Math 4570 Matrix Methods for DA and ML

Section 9. Gradient Descent

1. Gradient Decent
2. Stochastic Gradient Decent
3. Newton's Method
4. More descent methods

Instructor: He Wang
Department of Mathematics
Northeastern University

- Taylor Expansion of $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(a+s)=f(a)+s f^{\prime}(a)+\frac{1}{2!} s^{2} f^{\prime \prime}(a)+\frac{1}{3!} s^{3} f^{\prime \prime \prime}(a)+\cdots
$$

- Taylor Expansion of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
\begin{aligned}
f(\vec{a}+\vec{s}) & =f(\vec{a})+\vec{s}^{T} \nabla f(\vec{a})+\frac{1}{2!} \vec{s}^{T} H(f(\vec{a})) \vec{s}+\cdots \\
& =f(\vec{a})+\sum s_{i} \frac{\partial f}{\partial x_{i}}+\sum \frac{\partial^{2} f}{\partial x_{i} x_{j}} s_{i} s_{j}+\cdots
\end{aligned}
$$

- Taylor Expansion of $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$

$$
F(\vec{a}+\vec{s})=F(\vec{a})+\left(\frac{\partial F(\vec{a})}{\partial \vec{x}}\right)^{T} \vec{s}^{T}+\frac{1}{2!}\left[\begin{array}{l}
{\left[\begin{array}{l}
\vec{s}^{T} H\left(F_{1}(\vec{a})\right) \vec{s} \\
\vdots \\
\vec{s}^{T} H\left(F_{m}(\vec{a})\right) \vec{s}
\end{array}\right]+\cdots .}
\end{array}\right.
$$

Difficulty:

1. No closed formula or too complicated to find a closed formula for the minimum.
2. Too complicated to compute even we have a formula, as the inverse.

Suppose $f(\vec{x})$ is a differentiable function $\mathbb{R}^{d} \rightarrow \mathbb{R}$.
Question: Which direction has the largest rate of change?

Directional derivative:

Definition: Let $\overrightarrow{\vec{~}}^{\text {be a unit vector }} \mathrm{n} \mathbb{R}^{d}$. The directional derivative of $f(\vec{x})$ at point $\vec{a} \in \mathbb{R}^{d}$ in direction \vec{u} is

$$
D_{\vec{u}} f(\vec{x})=\lim _{t \rightarrow 0} \frac{f(\vec{a}+t \vec{u})-f(\vec{a})}{t}
$$

This is just using the Chain Rule on the composition of $f(\vec{x})$ and the path

$$
\vec{x}(t)=\vec{a}+t \vec{u}
$$

Theorem: The directional derivative of $f(\vec{x})$ in direction \vec{u} is computed by

$$
D_{\vec{u}} f(\vec{x})=(\nabla f) \cdot \hat{u}
$$

$$
\begin{gathered}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\partial f
\end{gathered}=\alpha=\alpha
$$

Theorem: The maximum value of the directional derivative $D_{\bar{u}} f(\vec{x})$ is $\|\nabla f(\vec{x})\|$ and it occurs when \vec{u} has the same direction as the gradient vector $\nabla f(\vec{x})$.

$$
\begin{aligned}
& D_{\vec{u}} f(\vec{x})=(\nabla) \cdot(\hat{u})=\|\nabla f(\vec{x})\|\|\vec{u}\| \underline{\cos \alpha=} \underline{\|\nabla f(\vec{x})\|} \boldsymbol{c} \\
& D_{\bar{u}} f(\vec{x})=\left\{\begin{array}{l}
\|\nabla f(\vec{x})\| \\
-\|\nabla \vec{x}(\vec{x})\| \\
\text { when } \alpha=0 \\
-\pi
\end{array}\right.
\end{aligned}
$$

The absolute minimum value of the directional derivative $D_{\vec{u}} f(\vec{x})$ occurs when \vec{u} has the same direction $-\nabla f(\vec{x})$.

$$
\begin{aligned}
& f(x)=3 x^{2}+1 \\
& f^{\prime}(x)=6 x \quad f^{\prime}(-10)=-60 \\
& \text { Fastest dectesisy is }-(60)
\end{aligned}
$$

$>$ Gradient Descent:

Goal: find the local/global minimum of the cost function $J(\vec{\theta})$.

Gradient Descent Algorithm:

- Start with $\vec{\theta} \frac{\text { ini }}{=}$ some initial value. $=\vec{\theta}_{0}$
- Repeat $\begin{aligned} & \vec{\theta}^{\text {next }}=\vec{\theta}^{\text {cunar }}-\alpha \nabla J(\vec{\theta})^{\text {unner }} \text { until converge. } \\ &=\bigcap_{\text {learniy rate. }}\end{aligned}$

$$
\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{d}
\end{array}\right]^{\text {next }}=\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{d}
\end{array}\right]-\alpha\left[\begin{array}{c}
\frac{\partial J(\vec{\theta})}{\partial \theta_{0}} \\
\vdots \\
\frac{\partial J(\vec{\theta})}{\partial \theta_{d}}
\end{array}\right]
$$

Key points:

- Compute $\nabla J(\vec{\theta})$
- Set initial value $\vec{\theta}=\left(\vec{\theta}_{0}\right)$
- Set a good learning rate α

$J(\vec{\theta})$

(9)

- $D_{\text {ote }}\left(\vec{x}^{(i)}, y^{(i)}\right) m(X, \vec{y})$
- Model $h_{\theta}(\vec{x})$
- Coot finction $ゝ \frac{\left\|h_{0}(x) \vec{y}\right\|}{\text { crass-enting. }}=J(\vec{\theta}) \cdot \sin \nabla J(\vec{\theta})=\overrightarrow{0}$
$\overrightarrow{A l}) \Leftrightarrow$ Fine. $\vec{\theta}=\operatorname{argmin} T(\vec{\theta})$
Example: (linear regression) $\overline{h(\vec{x})}=\theta^{T} \vec{x}=\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{d} x_{d}$

$$
\left(\sqrt{(0)}=\left(\frac{1}{n} \sum_{i=1}^{n}\left(h\left(x^{(i)}\right)-y^{(i)}\right)^{2}\right)=\frac{1}{n} \operatorname{RS}(\vec{\theta})=\frac{1}{n}\|h(X)-\vec{y}\|^{2}\right.
$$

For each $j=0,1, \ldots, d$

$$
\frac{\partial \partial}{\partial \theta_{j}} J(\vec{\theta})=\frac{\partial}{\partial \theta_{j}}\left(\frac{1}{n} \sum_{i=1}^{n}\left(h\left(x^{(i)}\right)-y^{(i)}\right)^{2}\right)
$$

$$
=\frac{1}{n}(X \vec{\theta}-\vec{y})^{\top}(X \vec{\theta}-\vec{y})
$$

Repeat until converge

$$
\theta_{j}:=\theta_{j}-\alpha \cdot\left(\frac{2}{n} \sum_{i=1}^{n}\left(h\left(x^{(i)}\right)-y^{(i)}\right) \cdot x_{j}^{(i)}\right)
$$

$>$ Example: (linear regression, vector notation)

$$
h(\vec{x})=\vec{\theta}^{T} \vec{x}=\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{d} x_{d}
$$

$$
J(\vec{\theta})=\frac{1}{n} R S S(\vec{\theta}):=\frac{1}{\mathrm{n}}\|\boldsymbol{X} \vec{\theta}-\vec{y}\|^{2}=\frac{1}{n}\left(\vec{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \vec{\theta}-2 \vec{y}^{T} \boldsymbol{X} \vec{\theta}+\vec{y}^{T} \vec{y}\right)
$$

* $\nabla_{\vec{\theta}} J=\left(\frac{2}{n}\left(x^{T} x\right) \vec{\theta}-\left(X^{T} y\right)\right.$? ${ }^{2}$ date.

Gradient descent formula: $\begin{aligned} \vec{\theta} \text { next } & =\vec{\theta}-@ \frac{2}{n} X^{T}(X \vec{\theta}-\vec{y}) \\ = & \end{aligned}$
Python (broadcast): $\vec{\theta}^{\text {next }}=\vec{\theta}-\alpha \frac{2}{n} \operatorname{sum}[(X \vec{\theta}-\vec{y}) * X]$

Golden Rule: If you can use vector, never use a for loop.

We ran the update rule for all the training examples (X, \vec{y}) at once, which is called (batch) gradient descent.

$$
f\left(x_{1}\right)=\theta_{0}+\theta_{1} x_{1}
$$

Find a good learning rate:

For different learning rate Use a small data set Repeat 100 times

Stochastic Gradient Descent (SGD):

For each step, we use only one data point $\left(\vec{x}^{(i)}, y^{(i)}\right)$ to find descent direction.

- $\vec{\theta}^{\text {next }}=\vec{\theta} \Theta \alpha \nabla J\left(\vec{\theta} ; \vec{x}^{(i)}, y^{(i)}\right)$

$$
\nabla J
$$

For example, in linear regression,

$$
\vec{\theta}^{\mathrm{next}}=\vec{\theta}-\alpha \vec{x}^{(i)}\left(\vec{x}^{(i)^{\boldsymbol{T}}} \vec{\theta}-y^{(i)}\right)
$$

Remark:

1. Randomly with replacement, or use a random order on the data.
2. It is fast.
3. It may achieve giobal minimum.
4. We call an epoch for repeating a data set

\# iterations

$>$ Mini-batch Gradient Descent:

For each step, we use only a subset of data points $\mathrm{D}_{\mathrm{j}} \subset D$ to find descent direction $\nabla J\left(\vec{\theta} ; D_{j}\right)$.

- $\vec{\theta}^{\text {next }}=\vec{\theta}-\alpha \nabla J\left(\vec{\theta} ; D_{j}\right)$

If each minibatch D_{j} contains one point, it is Stochastic Gradient Descent. If each minibatch D_{j} contains all points, it is batch Gradient Descent.

Remarks:

1. Normal equation
2. Stochastic gradient descent
3. Batch gradient descent
4. Mini batch gradient descent

Scale the features first: normalization or standardization

Newton' method

Find root of a function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Solve $f(x)=0$

Newton' method Algorithm

1. Make a guess x_{0}
2. Repeat

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Reason:

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

$f\left(x_{1}+s\right) \approx f\left(x_{1}\right)+s f^{\prime}\left(x_{1}\right)=0$

$$
s=\Theta \frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

High dimension Newton's method for $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$

$$
\text { where, } B=\left(\frac{\partial F\left(\vec{x}_{k}\right)}{\partial \vec{x}}\right)^{T}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{m}}
\end{array}\right]
$$

Application of Newton's method to

Goal: find the local/global minimum of the cost function $J(\vec{\theta})$.
Find $\nabla J(\vec{\theta})=0$
$\operatorname{Let} F(\vec{\theta})=\nabla J(\vec{\theta})=\left[\begin{array}{c}\frac{\partial J(\vec{\theta})}{\partial \theta_{0}} \\ \vdots \\ \frac{\partial J(\vec{\theta})}{\partial \theta_{d}}\end{array}\right]$ and apply Newton's method. $\vec{\theta}^{\text {next }}=\vec{\theta}-B^{-1} F$

Example. Linear Regression. $J(\vec{\theta})=(X \vec{\theta}-\vec{y})^{\top}(X \vec{\theta}-\vec{y})$

$\operatorname{rank}(X)=d$

$$
\nabla J=2 X^{\top} X \vec{\theta}-2 X^{\top} \vec{y}
$$

$$
H J(\vec{\theta})=2 X^{\top} X
$$

Remark: Newton's method is faster, since it depends on the second derivative. However, sometimes it is hard to calculate or it is not invertible.

More gradient methods:

Recall GD: $\vec{\theta}^{\text {next }}=\vec{\theta}-\alpha \nabla J(\vec{\theta})$

1. Descent with momentum(memory)

$$
\begin{aligned}
& \vec{\theta}_{k+1}=\vec{\theta}_{k} \Theta \alpha\left(Z_{\mathrm{k}}\right. \\
& \text { Here } \overparen{Z}_{k}=\nabla J\left(\vec{\theta}_{k}\right)+\beta Z_{k-1}
\end{aligned}
$$

2. Adaptive Stochastic Gradient Descent

Recall SGD: $\vec{\theta}^{\text {next }}=\vec{\theta}-\alpha \nabla J\left(\vec{\theta} ; \vec{x}^{(i)}, y^{(i)}\right)$

Adaptive:

$$
\vec{\theta}_{k+1}=\vec{\theta}_{k} \Theta \alpha_{k} \mathrm{D}_{\mathrm{k}}
$$

$$
\text { Here } \begin{aligned}
\alpha_{k} & =\left(\hat{\alpha}\left(\nabla J_{k}, \nabla J_{k-1}, \ldots, \nabla J_{0}\right)\right. \\
D_{k} & =\left(\bar{D}\left(\nabla J_{k}, \nabla J_{k-1}, \ldots, \nabla J_{0}\right)\right.
\end{aligned}
$$

For example, ADAGRAD(2011)

$$
\alpha_{k}=\frac{\alpha}{\sqrt{k}}\left(\frac{1}{k} \operatorname{diag} \sum_{i=1}^{k}\left\|\nabla J_{i}\right\|^{2}\right)^{\frac{1}{2}} \quad \text { and } \quad \widehat{D_{k}}=\nabla J\left(\vec{\theta}_{k}\right)
$$

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12:2121-2159, 2011.

Recursive formula: $\quad \begin{gathered}D_{k} \\)=\delta D_{k-1}+(1-\delta) \nabla J\left(\vec{\theta}_{k}\right), ~\end{gathered}$

$$
\widetilde{\alpha}_{k}^{2}=\beta \alpha_{k-1}^{2}+(1-\beta)\left\|\nabla J\left(\overrightarrow{\theta_{i}}\right)\right\|^{2}
$$

More explicitly,

$$
\begin{gathered}
\left(\widehat{D}_{k}=(1-\delta) \sum_{i=1}^{k} \delta^{k-i} \nabla J\left(\vec{\theta}_{k}\right)\right. \\
\overparen{\varkappa_{k}}=\frac{\alpha}{\sqrt{k}}\left((1-\beta) \operatorname{diag} \sum_{i=1}^{k} \beta^{k-i}\left\|\nabla J\left(\overrightarrow{\theta_{i}}\right)\right\|^{2}\right)^{\frac{1}{2}}
\end{gathered}
$$

Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization. International Conference on Learning Representations, pages 1-13, 2015.

An overview of gradient descent optimization algorithms https://arxiv.org/abs/1609.04747

