
Instructor: He Wang
Department of Mathematics
Northeastern University

Section 9. Gradient Descent

Math 4570 Matrix Methods for DA and ML

1. Gradient Decent
2. Stochastic Gradient Decent
3. Newton’s Method
4. More descent methods

Ø Taylor Expansion

• Taylor Expansion of !:ℝ → ℝ
! % + ' = ! % + '!! % + 1

2! '
"!!! % + 1

3! '
#!!!! % +⋯

• Taylor Expansion of !:ℝ$ → ℝ
! %⃗ + '⃗ = ! %⃗ + '⃗%∇! %⃗ + 1

2! '⃗
%0 ! %⃗ '⃗ + ⋯

1 %⃗ + '⃗ = 1 %⃗ + 21 %⃗
23⃗

%
'⃗% + 1

2!
'⃗%0 1& %⃗ '⃗
⋮
'⃗%0 1' %⃗ '⃗

+ ⋯

• Taylor Expansion of 1:ℝ$ → ℝ'

= ! %⃗ +5'(
2!
23(

+5 2"!
23(3)

'(') +⋯

Ø Gradient Descent

Goal: find the local/global minimum of the cost function 6(8⃗).

1. No closed formula or too complicated to find a closed formula for the minimum.
2. Too complicated to compute even we have a formula, as the inverse.

Examples: 6(8⃗) = :;;(8⃗)

6*($+, 8⃗ = :;; 8⃗ + λ 8⃗ "

6-.//0 8⃗ = :;; 8⃗ + λ 8⃗ &
"

Difficulty:

Method: find critical points by solving ∇ "(%⃗) = 0

Suppose !(3⃗) is a differentiable function ℝ$ → ℝ.

Question: Which direction has the largest rate of change?

= = 1

Directional derivative:

This is just using the Chain Rule on the composition of !(3⃗) and the path

Definition: Let > be a unit vector in ℝ$. The directional derivative of !(3⃗) at
point %⃗ ∈ ℝ$ in direction > is

A1! 3⃗ = lim2→4
! %⃗ + E> − ! %⃗

E

3⃗ E = %⃗ + E >

Theorem: The directional derivative of !(3⃗) in direction > is computed by

A1! 3⃗ = ∇! ⋅ >

Theorem: The maximum value of the directional derivative A1!(3⃗) is ∇!(3⃗)
and it occurs when > has the same direction as the gradient vector ∇! 3⃗ .

The absolute minimum value of the directional derivative !!"(%⃗) occurs
when ' has the same direction −∇" %⃗ .

A1! 3⃗ = ∇! ⋅ > = ∇1 3⃗ u cos L = ∇1 3⃗ cos L

A1! 3⃗ = M ∇1 3⃗ NℎPQ L = 0
− ∇1 3⃗ NℎPQ L = S

Example: ! 8 = 8"

Example: ! 8⃗ = 8&" + 8""

8⃗

Ø Gradient Descent:

• Repeat "⃗!"#$ = "⃗ − % ∇'("⃗) until converge.

• Start with 8⃗ = some initial value.

Goal: find the local/global minimum of the cost function 6(8⃗).

Gradient Descent Algorithm:

84
8&
⋮
8$

5,62

=
84
8&
⋮
8$

− L

78(:)
7:!
⋮

78(:)
7:"

8⃗

8⃗

8⃗

Key points:

• Compute ∇6(8⃗)
• Set initial value 8⃗ = 8⃗4
• Set a good learning rate L

o Set different L and recording the cost
o Start from large L4, then smaller L.
o Set L< = &

< L4 or L< = &
< L4

o ...

Ø Example: (linear regression) ℎ 3⃗ = 8⃗%3⃗ = 84 + 8&3& +⋯+ 8$3$

For each ! = 0,1, … , '

Repeat until converge

Ø Example: (linear regression, vector notation)

ℎ 3⃗ = 8⃗%3⃗ = 84 + 8&3& +⋯+ 8$3$

6 8⃗ = 1
Q :;; 8⃗ : = 1

n V8⃗ − W⃗
"
= 1
Q 8⃗%V=V8⃗ − 2W⃗%V8⃗ + W⃗%W⃗

We ran the update rule for all the training examples (X, W⃗) at once, which is
called (batch) gradient descent.

Y: 6 =
2
Q (X

%X8⃗ − X%W⃗)

Golden Rule: If you can use vector, never use a for loop.

Gradient descent formula: 8⃗>?@A = 8⃗ − L "
5X

%(X8⃗ − W⃗)

Python (broadcast): 8⃗>?@A = 8⃗ − L "
5 sum X8⃗ − W⃗ ∗ X

Find a good learning rate:

For different learning rate
Use a small data set
Repeat 100 times

Ø Stochastic Gradient Descent (SGD):

• "⃗!"#$ = "⃗ − % ∇'("⃗; +⃗ % , -(%))

For each step, we use only one data point
(3⃗ (, W(()) to \ind descent direction.

For example, in linear regression,

8⃗>?@A = 8⃗ − L3⃗ ((3⃗ (=8⃗ − W(())

Remark:
1. Randomly with replacement, or use a
random order on the data.
2. It is fast.
3. It may achieve global minimum.
4. We call an epoch for repeating a data set

6

iterations

Ø Mini-batch Gradient Descent:

• "⃗!"#$ = "⃗ − % ∇'("⃗; .()

For each step, we use only a subset of data points
DB ⊂ A to \ind descent direction ∇6(8⃗; A)).

If each minibatch DB contains one point, it is Stochastic Gradient Descent.
If each minibatch DB contains all points, it is batch Gradient Descent.

6

iterations

Remarks:
1. Normal equation

2. Stochastic gradient descent

3. Batch gradient descent

4. Mini batch gradient descent

Scale the features first: normalization or standardization

Ø Newton’ method

Find root of a function !:ℝ → ℝ .

Solve ! 3 = 0

Newton’ method Algorithm

1. Make a guess 34
2. Repeat

3<C& = 3< −
! 3<
!′ 3<

Reason:

! 3& + ' ≈ ! 3& + '!! 3& = 0

' = − ! 3<
!′ 3<

High dimension Newton’s method for 1: ℝ' → ℝ'

Repeat 3⃗<C& = 3⃗< − eD&1 3⃗<

where, e = 7E 6⃗#
76⃗

%
=

7G$
76$

⋯ 7G$
76%

⋮ ⋱ ⋮
7G%
76$

⋯ 7G%
76%

Application of Newton’s method to

Goal: find the local/global minimum of the cost function 6(8⃗).

Find ∇ 6(8⃗) = 0

Let 1 8⃗ =∇ 6(8⃗) =
78(:)
7:!
⋮

78(:)
7:"

and apply Newton’s method.

"⃗ghi = "⃗g −%ji∇ '("⃗g)

Here 0 is the Hessian matrix 0=

7&8
7:$&

⋯ 7&8
7:$7:"

⋮ ⋱ ⋮
7&8

7:"7:$
⋯ 7&8

7:"&

Example. Linear Regression.

Remark: Newton’s method is faster, since it depends on the second
derivative. However, sometimes it is hard to calculate or it is not
invertible.

More gradient methods:

1. Descent with momentum(memory)

8⃗<C& = 8⃗< − L ZH

Here l< = ∇6 8⃗< + ml<D&

Recall GD: 8⃗>?@A = 8⃗ − L ∇6(8⃗)

2. Adaptive Stochastic Gradient Descent

Recall SGD: 8⃗>?@A = 8⃗ − L ∇6(8⃗; 3⃗ (, W(())

Adaptive:
8⃗<C& = 8⃗< − L< DH

Here L< = L(∇6< , ∇6<D& , … , ∇64)

A< = A(∇6< , ∇6<D& , … , ∇64)

For example, ADAGRAD (2011)

L< =
L
o

1
o =p%q 5

(I&

<
∇6("

&
"

and A<= ∇ 6(8⃗<)

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

ADAM (2015)

A< = (1 − r)5
(I&

<
r<D(∇6(8⃗<)

L< =
L
o (1 − m) =p%q 5

(I&

<
m<D(Y6 (8()

"
&
"

A< = rA<D& + 1 − r ∇ 6 8⃗<
L<" = mL<D&" + (1 − m) Y6 (8()

"
Recursive formula:

More explicitly,

Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization.
International Conference on Learning Representations, pages 1–13, 2015.

https://arxiv.org/abs/1609.04747

An overview of gradient descent optimization algorithms

https://arxiv.org/abs/1609.04747

