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1. Inner Product Spaces

Recall that for vectors ~u =

u1...
un

 and ~v =

v1...
vn

 in Rn, the dot product of ~u and ~v is

~u · ~v =
n∑
i=1

uivi = u1v1 + u2v2 + · · ·+ unvn.

Similarly the dot product of ~u and ~v in Cn is ~u · ~v =
∑n

i=1 uivi

Theorem 1 (Properties of the dot Product). For vectors ~u,~v, ~w ∈ Rn and a scalar c ∈ R, the
following hold:

(1.) ~u · ~v = ~v · ~u.
(2.) (~u+ ~v) · ~w = ~u · ~w + ~v · ~w.
(3.) (c~u) · ~v = c(~u · ~v) = ~u · (c~v).

(4.) ~u · ~u ≥ 0, and ~u · ~u = 0 if and only if ~u = ~0.

More generally, we can define inner product on a general vector space V over R as
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Definition 2 (Inner Product). Let V be a real vector space. An inner product on V is a binary
function

〈−,−〉 : V × V → R
such that for vectors ~u,~v, ~w ∈ V and a scalar c ∈ R, the following hold:

(1.) 〈~u,~v〉 = 〈~v, ~u〉.
(2.) 〈~u+ ~v, ~w〉 = 〈~u, ~w〉+ 〈~v, ~w〉.
(3.) 〈c~u,~v〉 = c〈~u,~v〉.
(4.) 〈~u, ~u〉 ≥ 0

(5.) 〈~u, ~u〉 = 0 if and only if ~u = ~0.

We call V an inner product space.

Remark: For complex number field C, item (1) is conjugate symmetry 〈~u,~v〉 = 〈~v, ~u〉.

Over R, by symmetry, 〈~u, c~v〉 = c〈~u,~v〉.

Over C, by conjugate symmetry, 〈~u, c~v〉 = 〈c~v, ~u〉 = c〈~v, ~u〉 = c̄〈~v, ~u〉 = c̄〈~u,~v〉.

Example 3. (Weighted dot products) Let c1, ..., cn be positive numbers. The weighted inner product on
Fn is

〈~v, ~w〉 :=
n∑
i=1

civiwi

Check that it satisfies all axioms.

On Rn, we don’t have to put conjugate.

Example 4. Let Pn(F) be the vector space of polynomials of degree at most n with coefficient in F.

An inner product on Pn(R) can be defined as

〈p, q〉 =

∫ 1

0

p(t)q(t) dt

or as 〈p, q〉 =

∫ 1

0

p(t)q(t) dt on Pn(C).

In a inner product space, we have geometry and more tools to work with. Most properties of inner product
space are similar as dot products.

Definition 5. Two vectors ~u and ~v are called orthogonal if 〈~v, ~u〉 = 0.

2. Norms

Definition 6 (Norm of a Vector). Let V be a inner product space over F. The length or norm of
a vector ~v ∈ V , denoted by ||~v||, is defined as

||~v|| =
√
〈~v,~v〉

where v1, . . . , vn are the coordinates of ~v.

||~v|| = 0 if and only if ~v = 0.
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A vector ~u is called an unit vector if ||~u|| = 1.

If a vector ~w is not an unit vector, we can find a unit vector on the same direction defined by

~w

||~w||

and called the normalization of ~w.

Proposition 7. For any vector ~v ∈ V and any scalar c ∈ F one obtains

||c · ~v|| = |c| · ||~v||.

Proof. The proof is the same for F = R or C.

||c~v||2 = 〈c~v, c~v〉 = cc̄〈~v,~v〉 = |c|2||~v||.
�

Theorem 8 (Pythagorean Theorem). If two vectors ~u,~v ∈ V are orthogonal, then they satisfy the
Pythagorean Relation

||~u+ ~v||2 = ||~u||2 + ||~v||2.

Proof. Proof: Two vectors ~u,~v ∈ V are orthogonal if and only if 〈~u,~v〉 = 0.

||~u+ ~v||2 = 〈~u+ ~v, ~u+ ~v〉 = 〈~u, ~u〉+ 〈~u,~v〉+ 〈~v, ~u〉+ 〈~v,~v〉 = ||~u||2 + ||~v||2

�

Definition 9. Let L = Span{~w} be the subspace in V spanned by ~w ∈ V . For a given vector ~y ∈ V ,
the vector

projL(~y) :=

(
〈~y, ~w〉
〈~w, ~w〉

)
~w

is called the orthogonal projection of ~y onto L (or onto ~w) and

~y⊥ := ~y − projL(~y)

the component of ~y orthogonal to L (or ~w).

Proposition 10. Let ~w be a nonzero vector in V . Any vector ~y ∈ V can be uniquely written as the
sum of a scalar product of ~w ∈ V and a vector orthogonal to ~w.

Proof. ~y = projL(~y) + ~y⊥. Suppose there is another decomposition ~y = ~a+~b such that ~a = c~w and

~b is orthogonal to ~w. Then 〈~y, ~w〉 = 〈~a+~b, ~w〉 = 〈c~w, ~w〉+ 〈~b, ~w〉 = c〈~w, ~w〉. Hence c =
〈~y, ~w〉
〈~w, ~w〉

�

Page 3



L

~w

~y

projL(~y)

~y⊥

Theorem 11 (Cauchy-Schwarz inequality).

|〈~x, ~y〉| ≤ ||~x|| · ||~y||
The equality holds if and only if ~y = c~x.

Proof. ~y = proj~x(~y) + ~y⊥.

||~y||2 = 〈~y, ~y〉 = || proj~x(~y)||2 + ||~y⊥||2 =
〈~y, ~x〉2

〈~x, ~x〉
+ ||~y⊥||2 ≥ 〈~y, ~x〉

2

〈~x, ~x〉
.

The equality holds if and only if ~y⊥ = ~0. �

In particular, ||~y|| ≥ || proj~x(~y)||.

Proposition 12 (Triangle Inequality). Two vectors ~u,~v ∈ V satisfy

||~u+ ~v|| ≤ ||~u||+ ||~v||.

Proof.

||~u+ ~v||2 = 〈~u+ ~v, ~u+ ~v〉 = 〈~u, ~u〉+ 〈~u,~v〉+ 〈~v, ~u〉+ 〈~v,~v〉 = ||~u||2 + ||~v||2 + 2Re〈~u,~v〉
≤ ||~u||2 + ||~v||2 + 2|〈~u,~v〉| ≤ ||~u||2 + ||~v||2 + 2||~u|| · ||~v|| = (||~u||+ ||~v||)2

�

~v

~u
~u+ ~v

Definition 13. (Angles Between Vectors) The angle between two nonzero vectors ~u,~v ∈ V is
the the angle 0 ≤ θ ≤ π satisfying

〈~u,~v〉 = ||~u|| · ||~v|| · cos θ.

Or we can write

θ = arccos
〈~u,~v〉
||~u|| · ||~v||

.

In particular, when 〈~u,~v〉 = 0, the angle θ = π
2
.

A vector space V with norm is called a normed vector space. In fact, not every norm is defined by
inner product. More generally, one can define normed space by axioms:
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Definition 14. A norm on V is a map from V to F such that

(1) ||~x|| ≥ 0 for all ~x ∈ V . ||~x|| = 0 if and only if ~x = ~0.
(2) ||c~x|| = |c| · ||~x|| for all ~x ∈ V and c ∈ F.
(3) The triangle inequality ||~u+ ~v|| ≤ ||~u||+ ||~v|| holds for all vectors in V .

Definition 15 (Distance Between Vectors). The distance dist(~u,~v) between vectors ~u,~v ∈ Rn is
defined as

dist(~u,~v) = ||~u− ~v||.

Note that dist(~u,~v) ≥ 0 for any pair of vectors ~u,~v ∈ Rn, and dist(~u,~v) = 0 if and only if ~u = ~v. Also,
dist(~u,~v) = dist(~v, ~u).

Example 16. (lp spaces) Let 1 ≤ p <∞, it is natural to define lp norms on Fn

||~x||p =

(
n∑
i=1

|xi|p
)1/p

When p = 2, it is the norm induced by the dot product.

Example 17. (l∞ spaces) It is natural to define l∞ norms on Fn

||~x||∞ = max
1≤i≤n

{|xi|}

Example 18. (Norms on Fm×n induced by norms on Fn) Normed matrix vector spaces Fm×n. Using
norms on Fn, one can define norms on matrix vector spaces

||A|| = sup{||A~x|| | ~x ∈ Fn with ||~x|| = 1} = sup{||A~x||
||~x||

| ~x 6= ~0 ∈ Fn}

Example 19. Infinity norm on Fm×n.

||A||∞ = max
1≤i≤n

{
n∑
j=1

|aij|

}

3. Orthogonal Projections and Orthonormal Bases

Definition 20 (Orthogonal Set). A set {~u1, . . . , ~up} of vectors in a inner vector space V is called
orthogonal if 〈~ui, ~uj〉 = 0 for any choice of indices i 6= j.

Proposition 21. • Orthogonal vectors are linear independent.
• Orthonormal vectors {~u1, . . . , ~un} in Rn form a basis of Rn.

Proof. Suppose {~u1, . . . , ~up} is orthogonal and c1~u1 + · · ·+ cp~up = ~0. Then 〈ci~ui, ~ui〉 = ci〈~ui, ~ui〉 = 0
for each i = 1, 2, ..., p. So, ci = 0.

�
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Definition 22. • An orthogonal basis for a subspace W of an inner product space V is any
basis for W which is also an orthogonal set.
• If each vector is a unit vector in an orthogonal basis, then it is an orthonormal basis.

Theorem 23 (Coordinates with respect to an orthogonal basis). Let B = {~u1, . . . , ~up} be an
orthogonal basis for a subspace W of an inner product space V , and let ~y be any vector in W .
Then

~y =

(
〈~y, ~u1〉
〈~u1, ~u1〉

)
~u1 + · · ·+

(
〈~y, ~up〉
〈~up, ~up〉

)
~up

If W = Rn, then the B-coordinates of ~y are given by:

[~y]B =

c1...
cn

 with ci =
〈~y, ~ui〉
〈~ui, ~ui〉

=
〈~y, ~ui〉
||~ui||2

In particular, let B = {~u1, . . . , ~up} be an orthonormal basis for a subspace W of Rn, and let ~y be
any vector in W . Then

~y = 〈~y, ~u1〉~u1 + · · ·+ 〈~y, ~up〉~up

Proof. Suppose ~y = c1~u1 + · · ·+ cp~up. �

Let V be an inner product space.

We have defined orthogonal projection onto a vector in V . We can define the orthogonal projection on to
an subspace W of V .

More generally, given a subspace W of V and a vector ~y ∈ V , we can ask if/how one can find a decompo-
sition of ~y as

~y = projW (~y) + ~y⊥

with projW (~y) ∈ W (the orthogonal projection of ~y on to W ) and ~y⊥ is the component of ~y
perpendicular to W .

Theorem 24 (Orthogonal Decomposition). Let W be any subspace of V and let ~y ∈ V be any
vector. Then there exists a unique decomposition

~y = projW (~y) + ~y⊥

with projW (~y) ∈ W and ~y⊥ is perpendicular to W .

Theorem 25 (Orthogonal Decomposition). If {~u1, . . . , ~up} is an orthogonal basis for W , then

projW (~y) =

(
〈~y, ~u1〉
〈~u1, ~u1〉

)
~u1 + · · ·+

(
〈~y, ~up〉
〈~up, ~up〉

)
~up

and ~y⊥ = ~y − projW (~y).
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Definition 26 (Orthogonal Complements). Given a nonempty subset (finite or infinite) W of V ,
we define its orthogonal complement W⊥ (pronounced “W perp”) as the set of all vectors ~v ∈ V
such that

〈~v, ~w〉 = 0, for all ~w ∈ W.
Expressed in set notation:

W⊥ = {~v ∈ V | 〈~v, ~w〉 = 0 for all ~w ∈ W}

Theorem 27. Let S be a subset of V . Let W = Span(S), then

(1) S⊥ = W⊥

(2) If W = Span(B), then W⊥ = B⊥

(3) W⊥ is a subspace of V (even when S is not).
(4) (W⊥)⊥ = W .
(5) dimW + dimW⊥ = dimV.

Theorem 28. Let W be a subspace of V , then

V = W ⊕W⊥

Let A be an m× n matrix.

The row space of A is Row(A), spanned by the row vectors of A.

The column space of A is Col(A), so Col(A) = im(A).

The kernel of A is also called the null space of A, denoted Nul(A).

Theorem 29. Let A be an m× n matrix, then

(RowA)⊥ = ker(A) and (imA)⊥ = kerAT .

More over,
Fm = kerAT ⊕ imA

4. Gram-Schmidt process and QR-factorization

The Gram-Schmidt process is an algorithm that produces an orthogonal (or orthonormal) basis for any
subspace W of V by starting with any basis for W .
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Theorem 30 (Gram-Schmidt (Orthogonalize)). Let W be a subspace of V and let ~b1, · · · ,~bp be a
basis for W . Define vectors ~v1, . . . , ~vp as

~v1 = ~b1

~v2 = ~b2 −
〈~b2, ~v1〉
〈~v1, ~v1〉

~v1

~v3 = ~b3 −
〈~b3, ~v1〉
〈~v1, ~v1〉

~v1 −
〈~b3, ~v2〉
〈~v2, ~v2〉

~v2

...

~vp = ~bp −
〈~bp, ~v1〉
〈~v1, ~v1〉

~v1 −
〈~bp, ~v2〉
〈~v2, ~v2〉

~v2 − · · · −
〈~bp, ~vp−1〉
〈~vp−1, ~vp−1〉

~vp−1

Then {~v1, . . . , ~vp} is an orthogonal basis for W and

Span{~b1, · · · ,~bk} = Span{~v1, · · · , ~vk}
for and k = 1, . . . , p.

Theorem 31 (Gram-Schmidt (Normalize)). If {~v1, . . . , ~vp} is an orthogonal basis for W , then

{~u1, . . . , ~up} is an orthonormal basis for W , where, ~ui =
~vi
||~vi||

for i = 1, . . . , p.

Basis
orthogonalize−−−−−−−→ Orthogonal basis

normalize−−−−−→ Orthonormal basis.

• Note that the formula for computing ~vi for any i = 2, 3, . . . , p can be written as

~vi = ~bi − proj~v1(
~bi)− proj~v2(

~bi)− · · · − proj~vi−1
(~bi)

= ~bi − projSpan{~v1,...,~vi−1}(
~bi).

So, ~vi = ~b⊥i respect to Span{~v1, . . . , ~vi−1}.
• This formula is inductive in that the computation of ~vi relies on the vectors ~v1, . . . , ~vi−1.

QR-Factorization.

QR-Factorization is the matrix version of Gram-Schmidt process for a subspace W of Fn:

Basis B = {~b1, . . . ,~bp}
orthogonalize−−−−−−−→ Orthogonal basis V = {~v1, . . . , ~vp}

normalize−−−−−→ Orthonormal basis U = {~u1, . . . , ~up}.
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Given a vector in W , let’s compare their coordinates:

[~x]B
M

&&
R

��

~x

[~x]U

Q

88

Each matrix defines an isomorphism. So, M = QR.

Here M = [~b1 . . . ~bp] and Q = [~u1, . . . , ~up].

Theorem 32. Given a n× p matrix M = [~b1 . . . ~bp] with independent columns. There is a unique
decomposition

M = QR

where, Q = [~u1, . . . , ~up] has orthonormal columns and R is an p× p upper triangular matrix with

rii = ||~vi|| for i = 1, . . . , p and rij = 〈~ui,~bj〉 for i < j.

Proof. Proof(for p = 3): From Gram-Schmidt process, write ~bi as linear combinations of ~ui.

~b1 = ~v1 = ||~v1||~u1

~b2 = ~v2 +
〈~b2, ~v1〉
||~v1||2

~v1 = ||~v2||~u2 + 〈~b2, ~u1〉~u1

~b3 = ~v3 +
〈~b3, ~v1〉
||~v1||2

~v1 +
〈~b3, ~v2〉
||~v2||2

~v2 = ||~v3||~u3 + 〈~b3, ~u1〉~u1 + 〈~b3, ~u2〉~u2

So,

[~b1 ~b2 ~b3] = [~u1 ~u2 ~u3]

||~v1|| 〈~u1,~b2〉 〈~u1,~b3〉0 ||~v2|| 〈~u2,~b3〉
0 0 ||~v3||


�

5. Orthogonal Transformations and Orthogonal Matrices

Let V be a inner product space.

Definition 33. A linear transformation T : V → V is called orthogonal if

||T (~x)|| = ||~x|| for all ~x ∈ V
that is, T preserves the length of vectors.

Example 34. Whether or not the following transformations are orthogonal.

(1.) Rotations S : R2 → R2 are orthogonal transformations.
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The matrix of rotation S =

[
cos θ − sin θ
sin θ cos θ

]
is orthogonal.

(2.) Reflections R : R2 → R2 are orthogonal transformations.

The matrix of reflection matrix R =

[
a b
b −a

]
with a2 + b2 = 1 is orthogonal.

(3.) Orthogonal projections P : R2 → R2 are NOT orthogonal transformations.

The matrix of an orthogonal transformation T : Fn → Fn is called an orthogonal matrix.

Theorem 35. Let U be an n× n orthogonal matrix and let ~x and ~y be any vectors in Fn. Then

(1) ||U~x|| = ||~x||.
(2) 〈U~x, U~y〉 = 〈~x, ~y〉.
(3) 〈U~x, U~y〉 = 0 if and only if 〈~x, ~y〉 = 0.

Proof. The transformation T (~x) = U~x is orthogonal. So, we have 1.
For 2. ||U(~x+ ~y)||2 = ||~x+ ~y||2 = (~x+ ~y) · (~x+ ~y) = ||~x||2 + 2~x · ~y + ||~y||2
||U(~x+ ~y)||2 = ||U(~x) + U(~y)||2 = ||U(~x)||2 + ||U(~y)||2 + 2〈U~x, U~y〉.
Compare two formulas, we have 〈U~x, U~y〉 = 〈~x, ~y〉. �

Proposition 36. U is an orthogonal matrix if and only if 〈U~x, U~y〉 = 〈~x, ~y〉 for any ~x and ~y in Rn.

The above theorem says that orthogonal transformations preserve inner products, hence also preserve
angles and orthogonality.

Using the geometric meaning of the orthogonal transformation, we have

Theorem 37. 1. If A is orthogonal, then A is invertible and A−1 is orthogonal.
2. If A and B are orthogonal, then AB is orthogonal.

Theorem 38. The n× n matrix U is orthogonal if and only if {~u1, . . . , ~un} is an orthonormal set.

Page 10



Proof. Proof. “⇒” Suppose U is an orthogonal matrix. We prove that {~u1, . . . , ~un} is an orthonormal
set.
Use the property that U is orthogonal if and only if 〈U~x, U~y〉 = 〈~x, ~y〉. Apply the formula to
standard vectors ~x = ~ei and ~y = ~ej.

U~ei = [u1 u2 · · · un]


0
...
1
...
0

 = ~ui

Hence 〈~ui, ~uj〉 = 〈U~ei, U~ej〉 = 〈~ei, ~ej〉 =

{
0 when i 6= j

1 when i = j

So, {~u1, . . . , ~un} is orthonormal.
“⇐” Suppose {~u1, . . . , ~un} is an orthonormal set. We show that U is an orthogonal matrix.

For any ~x ∈ Rn, U~x = [u1 u2 · · · un]


x1
x2
...
xn

 = x1~u1 + x2~u2 + · · ·+ xn~un

||U~x||2 = 〈(x1~u1 + x2~u2 + · · ·+ xn~un), (x1~u1 + x2~u2 + · · ·+ xn~un)〉 = x21 + · · ·+ x2n = ||~x||2
So, ||U~x|| = ||~x|| and hence U is an orthogonal matrix. �

Recall the transpose of a matrix: Given an m× n matrix A, we define the transpose matrix AT as the
n ×m matrix whose (i, j)-th entry is the (j, i)-th entry of A. The dot product can be written as matrix
product

~v · ~w = ~vT ~w

Theorem 39. The n× n matrix A is orthogonal if and only if ATA = In; if and only if A−1 = AT .

Proof. Proof. A is orthogonal if and only if {~a1, . . . ,~an} is orthonormal, i.e., ~ai · ~aj = 1 if i 6= j and
||~ai|| = 1.
On the other side, (write for the case n = 3)

ATA =

~a
T
1

~aT2
~aT3

 [~a1 ~a2 ~a3
]

=

~a
T
1~a1 ~aT1~a2 ~aT1~a3

~aT2~a1 ~aT2~a2 ~aT2~a3

~aT3~a1 ~aT3~a2 ~aT3~a3

 =

~a1 · ~a1 ~a1 · ~a2 ~a1 · ~a3
~a2 · ~a1 ~a2 · ~a2 ~a2 · ~a3
~a3 · ~a1 ~a3 · ~a2 ~a3 · ~a3

 = I3

�

Theorem 40. Let W be any subspace of Rn with an orthonormal basis {~u1, . . . , ~up}. Let U =
[~u1 ~u2 · · · ~up]. For any ~y ∈ Rn,

projW (~y) = UUT~y.

That is, the matrix of the projection onto W is

P = UUT

Remark: 1. p < n since W is a subspace of Rn. When p = n, then P = In.

2. We always have UTU = I for orthonormal basis {~u1, . . . , ~up}.
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The theorem comes from the following formula from §5.1. The idea is to translate dot product to matrix
product.

projW (~y) = (~y · ~u1)~u1 + (~y · ~u2)~u2 + · · ·+ (~y · ~up)~up

= [~u1 ~u2 · · · ~up]


~y · ~u1
~y · ~u2

...
~y · ~up



= [~u1 ~u2 · · · ~up]


~u1 · ~y
~u2 · ~y

...
~up · ~y



= [~u1 ~u2 · · · ~up]


~uT1 ~y
~uT2 ~y

...
~uTp ~y



= [~u1 ~u2 · · · ~up]


~uT1
~uT2
...
~uTp

 ~y
= UUT~y

6. The adjoint of a linear operator
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