projection onto W is

$$
P=U U^{T}
$$

Remark: 1. $p<n$ since W is a subspace of \mathbb{R}^{n}. When $p=n$, then $P=I_{n}$.
2. We always have $U^{T} U=I$ for orthonormal basis $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$.

The theorem comes from the following formula from $\S 5.1$. The idea is to translate dot product to matrix product.

$$
\begin{aligned}
& \operatorname{proj}_{W}(\vec{y})=\left(\vec{y} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\left(\vec{y} \cdot \vec{u}_{2}\right) \vec{u}_{2}+\cdots+\left(\vec{y} \cdot \vec{u}_{p}\right) \vec{u}_{p} \\
&=\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{p}
\end{array}\right]\left[\begin{array}{c}
\vec{y} \cdot \vec{u}_{1} \\
\vec{y} \cdot \vec{u}_{2} \\
\vdots \\
\vec{y} \cdot \vec{u}_{p}
\end{array}\right] \\
&=\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{p}
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{1} \cdot \vec{y} \\
\vec{u}_{2} \cdot \vec{y} \\
\vdots \\
\vec{u}_{p} \cdot \vec{y}
\end{array}\right] \\
&=\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{p}
\end{array}\right]\left[\begin{array}{ccc}
\vec{u}_{1}^{T} \vec{y} \\
\vec{u}_{2}^{T} \vec{y} \\
\vdots \\
\vec{u}_{p}^{T} \vec{y}
\end{array}\right] \\
&=\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{p}
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vec{u}_{2}^{T} \\
\vdots \\
\vec{u}_{p}^{T}
\end{array}\right] \\
& \vec{y} \\
&=U U^{T} \vec{y}
\end{aligned}
$$

6. The adjoint of a Linear operator
