Northeastern University, Department of Mathematics

Linear Algebra

• Instructor: He Wang Email: he.wang@northeastern.edu

§1. Linear system and Gaussian elimination over fields

Topics: 1. Linear system; 2. Sets, groups, fields and more; 3. Gaussian elimination.

1. Background:

Definition 1. (1) A **linear equation** in variables x_1, x_2, \ldots, x_n is of the form $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$. Here, $a_1, a_2, \ldots, a_n \in \mathbb{R}$ (or a field \mathbb{F}) are **coefficients**. (2) A **system of linear equations** (or **linear system**) is a collection of linear equations in the same variables. $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$
$$\vdots \qquad \vdots \qquad \vdots$$
$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Matrix/vector notation:

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

- Coefficient matrix A: Size $m \times n$; m rows; n columns.
- Vector $\vec{b} \in \mathbb{R}^m$ (or \mathbb{F}^n).
- Augmented matrix: $[A \mid \vec{b}]$.

Goal: Find the set of all solutions.

Method: Gauss-Jordan elimination (Gaussian elimination).

Theorem 2. A linear system (matrix equation $A\vec{x} = \vec{b}$) has either no solution, or exactly one solution, or infinitely many solutions.

2. Sets and functions

Definition 3. A set S is a well-defined, unordered collection of distinct elements.

Non-well-defined example, (Russell' s paradox):

 $S = \{x \mid x \notin x\}$, i.e., set of all sets that are not members of themselves.

{The teacher that teaches all who don't teach themselves.}

Set operations:

- Union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Complement of $A \subset S$, $A^c = \{x \in S \mid x \notin A\}$
- Product $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. E.g., $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Definition 4. A function (map) f between two sets A and B is a rule

 $f: A \to B$

sending every $a \in A$ to an element $f(a) \in B$

It is ok to have $f(a_1) = f(a_2)$ for different a_1 and a_2 . It is wrong to send one element in A to two different elements in B.

Definition 5. (1) A function f : A → B is called injective (one-to-one), if x ≠ y implies f(x) ≠ f(y), or equivalently, f(x) = f(y) implies x = y for any x, y ∈ A.
(2) A function f : A → B is called surjective (onto), if for any b ∈ B, there is x ∈ A such that f(a) = b.

(3) A function $f : A \hookrightarrow B$ is called **bijective**, if it is both injective and surjective.

Consider a function $f : A \to B$ and the equation f(x) = b for every $b \in B$. From the definition, we can get the following properties.

Proposition 6. • f is injective $\Leftrightarrow f(x) = b$ has at most one solution. • f is surjective $\Leftrightarrow f(x) = b$ has at least one solution. • f is bijective $\Leftrightarrow f(x) = b$ has exactly one solution.

Example 7. Consider functions $f : [0, 1] \to \mathbb{R}$ defined by f(x) = x.

 $g: \mathbb{R} \to [0, \infty)$ defined by $g(x) = x^2$.

 $h : \mathbb{R} \to \mathbb{R}$ defined by h(x) = 2x + 1.

Definition 8. The composition $T \circ S$ of two functions $S : U \to V$ and $T : V \to W$ is the function $T \circ S : U \to W$

defined by $(T \circ S)(u) = T(S(u))$ for $u \in U$.

Theorem 9. Consider functions $R: V \to W$ and $L: W \to V$. Let id_V be the *identity* map of V defined by $id_V(v) = v$ for all $v \in V$. If

$$L \circ R = \mathrm{id}_V$$

then L is surjective and R is injective. (That is $V \xrightarrow{R} W \xrightarrow{L} V$) In this case, we call L a **left-inverse of** R (i.e., R has a left-inverse); and call R a **right-inverse** of L.

Proof. Directly from definitions of surjective and injective, and consider $L \circ R : V \to W \to V$. For any $v \in V$, $L \circ R(v) = v$, so L(R(v)) = v, hence L is surjective. Suppose $R(v_1) = R(v_2)$. Apply L both sides, we have $v_1 = v_2$. So, R is injective.

Theorem 10. (1) A map $T: V \to W$ is injective if and only if it has a left-inverse. (2) A map $T: V \to W$ is surjective if and only if it has a right-inverse.

Proof. " \Leftarrow " is from the above theorem.

(1) " \Rightarrow " Since T is injective, for each $w \in W$, the equation w = T(x) has at most one solution. If w = T(x) has a (unique) solution x, then define a map $L : W \to V$ as L(w) = x. If there is no solution, we can assign any value for w. Then L is a left-inverse of T. (Notice that, it is not unique.) (2) " \Rightarrow " Since T is surjective, for each $w \in W$, the equation w = T(x) has at least one solution (maybe not unique). Choose one solution and define $R : W \to V$ as R(w) = x. Then R is a right-inverse of T. (Notice that, it is not unique.)

Theorem 11. Suppose a function $T : V \to W$ has both a left-inverse (i.e., $L \circ T = id_V$) and a right-inverse (i.e., $T \circ R = id_W$). Then $L = R : W \to V$. In this case, this unique function is called **the inverse of** T. The function T is called **invertible**.

Proof. For any $w \in W$, T(R(w)) = w. So L(w) = L(T(R(w))) = R(w).

Proposition 12. A map $T: V \to W$ is bijective if and only if it is invertible.

3. Algebraic objects: Set \rightarrow Monoid \rightarrow Group \rightarrow Ring \rightarrow Field

Definition 13. A binary operation on a set S is a function: $*: S \times S \rightarrow S$ $(x, y) \rightarrow x * y$ **Definition 14.** A monoid is a set M with a binary operation $*: M \times M \to M$ s.t.

- (1) $\exists e \in M$, s.t. e * x = x * e = x, $\forall x \in M$. (Identity)
 - (2) $(a * b) * c = a * (b * c), \forall a, b, c \in M.$ (Associativity)

Proposition 15. Identity is unique in a monoid.

Proof. Suppose \exists two identities e and $e' \in M$. Then e' = e * e' = e.

Definition 16. A monoid (M, *) is called a **commutative** (or abelian), if $\forall a, b \in M$, a * b = b * a

Definition 17. A group is a monoid (G, \cdot) satisfies one more axiom: (3) $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = e$, (Inverse)

Proposition 18. In a group G, inverse is unique in for any $g \in G$.

Proof. Suppose \exists two inverses \exists $h, h' \in G$ for $g \in G$. $h' = h' \cdot e = h' \cdot (g \cdot h) = (h' \cdot g) \cdot h = e \cdot h = h$.

Denote commutative (abelian) group as (G, +, 0); inverse of a as -a.

Definition 19. A ring (with unit/identity) is a set R with two binary operations + and \cdot , s.t.

- (1) (R, +) is an abelian group.
- (2) $\exists e \in R$, s.t. $\forall a \in R$, $e \cdot a = a \cdot e = a$. (multiplicative identity)
- (3) \cdot is associative.
- $(4) \ a \cdot (b+c) = a \cdot b + a \cdot c,$
 - $(b+c) \cdot a = b \cdot a + c \cdot a, \forall a, b, c \in R.$ (Distributivity)

Definition 20. A ring R is called a **commutative** if $\forall a, b \in R, a \cdot b = b \cdot a$.

(Denote e as 1 in commutative ring.)

Example 21. Integers \mathbb{Z} is a commutative ring.

Example 22. Set of all polynomials $\mathbb{R}[x_1, x_2, \ldots, x_n]$ with sum and product is a commutative ring.

Example 23. $2\mathbb{Z}$ is a ring without identity.

Definition 24. A field \mathbb{F} is a commutative ring $(\mathbb{F}, +, \cdot)$ satisfying $\forall a \neq 0 \in \mathbb{F}, \exists x \in \mathbb{F} \ s.t. \ ax = e$

i.e., any nonzero element has a multiplicative inverse.

Remark: $(F - \{0\}, \cdot)$ are abelian groups.

For $n > 0 \in \mathbb{Z}$, let $\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\} =$ the set of congruence classes modulo n.

Proposition 25. $(\mathbb{Z}_n, +, \times)$ is a commutative ring.

Example 26. \mathbb{Z}_2 is a field.

Example 27. \mathbb{Z}_6 is not a field. (Reason: [2] has no multiplicative inverse.)

Proposition 28. \mathbb{Z}_n is a field if and only if n = p is a prime number.

 $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields. Remark: \mathbb{Q} is the smallest field containing \mathbb{Z} .

In our class, we will focus on fields \mathbb{R} , \mathbb{C} , and \mathbb{Z}_p .

The idea of group and field was created by Évariste Galois (1811 - 1832).

Function between algebraic objects:

Definition 29. A homomorphism $f : A \to B$ between any two algebraic objects is a function preserving all operations, i.e., f(x * y) = f(x) * f(y) for any $x, y \in A$.

For ring with identity, we also need the homomorphism sends identity to identity.

Definition 30. (1) An injective homomorphism is called **monomorphism**.

- (2) A surjective homomorphism is called an **epimorphism**.
- (3) A function f : A → B is called **isomorphism**, if it is monomorphism and epimorphism. In this case, we consider A and B are the "same". (Terminology first by Nicolas Bourbaki (1934-).)

Further extended reading: 1. Classification finite fields. 2. Classification of finite abelian groups. 3. "Classification of finite groups".

4. Gauss-Jordan Elimination

Go back to matrix $[A \mid \vec{b}]$.

The leftmost nonzero entry of a row is called **leading entry**(or **pivot**).

Definition 31. A matrix is in *row-echelon form* (ref) if

(1.) All entries in a column below a leading entry are zeros.

(2.) Each row above it contains a leading entry further to the left.

A matrix is in *reduced row-echelon form* (**rref**), if it satisfies (1) (2) and

(3.) The leading entry in each nonzero row is 1.

(4.) All entries in a column above a leading entry are zeros.

Condition 2 implies that all zero rows are at the bottom of the matrix.

One example of **ref**, (\blacksquare : non-zero number, * any number) and one example of **rref**

		*	*	*	*	*]		[1	*	0	0	0	*]
	0	0		*	*	*		0	0	1	0	0	*
$\mathbf{ref} =$	0	0	0		*	*	$ ightarrow \cdots ightarrow \mathbf{rref} =$	0	0	0	1	0	*
	0	0	0	0		*		0	0	0	0	1	*
	0	0	0	0	0	0		0	0	0	0	0	0

Elementary Row Operations:

- (1.) Scaling: Multiply a row R_i by a nonzero scalar $k \neq 0$. (kR_i)
- (2.) **Replacement:** Replace a row R_i by adding a multiple of another row kR_i . $(R_i + kR_i)$
- (3.) Interchange: Interchange two rows. $(R_i \leftrightarrow R_i)$

Elementary row operations do not change solutions of the linear system.

Theorem 32. Using the elementary row operations, one can change a matrix to a reduced rowechelon form.

Proof. Gauss-Jordan elimination:

- 1. Begin with the *leftmost* **nonzero** column.
- 2. Select a *nonzero* entry as a **pivot**, and interchange its row to the first row.
- 3. Use ERO to create zeros in all positions below the pivot.
- 4. Omit the first row and repeat this process.
- 5. Repeat the process until the last nonzero row.
- 6. Scale all pivots to 1's.
- 7. Beginning with the **rightmost** pivot and working upward and to the left.

Theorem 33. A matrix A has a unique reduced row echelon form rref(A).

Proof. We outline a better method here. We will fill the details after we learned subspaces. Step 1. Augmented matrices $[A \ \vec{0}]$ and $[\mathbf{rref}(A) \ \vec{0}]$ have the same solution set, since elementary row operations do not change solution set.

Step 2. Different reduced row echelon forms have different solutions sets.

Definition 34. If $A \xrightarrow{ERO} \cdots \xrightarrow{ERO} B$, then A is called **row-equivalent** to B.

Proof. 1. $A \sim A$. 2. If $A \sim B$, then $B \sim A$. 3. If $A \sim B$ and $B \sim C$, then $A \sim C$.

Theorem 36. A linear system $[A|\vec{b}]$ is inconsistent (no solution) if and only if $rref([A|\vec{b}])$ has a row $[0 \ 0 \ 0 \ \dots \ 0 \ | \ 1 \]$.

If a linear system is consistent, it has either

• a unique solution (no free variables), or

• infinitely many solutions (at least one free variable).

Definition 37. The **rank** of a matrix A is defined to be the number of pivots in $\mathbf{rref}(A)$, denoted as $\operatorname{rank}(A)$.

Proposition 38. Row-equivalent matrices have the same rank.

Example 39. Suppose the coefficient matrix A is of size $m \times n$. Then,

- 1. $\operatorname{rank}(A) \leq m$ and $\operatorname{rank}(A) \leq n$.
- 2. If the system is inconsistent, then $\operatorname{rank}(A) < m$.
- 3. If the system has exactly one solution, then $\operatorname{rank}(A) = n$.
- 4. If the system has infinitely many solutions, then $\operatorname{rank}(A) < n$.

Proof. The linear system of m equations with n variables. Use the rank A=number of pivots=n-number of free variables.

Definition 40. An $m \times n$ matrix A has full rank, if rank $(A) = \min(m, n)$.

Proposition 41. A linear system with an $n \times n$ coefficient matrix A has exactly one solution if and only if rank(A) = n if and only if $rref(A) = I_n$.

Remark: 1. We can apply Gaussian elimination over integers \mathbb{Z} . However, we can not achieve **rref**.

2. Buchberger's algorithm is a generalization of Gaussian elimination to polynomials to obtain a Grobnear basis in commutative algebra.