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Section 9. Gradient Descent

Math 4570 Matrix Methods for DA and ML

1. Gradient Decent
2. Stochastic Gradient Decent
3. Newton’s Method
4. More descent methods

 



Ø Taylor Expansion
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Ø Gradient Descent

Goal: find the local/global minimum of the cost function 6(8⃗ ).

1. No closed formula or too complicated to find a closed formula for the minimum.
2. Too complicated to compute even we have a formula, as the inverse. 

Examples:  6(8⃗ ) = :;;(8⃗)

6*($+, 8⃗ = :;; 8⃗ + λ 8⃗ "

6-.//0 8⃗ = :;; 8⃗ + λ 8⃗ &
"

Difficulty:

Method: find critical points by solving ∇ "(%⃗ ) = 0





Suppose !(3⃗) is a differentiable function ℝ$ → ℝ.  

Question: Which direction has the largest rate of change?

= = 1



Directional derivative: 



This is just using the Chain Rule on the composition of !(3⃗) and the path

Definition: Let > be a unit vector in ℝ$ . The directional derivative of  !(3⃗) at 
point %⃗ ∈ ℝ$ in direction > is

A1! 3⃗ = lim2→4
! %⃗ + E> − ! %⃗

E

3⃗ E = %⃗ + E >

Theorem: The directional derivative of  !(3⃗) in direction > is computed by 

A1! 3⃗ = ∇! ⋅ >



Theorem: The maximum value of the directional derivative A1!(3⃗) is ∇!(3⃗)
and it occurs when > has the same direction as the gradient vector ∇! 3⃗ .

The absolute minimum value of the directional derivative !!"(%⃗) occurs 
when ' has the same direction −∇" %⃗ .

A1! 3⃗ = ∇! ⋅ > = ∇1 3⃗ u cos L = ∇1 3⃗ cos L

A1! 3⃗ = M ∇1 3⃗ NℎPQ L = 0
− ∇1 3⃗ NℎPQ L = S



Example: ! 8 = 8"

Example: ! 8⃗ = 8&" + 8""



8⃗

Ø Gradient Descent:

• Repeat "⃗!"#$ = "⃗ − % ∇'("⃗) until converge.

• Start with 8⃗ = some initial value. 

Goal: find the local/global minimum of the cost function 6(8⃗ ).

Gradient Descent Algorithm:
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Key points: 

• Compute ∇6(8⃗)
• Set initial value 8⃗ = 8⃗4
• Set a good learning rate L

o Set different L and recording the cost
o Start from large L4, then smaller L.
o Set L< = &

< L4 or L< = &
< L4

o ... 





Ø Example: (linear regression) ℎ 3⃗ = 8⃗%3⃗ = 84 + 8&3& +⋯+ 8$3$

For each ! = 0,1, … , '

Repeat until converge



Ø Example: (linear regression, vector notation)

ℎ 3⃗ = 8⃗%3⃗ = 84 + 8&3& +⋯+ 8$3$

6 8⃗ = 1
Q :;; 8⃗ : = 1

n V8⃗ − W⃗
"
= 1
Q 8⃗%V=V8⃗ − 2W⃗%V8⃗ + W⃗%W⃗

We ran the update rule for all the training examples (X, W⃗) at once, which is 
called (batch) gradient descent. 

Y: 6 =
2
Q (X

%X8⃗ − X%W⃗ )

Golden Rule: If you can use vector, never use a for loop.

Gradient descent formula:  8⃗>?@A = 8⃗ − L "
5X

%(X8⃗ − W⃗ )

Python (broadcast):  8⃗>?@A = 8⃗ − L "
5 sum X8⃗ − W⃗ ∗ X



Find a good learning rate:

For different learning rate
Use a small data set 
Repeat 100 times



Ø Stochastic Gradient Descent (SGD): 

• "⃗!"#$ = "⃗ − % ∇'("⃗; +⃗ % , -(%))

For each step, we use only one data point
(3⃗ ( , W(()) to \ind descent direction.

For example, in linear regression,

8⃗>?@A = 8⃗ − L3⃗ ( (3⃗ ( =8⃗ − W(())

Remark: 
1. Randomly with replacement, or use a 
random order on the data.
2. It is fast.
3. It may achieve global minimum.
4. We call an epoch for repeating a data set

6

# iterations



Ø Mini-batch Gradient Descent: 

• "⃗!"#$ = "⃗ − % ∇'("⃗; .()

For each step, we use only a subset of data points 
DB ⊂ A to \ind descent direction ∇6(8⃗; A)).

If each minibatch DB contains one point, it is Stochastic Gradient Descent.
If each minibatch DB contains all points, it is batch Gradient Descent.

6

# iterations





Remarks: 
1. Normal equation

2. Stochastic gradient descent

3. Batch gradient descent

4. Mini batch gradient descent

Scale the features first: normalization or standardization



Ø Newton’ method

Find root of a function !:ℝ → ℝ . 

Solve ! 3 = 0

Newton’ method Algorithm

1. Make a guess 34
2. Repeat

3<C& = 3< −
! 3<
!′ 3<

Reason: 

! 3& + ' ≈ ! 3& + '!! 3& = 0

' = − ! 3<
!′ 3<



High dimension Newton’s method for 1: ℝ' → ℝ'

Repeat  3⃗<C& = 3⃗< − eD&1 3⃗<

where,  e = 7E 6⃗#
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%
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Application of Newton’s method to 

Goal: find the local/global minimum of the cost function 6(8⃗ ).

Find ∇ 6(8⃗ ) = 0

Let  1 8⃗ =∇ 6(8⃗ ) =
78(:)
7:!
⋮

78(:)
7:"

and apply Newton’s method. 

"⃗ghi = "⃗g −%ji∇ '("⃗g )

Here 0 is the Hessian matrix 0= 

7&8
7:$&

⋯ 7&8
7:$7:"

⋮ ⋱ ⋮
7&8

7:"7:$
⋯ 7&8

7:"&



Example. Linear Regression.

Remark: Newton’s method is faster, since it depends on the second 
derivative.  However, sometimes it is hard to calculate or it is not 
invertible. 



More gradient methods: 

1. Descent with momentum(memory)

8⃗<C& = 8⃗< − L ZH

Here l< = ∇6 8⃗< + ml<D&

Recall GD:  8⃗>?@A = 8⃗ − L ∇6(8⃗)



2. Adaptive Stochastic Gradient Descent

Recall SGD: 8⃗>?@A = 8⃗ − L ∇6(8⃗; 3⃗ ( , W(())

Adaptive: 
8⃗<C& = 8⃗< − L< DH

Here L< = L(∇6< , ∇6<D& , … , ∇64)

A< = A(∇6< , ∇6<D& , … , ∇64)

For example, ADAGRAD (2011)

L< =
L
o

1
o =p%q 5

(I&

<
∇6( "

&
"

and A<= ∇ 6(8⃗<)

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning and Stochastic 
Optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.



ADAM (2015)

A< = (1 − r)5
(I&

<
r<D(∇6(8⃗<)
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L
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A< = rA<D& + 1 − r ∇ 6 8⃗<
L<" = mL<D&" + (1 − m) Y6 (8()

"
Recursive formula:

More explicitly, 

Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization. 
International Conference on Learning Representations, pages 1–13, 2015.

https://arxiv.org/abs/1609.04747

An overview of gradient descent optimization algorithms

https://arxiv.org/abs/1609.04747

