Northeastern University, Department of Mathematics

MATH G5110: Applied Linear Algebra and Matrix Analysis. (Fall 2020)

- Instructor: He Wang Email: he.wang@northeastern.edu
- §6 Inner product spaces

Contents

1.	Inner Product Spaces	1
2.	Norms	2
3.	Orthogonal Projections and Orthonormal Bases	5
4.	Gram-Schmidt process and QR-factorization	7
5.	Orthogonal Transformations and Orthogonal Matrices	9
6.	The adjoint of a linear operator	12

1. Inner Product Spaces

Recall that for vectors $\vec{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ in \mathbb{R}^n , the **dot product** of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

Similarly the dot product of \vec{u} and \vec{v} in \mathbb{C}^n is $\vec{u} \cdot \vec{v} = \sum_{i=1}^n u_i \overline{v_i}$

Theorem 1 (Properties of the dot Product). For vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and a scalar $c \in \mathbb{R}$, the following hold:

(1.) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$. (2.) $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$. (3.) $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (c\vec{v})$. (4.) $\vec{u} \cdot \vec{u} \ge 0$, and $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = \vec{0}$.

More generally, we can define inner product on a general vector space V over \mathbb{R} as

Definition 2 (Inner Product). Let V be a real vector space. An **inner product** on V is a binary function

 $\langle -, - \rangle : V \times V \to \mathbb{R}$ such that for vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and a scalar $c \in \mathbb{R}$, the following hold: (1.) $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$. (2.) $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$. (3.) $\langle c\vec{u}, \vec{v} \rangle = c \langle \vec{u}, \vec{v} \rangle$. (4.) $\langle \vec{u}, \vec{u} \rangle \ge 0$ (5.) $\langle \vec{u}, \vec{u} \rangle = 0$ if and only if $\vec{u} = \vec{0}$. We call V an **inner product space**.

Remark: For complex number field \mathbb{C} , item (1) is conjugate symmetry $\langle \vec{u}, \vec{v} \rangle = \overline{\langle \vec{v}, \vec{u} \rangle}$.

Over \mathbb{R} , by symmetry, $\langle \vec{u}, c\vec{v} \rangle = c \langle \vec{u}, \vec{v} \rangle$.

Over \mathbb{C} , by conjugate symmetry, $\langle \vec{u}, c\vec{v} \rangle = \overline{\langle c\vec{v}, \vec{u} \rangle} = \overline{c\langle \vec{v}, \vec{u} \rangle} = \overline{c} \langle \vec{v}, \vec{u} \rangle = \overline{c} \langle \vec{u}, \vec{v} \rangle.$

Example 3. (Weighted dot products) Let $c_1, ..., c_n$ be positive numbers. The weighted inner product on \mathbb{F}^n is

$$\langle \vec{v}, \vec{w} \rangle := \sum_{i=1}^n c_i v_i \overline{w_i}$$

Check that it satisfies all axioms.

On \mathbb{R}^n , we don't have to put conjugate.

Example 4. Let $P_n(\mathbb{F})$ be the vector space of polynomials of degree at most n with coefficient in \mathbb{F} .

An inner product on $P_n(\mathbb{R})$ can be defined as

$$\langle p,q\rangle = \int_0^1 p(t)q(t) \ dt$$

or as $\langle p,q\rangle = \int_0^1 p(t)\overline{q(t)} dt$ on $P_n(\mathbb{C})$.

In a inner product space, we have geometry and more tools to work with. Most properties of inner product space are similar as dot products.

Definition 5. Two vectors \vec{u} and \vec{v} are called **orthogonal** if $\langle \vec{v}, \vec{u} \rangle = 0$.

2. Norms

Definition 6 (Norm of a Vector). Let V be a inner product space over \mathbb{F} . The **length** or **norm** of a vector $\vec{v} \in V$, denoted by $||\vec{v}||$, is defined as

$$|\vec{v}|| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

where v_1, \ldots, v_n are the coordinates of \vec{v} .

 $||\vec{v}|| = 0$ if and only if $\vec{v} = 0$.

A vector \vec{u} is called an **unit vector** if $||\vec{u}|| = 1$.

If a vector \vec{w} is not an unit vector, we can find a unit vector on the same direction defined by

$$\frac{\vec{w}}{||\vec{w}||}$$

and called the **normalization** of \vec{w} .

Proposition 7. For any vector $\vec{v} \in V$ and any scalar $c \in \mathbb{F}$ one obtains $||c \cdot \vec{v}|| = |c| \cdot ||\vec{v}||.$

Proof. The proof is the same for $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . $||c\vec{v}||^2 = \langle c\vec{v}, c\vec{v} \rangle = c\bar{c}\langle \vec{v}, \vec{v} \rangle = |c|^2 ||\vec{v}||.$

Theorem 8 (Pythagorean Theorem). If two vectors $\vec{u}, \vec{v} \in V$ are orthogonal, then they satisfy the **Pythagorean Relation**

$$||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2$$

Proof. Proof: Two vectors $\vec{u}, \vec{v} \in V$ are orthogonal if and only if $\langle \vec{u}, \vec{v} \rangle = 0$.

$$|\vec{u} + \vec{v}||^2 = \langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle = \langle \vec{u}, \vec{u} \rangle + \langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle = ||\vec{u}||^2 + ||\vec{v}||^2$$

Definition 9. Let $L = \text{Span}\{\vec{w}\}$ be the subspace in V spanned by $\vec{w} \in V$. For a given vector $\vec{y} \in V$, the vector

$$\operatorname{proj}_{L}(\vec{y}) := \left(\frac{\langle \vec{y}, \vec{w} \rangle}{\langle \vec{w}, \vec{w} \rangle}\right) \vec{w}$$

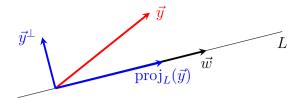
is called the **orthogonal projection of** \vec{y} **onto** L (or onto \vec{w}) and

$$\vec{y}^{\perp} := \vec{y} - \operatorname{proj}_L(\vec{y})$$

the component of \vec{y} orthogonal to L (or \vec{w}).

Proposition 10. Let \vec{w} be a nonzero vector in V. Any vector $\vec{y} \in V$ can be uniquely written as the sum of a scalar product of $\vec{w} \in V$ and a vector orthogonal to \vec{w} .

Proof. $\vec{y} = \text{proj}_L(\vec{y}) + \vec{y}^{\perp}$. Suppose there is another decomposition $\vec{y} = \vec{a} + \vec{b}$ such that $\vec{a} = c\vec{w}$ and \vec{b} is orthogonal to \vec{w} . Then $\langle \vec{y}, \vec{w} \rangle = \langle \vec{a} + \vec{b}, \vec{w} \rangle = \langle c\vec{w}, \vec{w} \rangle + \langle \vec{b}, \vec{w} \rangle = c \langle \vec{w}, \vec{w} \rangle$. Hence $c = \frac{\langle \vec{y}, \vec{w} \rangle}{\langle \vec{w}, \vec{w} \rangle}$



Theorem 11 (Cauchy-Schwarz inequality). $|\langle \vec{x}, \vec{y} \rangle| \leq ||\vec{x}|| \cdot ||\vec{y}||$

The equality holds if and only if $\vec{y} = c\vec{x}$.

 $\begin{aligned} &Proof. \ \vec{y} = \operatorname{proj}_{\vec{x}}(\vec{y}) + \vec{y}^{\perp}.\\ &||\vec{y}||^2 = \langle \vec{y}, \vec{y} \rangle = ||\operatorname{proj}_{\vec{x}}(\vec{y})||^2 + ||\vec{y}^{\perp}||^2 = \frac{\langle \vec{y}, \vec{x} \rangle^2}{\langle \vec{x}, \vec{x} \rangle} + ||\vec{y}^{\perp}||^2 \geq \frac{\langle \vec{y}, \vec{x} \rangle^2}{\langle \vec{x}, \vec{x} \rangle}.\\ &\text{The equality holds if and only if } \vec{y}^{\perp} = \vec{0}. \end{aligned}$

In particular, $||\vec{y}|| \ge ||\operatorname{proj}_{\vec{x}}(\vec{y})||$.

Proposition 12 (Triangle Inequality). Two vectors $\vec{u}, \vec{v} \in V$ satisfy $||\vec{u} + \vec{v}|| \leq ||\vec{u}|| + ||\vec{v}||.$

 \vec{v}

Proof.

$$\begin{aligned} ||\vec{u} + \vec{v}||^2 &= \langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle = \langle \vec{u}, \vec{u} \rangle + \langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle = ||\vec{u}||^2 + ||\vec{v}||^2 + 2Re\langle \vec{u}, \vec{v} \rangle \\ &\leq ||\vec{u}||^2 + ||\vec{v}||^2 + 2|\langle \vec{u}, \vec{v} \rangle| \leq ||\vec{u}||^2 + ||\vec{v}||^2 + 2||\vec{u}|| \cdot ||\vec{v}|| = (||\vec{u}|| + ||\vec{v}||)^2 \end{aligned}$$

$$\vec{u}$$
 + \vec{v}

Definition 13. (Angles Between Vectors) The **angle between two nonzero vectors** $\vec{u}, \vec{v} \in V$ is the the angle $0 \le \theta \le \pi$ satisfying

$$\langle \vec{u}, \vec{v} \rangle = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos \theta$$

Or we can write

$$\theta = \arccos \frac{\langle \vec{u}, \vec{v} \rangle}{||\vec{u}|| \cdot ||\vec{v}||}.$$

In particular, when $\langle \vec{u}, \vec{v} \rangle = 0$, the angle $\theta = \frac{\pi}{2}$.

A vector space V with norm is called a **normed vector space**. In fact, not every norm is defined by inner product. More generally, one can define normed space by axioms:

Definition 14. A norm on V is a map from V to \mathbb{F} such that

(1) $||\vec{x}|| \ge 0$ for all $\vec{x} \in V$. $||\vec{x}|| = 0$ if and only if $\vec{x} = \vec{0}$.

(2) $||c\vec{x}|| = |c| \cdot ||\vec{x}||$ for all $\vec{x} \in V$ and $c \in \mathbb{F}$.

(3) The triangle inequality $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$ holds for all vectors in V.

Definition 15 (Distance Between Vectors). The **distance** $dist(\vec{u}, \vec{v})$ between vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ is defined as

$$\operatorname{dist}(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}||.$$

Note that $\operatorname{dist}(\vec{u}, \vec{v}) \geq 0$ for any pair of vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$, and $\operatorname{dist}(\vec{u}, \vec{v}) = 0$ if and only if $\vec{u} = \vec{v}$. Also, $\operatorname{dist}(\vec{u}, \vec{v}) = \operatorname{dist}(\vec{v}, \vec{u})$.

Example 16. $(l^p \text{ spaces})$ Let $1 \leq p < \infty$, it is natural to define l^p norms on \mathbb{F}^n

$$||\vec{x}||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

When p = 2, it is the norm induced by the dot product.

Example 17. $(l^{\infty} \text{ spaces})$ It is natural to define l^{∞} norms on \mathbb{F}^n

$$||\vec{x}||_{\infty} = \max_{1 \le i \le n} \{|x_i|\}$$

Example 18. (Norms on $\mathbb{F}^{m \times n}$ induced by norms on \mathbb{F}^n) Normed matrix vector spaces $\mathbb{F}^{m \times n}$. Using norms on \mathbb{F}^n , one can define norms on matrix vector spaces

$$||A|| = \sup\{||A\vec{x}|| \mid \vec{x} \in \mathbb{F}^n \text{ with } ||\vec{x}|| = 1\} = \sup\{\frac{||A\vec{x}||}{||\vec{x}||} \mid \vec{x} \neq \vec{0} \in \mathbb{F}^n\}$$

Example 19. Infinity norm on $\mathbb{F}^{m \times n}$.

$$||A||_{\infty} = \max_{1 \le i \le n} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\}$$

3. Orthogonal Projections and Orthonormal Bases

Definition 20 (Orthogonal Set). A set $\{\vec{u}_1, \ldots, \vec{u}_p\}$ of vectors in a inner vector space V is called **orthogonal** if $\langle \vec{u}_i, \vec{u}_j \rangle = 0$ for any choice of indices $i \neq j$.

Proposition 21. ● Orthogonal vectors are linear independent.
● Orthonormal vectors { u₁,..., u_n} in ℝⁿ form a basis of ℝⁿ.

Proof. Suppose $\{\vec{u}_1, \ldots, \vec{u}_p\}$ is orthogonal and $c_1\vec{u}_1 + \cdots + c_p\vec{u}_p = \vec{0}$. Then $\langle c_i\vec{u}_i, \vec{u}_i \rangle = c_i \langle \vec{u}_i, \vec{u}_i \rangle = 0$ for each $i = 1, 2, \ldots, p$. So, $c_i = 0$.

Definition 22. • An orthogonal basis for a subspace W of an inner product space V is any basis for W which is also an orthogonal set.

• If each vector is a **unit** vector in an orthogonal basis, then it is an **orthonormal basis**.

Theorem 23 (Coordinates with respect to an orthogonal basis). Let $\mathscr{B} = {\vec{u}_1, \ldots, \vec{u}_p}$ be an orthogonal basis for a subspace W of an inner product space V, and let \vec{y} be any vector in W. Then

$$\vec{y} = \left(\frac{\langle \vec{y}, \vec{u}_1 \rangle}{\langle \vec{u}_1, \vec{u}_1 \rangle}\right) \vec{u}_1 + \dots + \left(\frac{\langle \vec{y}, \vec{u}_p \rangle}{\langle \vec{u}_p, \vec{u}_p \rangle}\right) \vec{u}_p$$

If $W = \mathbb{R}^n$, then the \mathscr{B} -coordinates of \vec{y} are given by:

$$[\vec{y}]_{\mathscr{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \quad with \quad c_i = \frac{\langle \vec{y}, \vec{u}_i \rangle}{\langle \vec{u}_i, \vec{u}_i \rangle} = \frac{\langle \vec{y}, \vec{u}_i \rangle}{||\vec{u}_i||^2}$$

In particular, let $\mathscr{B} = \{\vec{u}_1, \ldots, \vec{u}_p\}$ be an **orthonormal** basis for a subspace W of \mathbb{R}^n , and let \vec{y} be any vector in W. Then

$$\vec{y} = \langle \vec{y}, \vec{u}_1 \rangle \vec{u}_1 + \dots + \langle \vec{y}, \vec{u}_p \rangle \vec{u}_p$$

Proof. Suppose $\vec{y} = c_1 \vec{u}_1 + \dots + c_p \vec{u}_p$.

Let V be an inner product space.

We have defined orthogonal projection onto a vector in V. We can define the orthogonal projection on to an subspace W of V.

More generally, given a subspace W of V and a vector $\vec{y} \in V$, we can ask if/how one can find a decomposition of \vec{y} as

$$\vec{y} = \operatorname{proj}_W(\vec{y}) + \vec{y}^{\perp}$$

with $\operatorname{proj}_W(\vec{y}) \in W$ (the orthogonal projection of \vec{y} on to W) and \vec{y}^{\perp} is the component of \vec{y} perpendicular to W.

Theorem 24 (Orthogonal Decomposition). Let W be any subspace of V and let $\vec{y} \in V$ be any vector. Then there exists a unique decomposition

$$\vec{y} = \operatorname{proj}_W(\vec{y}) + \vec{y}^{\perp}$$

with $\operatorname{proj}_W(\vec{y}) \in W$ and \vec{y}^{\perp} is perpendicular to W.

Theorem 25 (Orthogonal Decomposition). If $\{\vec{u}_1, \ldots, \vec{u}_p\}$ is an orthogonal basis for W, then

$$\operatorname{proj}_{W}(\vec{y}) = \left(\frac{\langle \vec{y}, \vec{u}_{1} \rangle}{\langle \vec{u}_{1}, \vec{u}_{1} \rangle}\right) \vec{u}_{1} + \dots + \left(\frac{\langle \vec{y}, \vec{u}_{p} \rangle}{\langle \vec{u}_{p}, \vec{u}_{p} \rangle}\right) \vec{u}_{p}$$

and $\vec{y}^{\perp} = \vec{y} - \operatorname{proj}_W(\vec{y}).$

Definition 26 (Orthogonal Complements). Given a nonempty **subset** (finite or infinite) W of V, we define its **orthogonal complement** W^{\perp} (pronounced "W perp") as the set of all vectors $\vec{v} \in V$ such that

$$\langle \vec{v}, \vec{w} \rangle = 0,$$
 for all $\vec{w} \in W.$

Expressed in set notation:

$$W^{\perp} = \{ \vec{v} \in V \mid \langle \vec{v}, \vec{w} \rangle = 0 \text{ for all } \vec{w} \in W \}$$

Theorem 27. Let S be a subset of V. Let W = Span(S), then (1) $S^{\perp} = W^{\perp}$ (2) If $W = \text{Span}(\mathscr{B})$, then $W^{\perp} = \mathscr{B}^{\perp}$ (3) W^{\perp} is a subspace of V (even when S is not). (4) $(W^{\perp})^{\perp} = W$. (5) dim $W + \dim W^{\perp} = \dim V$.

Theorem 28. Let W be a subspace of V, then $V = W \oplus W^{\perp}$

Let A be an $m \times n$ matrix.

The row space of A is Row(A), spanned by the row vectors of A.

The column space of A is Col(A), so Col(A) = im(A).

The kernel of A is also called the **null space** of A, denoted Nul(A).

Theorem 29. Let A be an $m \times n$ matrix, then $(\operatorname{Row} A)^{\perp} = \ker(A) \quad and \quad (\operatorname{im} A)^{\perp} = \ker A^{T}.$ More over, $\mathbb{F}^{m} = \ker A^{T} \oplus \operatorname{im} A$

4. Gram-Schmidt process and QR-factorization

The **Gram-Schmidt process** is an algorithm that produces an orthogonal (or orthonormal) basis for any subspace W of V by starting with any basis for W.

Theorem 30 (Gram-Schmidt (Orthogonalize)). Let W be a subspace of V and let $\vec{b}_1, \dots, \vec{b}_p$ be a basis for W. Define vectors $\vec{v}_1, \dots, \vec{v}_p$ as

 $\vec{v}_{1} = \vec{b}_{1}$ $\vec{v}_{2} = \vec{b}_{2} - \frac{\langle \vec{b}_{2}, \vec{v}_{1} \rangle}{\langle \vec{v}_{1}, \vec{v}_{1} \rangle} \vec{v}_{1}$ $\vec{v}_{3} = \vec{b}_{3} - \frac{\langle \vec{b}_{3}, \vec{v}_{1} \rangle}{\langle \vec{v}_{1}, \vec{v}_{1} \rangle} \vec{v}_{1} - \frac{\langle \vec{b}_{3}, \vec{v}_{2} \rangle}{\langle \vec{v}_{2}, \vec{v}_{2} \rangle} \vec{v}_{2}$ \vdots $\vec{v}_{p} = \vec{b}_{p} - \frac{\langle \vec{b}_{p}, \vec{v}_{1} \rangle}{\langle \vec{v}_{1}, \vec{v}_{1} \rangle} \vec{v}_{1} - \frac{\langle \vec{b}_{p}, \vec{v}_{2} \rangle}{\langle \vec{v}_{2}, \vec{v}_{2} \rangle} \vec{v}_{2} - \dots - \frac{\langle \vec{b}_{p}, \vec{v}_{p-1} \rangle}{\langle \vec{v}_{p-1}, \vec{v}_{p-1} \rangle} \vec{v}_{p-1}$ Then $\{\vec{v}_{1}, \dots, \vec{v}_{p}\}$ is an orthogonal basis for W and $\operatorname{Span}\{\vec{b}_{1}, \dots, \vec{b}_{k}\} = \operatorname{Span}\{\vec{v}_{1}, \dots, \vec{v}_{k}\}$ for and $k = 1, \dots, p$.

Theorem 31 (Gram-Schmidt (Normalize)). If $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is an orthogonal basis for W, then $\{\vec{u}_1, \ldots, \vec{u}_p\}$ is an orthonormal basis for W, where, $\vec{u}_i = \frac{\vec{v}_i}{||\vec{v}_i||}$ for $i = 1, \ldots, p$.

Basis $\xrightarrow{\text{orthogonalize}}$ Orthogonal basis $\xrightarrow{\text{normalize}}$ Orthonormal basis.

• Note that the formula for computing $\vec{v_i}$ for any $i = 2, 3, \ldots, p$ can be written as

$$\vec{v}_{i} = \vec{b}_{i} - \text{proj}_{\vec{v}_{1}}(\vec{b}_{i}) - \text{proj}_{\vec{v}_{2}}(\vec{b}_{i}) - \dots - \text{proj}_{\vec{v}_{i-1}}(\vec{b}_{i})$$
$$= \vec{b}_{i} - \text{proj}_{\text{Span}\{\vec{v}_{1},\dots,\vec{v}_{i-1}\}}(\vec{b}_{i}).$$

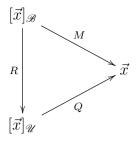
So, $\vec{v}_i = \vec{b}_i^{\perp}$ respect to $\operatorname{Span}\{\vec{v}_1, \dots, \vec{v}_{i-1}\}.$

• This formula is *inductive* in that the computation of \vec{v}_i relies on the vectors $\vec{v}_1, \ldots, \vec{v}_{i-1}$.

QR-Factorization.

QR-Factorization is the matrix version of Gram-Schmidt process for a subspace W of \mathbb{F}^n :

Basis $\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_p\} \xrightarrow{\text{orthogonalize}} \text{Orthogonal basis } \mathscr{V} = \{\vec{v}_1, \dots, \vec{v}_p\}$ $\xrightarrow{\text{normalize}} \text{Orthonormal basis } \mathscr{U} = \{\vec{u}_1, \dots, \vec{u}_p\}.$ Given a vector in W, let's compare their coordinates:



Each matrix defines an isomorphism. So, M = QR.

Here $M = [\vec{b}_1 \ \dots \ \vec{b}_p]$ and $Q = [\vec{u}_1, \dots, \vec{u}_p]$.

Theorem 32. Given a $n \times p$ matrix $M = [\vec{b}_1 \dots \vec{b}_p]$ with independent columns. There is a unique decomposition M = QR

where, $Q = [\vec{u}_1, \ldots, \vec{u}_p]$ has orthonormal columns and R is an $p \times p$ upper triangular matrix with $r_{ii} = ||\vec{v}_i||$ for $i = 1, \ldots, p$ and $r_{ij} = \langle \vec{u}_i, \vec{b}_j \rangle$ for i < j.

 $\begin{aligned} Proof. \ \text{Proof}(\text{for } p = 3): \ \text{From Gram-Schmidt process, write } \vec{b}_i \ \text{as linear combinations of } \vec{u}_i. \\ \vec{b}_1 &= \vec{v}_1 = ||\vec{v}_1||\vec{u}_1 \\ \vec{b}_2 &= \vec{v}_2 + \frac{\langle \vec{b}_2, \vec{v}_1 \rangle}{||\vec{v}_1||^2} \vec{v}_1 = ||\vec{v}_2||\vec{u}_2 + \langle \vec{b}_2, \vec{u}_1 \rangle \vec{u}_1 \\ \vec{b}_3 &= \vec{v}_3 + \frac{\langle \vec{b}_3, \vec{v}_1 \rangle}{||\vec{v}_1||^2} \vec{v}_1 + \frac{\langle \vec{b}_3, \vec{v}_2 \rangle}{||\vec{v}_2||^2} \vec{v}_2 = ||\vec{v}_3||\vec{u}_3 + \langle \vec{b}_3, \vec{u}_1 \rangle \vec{u}_1 + \langle \vec{b}_3, \vec{u}_2 \rangle \vec{u}_2 \end{aligned}$ So, $[\vec{b}_1 \ \vec{b}_2 \ \vec{b}_3] = [\vec{u}_1 \ \vec{u}_2 \ \vec{u}_3] \begin{bmatrix} ||\vec{v}_1|| & \langle \vec{u}_1, \vec{b}_2 \rangle & \langle \vec{u}_1, \vec{b}_3 \rangle \\ 0 & ||\vec{v}_2|| & \langle \vec{u}_2, \vec{b}_3 \rangle \\ 0 & 0 & ||\vec{v}_3|| \end{bmatrix}$

5. Orthogonal Transformations and Orthogonal Matrices

Let V be a inner product space.

Definition 33. A linear transformation $T: V \to V$ is called **orthogonal** if $||T(\vec{x})|| = ||\vec{x}||$ for all $\vec{x} \in V$ that is, T preserves the length of vectors.

Example 34. Whether or not the following transformations are orthogonal.

(1.) Rotations $S : \mathbb{R}^2 \to \mathbb{R}^2$ are orthogonal transformations.

The matrix of rotation $S = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.

(2.) Reflections $R: \mathbb{R}^2 \to \mathbb{R}^2$ are orthogonal transformations.

The matrix of reflection matrix $R = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$ with $a^2 + b^2 = 1$ is orthogonal.

(3.) Orthogonal projections $P : \mathbb{R}^2 \to \mathbb{R}^2$ are NOT orthogonal transformations.

The matrix of an orthogonal transformation $T: \mathbb{F}^n \to \mathbb{F}^n$ is called an **orthogonal matrix**.

Theorem 35. Let U be an $n \times n$ orthogonal matrix and let \vec{x} and \vec{y} be any vectors in \mathbb{F}^n . Then (1) $||U\vec{x}|| = ||\vec{x}||$. (2) $\langle U\vec{x}, U\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$. (3) $\langle U\vec{x}, U\vec{y} \rangle = 0$ if and only if $\langle \vec{x}, \vec{y} \rangle = 0$.

Proof. The transformation $T(\vec{x}) = U\vec{x}$ is orthogonal. So, we have 1. For 2. $||U(\vec{x} + \vec{y})||^2 = ||\vec{x} + \vec{y}||^2 = (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y}) = ||\vec{x}||^2 + 2\vec{x} \cdot \vec{y} + ||\vec{y}||^2$ $||U(\vec{x} + \vec{y})||^2 = ||U(\vec{x}) + U(\vec{y})||^2 = ||U(\vec{x})||^2 + ||U(\vec{y})||^2 + 2\langle U\vec{x}, U\vec{y} \rangle.$ Compare two formulas, we have $\langle U\vec{x}, U\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle.$

Proposition 36. U is an orthogonal matrix if and only if $\langle U\vec{x}, U\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ for any \vec{x} and \vec{y} in \mathbb{R}^n .

The above theorem says that orthogonal transformations **preserve inner products**, hence also **preserve angles** and orthogonality.

Using the geometric meaning of the orthogonal transformation, we have

Theorem 37. 1. If A is orthogonal, then A is invertible and A^{-1} is orthogonal. 2. If A and B are orthogonal, then AB is orthogonal.

Theorem 38. The $n \times n$ matrix U is orthogonal if and only if $\{\vec{u}_1, \ldots, \vec{u}_n\}$ is an orthonormal set.

 $||U\vec{x}||^{2} = \langle (x_{1}\vec{u}_{1} + x_{2}\vec{u}_{2} + \dots + x_{n}\vec{u}_{n}), (x_{1}\vec{u}_{1} + x_{2}\vec{u}_{2} + \dots + x_{n}\vec{u}_{n}) \rangle = x_{1}^{2} + \dots + x_{n}^{2} = ||\vec{x}||^{2}$ So, $||U\vec{x}|| = ||\vec{x}||$ and hence U is an orthogonal matrix.

Recall the transpose of a matrix: Given an $m \times n$ matrix A, we define the **transpose matrix** A^T as the $n \times m$ matrix whose (i, j)-th entry is the (j, i)-th entry of A. The dot product can be written as matrix product

$$\vec{v}\cdot\vec{w}=\vec{v}^T\vec{w}$$

Theorem 39. The $n \times n$ matrix A is orthogonal if and only if $A^T A = I_n$; if and only if $A^{-1} = A^T$.

Proof. Proof. A is orthogonal if and only if $\{\vec{a}_1, \ldots, \vec{a}_n\}$ is orthonormal, i.e., $\vec{a}_i \cdot \vec{a}_j = 1$ if $i \neq j$ and $||\vec{a}_i|| = 1$.

On the other side, (write for the case n = 3)

That

$$A^{T}A = \begin{bmatrix} \vec{a}_{1}^{T} \\ \vec{a}_{2}^{T} \\ \vec{a}_{3}^{T} \end{bmatrix} \begin{bmatrix} \vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} \end{bmatrix} = \begin{bmatrix} \vec{a}_{1}^{T}\vec{a}_{1} & \vec{a}_{1}^{T}\vec{a}_{2} & \vec{a}_{1}^{T}\vec{a}_{3} \\ \vec{a}_{2}^{T}\vec{a}_{1} & \vec{a}_{2}^{T}\vec{a}_{2} & \vec{a}_{2}^{T}\vec{a}_{3} \\ \vec{a}_{3}^{T}\vec{a}_{1} & \vec{a}_{3}^{T}\vec{a}_{2} & \vec{a}_{3}^{T}\vec{a}_{3} \end{bmatrix} = \begin{bmatrix} \vec{a}_{1} \cdot \vec{a}_{1} & \vec{a}_{1} \cdot \vec{a}_{2} & \vec{a}_{1} \cdot \vec{a}_{3} \\ \vec{a}_{2} \cdot \vec{a}_{1} & \vec{a}_{2} \cdot \vec{a}_{2} & \vec{a}_{2} \cdot \vec{a}_{3} \\ \vec{a}_{3} \cdot \vec{a}_{1} & \vec{a}_{3} \cdot \vec{a}_{2} & \vec{a}_{3} \cdot \vec{a}_{3} \end{bmatrix} = I_{3}$$

Theorem 40. Let W be any subspace of \mathbb{R}^n with an orthonormal basis $\{\vec{u}_1, \ldots, \vec{u}_p\}$. Let $U = [\vec{u}_1 \ \vec{u}_2 \cdots \vec{u}_p]$. For any $\vec{y} \in \mathbb{R}^n$,

proj_W(
$$\hat{y}$$
) = UU^{T}
is, the matrix of the projection onto W is
 $P = UU^{T}$

Remark: 1. p < n since W is a subspace of \mathbb{R}^n . When p = n, then $P = I_n$.

2. We always have $U^T U = I$ for orthonormal basis $\{\vec{u}_1, \ldots, \vec{u}_p\}$.

The theorem comes from the following formula from §5.1. The idea is to translate dot product to matrix product.

$$\begin{aligned} \operatorname{proj}_{W}(\vec{y}) &= (\vec{y} \cdot \vec{u}_{1})\vec{u}_{1} + (\vec{y} \cdot \vec{u}_{2})\vec{u}_{2} + \dots + (\vec{y} \cdot \vec{u}_{p})\vec{u}_{p} \\ &= [\vec{u}_{1} \ \vec{u}_{2} \ \cdots \ \vec{u}_{p}] \begin{bmatrix} \vec{y} \cdot \vec{u}_{1} \\ \vec{y} \cdot \vec{u}_{2} \\ \vdots \\ \vec{y} \cdot \vec{u}_{p} \end{bmatrix} \\ &= [\vec{u}_{1} \ \vec{u}_{2} \ \cdots \ \vec{u}_{p}] \begin{bmatrix} \vec{u}_{1} \cdot \vec{y} \\ \vec{u}_{2} \cdot \vec{y} \\ \vdots \\ \vec{u}_{p} \cdot \vec{y} \end{bmatrix} \\ &= [\vec{u}_{1} \ \vec{u}_{2} \ \cdots \ \vec{u}_{p}] \begin{bmatrix} \vec{u}_{1}^{T} \vec{y} \\ \vec{u}_{2}^{T} \vec{y} \\ \vdots \\ \vec{u}_{p}^{T} \vec{y} \end{bmatrix} \\ &= [\vec{u}_{1} \ \vec{u}_{2} \ \cdots \ \vec{u}_{p}] \begin{bmatrix} \vec{u}_{1}^{T} \\ \vec{u}_{2}^{T} \\ \vdots \\ \vec{u}_{p}^{T} \end{bmatrix} \vec{y} \\ &= UU^{T} \vec{y} \end{aligned}$$

6. The adjoint of a linear operator