Northeastern University, Department of Mathematics

MATH 4570 - Matrix Methods in Data Analysis and Machine Learning

- Instructor: He Wang

Email: he.wang@northeastern.edu

Contents

Mid

Next Thurscly!
In cless/(with

NO : hanewowl!

Review:

1. Inner Product Space (vector space with an inner product)

Example: $1, \mathbb{R}^{n}($ weighted $)$ dit product
$\begin{aligned} \text { Geometry } & \longrightarrow \text { norm } \\ & >\text { and }\end{aligned}$
2. Use orthogonal basis (to find orthogonal projection)

$$
\begin{aligned}
& B=\left\{\vec{v}_{1} \cdots \vec{v}_{s} \mid \text { of } W \subset V\right. \\
& \operatorname{prof}_{w} \vec{b}=\frac{\left\langle\vec{b}, \vec{v}_{1}\right\rangle}{\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle} \overrightarrow{v_{1}}+\cdots+\frac{\left\langle\vec{b}, \vec{v}_{s}\right\rangle}{\left\langle\vec{v}_{s}, \vec{v}_{s}\right\rangle} \vec{v}_{s}
\end{aligned}
$$

3. Find orthogonal basis (Gram-Schmidt process)

$$
A \text { basis }\left\{\vec{b}_{1} \cdots \vec{b}_{s} \mid \text { of } W \longmapsto \text { orthogonal basis }\left\{\vec{v}_{1} \cdots \vec{v}_{s}\right\rangle \text { of } W\right. \text {. }
$$

1. Least Squares Problem

Set up: V : $\underbrace{\text { inner }}$ product space $W \subset V$ subspace.

$$
\vec{b} \in V, \vec{b} \notin W .
$$

Question: What is the closest vector $\vec{z} \in W$ to \vec{b} ?
\Leftrightarrow Find $\vec{z} \in W$ s.t. $\|\vec{b}-\vec{z}\| \leqslant\|\vec{b}-\vec{w}\|$ for any $\vec{w} \in N$
Answer:
-proof:

Calculation:

$$
\left\{\vec{v}_{1} \cdots \vec{v}_{p}\right\}
$$

Method (1) If W has an orthogonal bris, then

$$
\operatorname{H}_{\rightarrow} p \cdot \eta_{W} \vec{W}=\frac{\left\langle\vec{b}, \vec{V}_{1}\right\rangle}{\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle} \vec{v}_{1}+\cdots+\frac{\left\langle\vec{b}, \vec{V}_{p}\right\rangle}{\left\langle\vec{v}_{p}, \vec{V}_{p}\right\rangle} \vec{v}_{p}
$$

Method (2) \#f W hes "bali" $\left\{\vec{W}_{1}, \cdots \vec{W}_{b}\right\}$, then
(0)

Q: how to find $x_{1} \ldots x_{p}$?

Solve $\left\{\begin{array}{c}\left\langle\vec{b}-\vec{z}, \vec{w}_{1}\right\rangle=0 \\ \vdots \\ \left\langle b-\vec{z}, \vec{W}_{p}\right\rangle=0\end{array}\right.$
2. Approximate Solutions to Inconsistent Systems

Set up:
Let A be an $n \times m \stackrel{\mathbb{R}}{\text { matrix. }}$ Let $\vec{b} \in \mathbb{R}^{n}$.
Suppose $A \hat{x}=\vec{b}$ has solution. Q : Final the best solution for $A \vec{x})=\vec{b}$.

- Consider \mathbb{R}^{n} with any inner product. \Leftrightarrow Find the "dost" vector to to \vec{b}. e.8.0 def pied e.8(2) witted dot pard.
[Least-Squares Problem/Solution for $A \vec{x}=\vec{b}$]
Problem: Find the vector (s) $\vec{x}_{*} \in \mathbb{R}^{m}$ such that for all $x \in \mathbb{R}^{m}$,

Solutions:

Example 1. Find the least-squares solutions, for $A \vec{x}=\vec{b}$, where $A=$

$$
\overrightarrow{b_{n d}}=\left[\begin{array}{c}
14 \\
-4 \\
0
\end{array}\right]
$$

" $\vec{a}_{1} \cdot \vec{a}_{2}=0 \Rightarrow\left\{\vec{a}_{1}, \overrightarrow{a_{2}}\right\}$ is ortagenal basil. for in A.

$$
\begin{aligned}
& \text { prov } \vec{b}_{\text {in }}^{\prime}=\frac{\vec{b} \cdot \overrightarrow{a_{1}}}{\overrightarrow{a_{1}} \cdot \overrightarrow{a_{1}}} \cdot \overrightarrow{a_{1}}+\frac{\vec{b} \cdot \vec{a}_{2}^{\prime}}{\vec{a}_{2} \cdot \vec{a}_{2}^{\prime}} \overrightarrow{a_{2}}=\left[\begin{array}{c}
7 \\
-4 \\
7
\end{array}\right] \\
& \text { Solve }\left[\begin{array}{cc|c}
-1 & 4 & 7 \\
1 & 8 & -4 \\
-1 & 4 & 7
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{cc|c}
1 & -6 \\
1 & 1 / 4
\end{array}\right]
\end{aligned}
$$

$$
\text { . } \bar{x}_{x}=\left[\begin{array}{c}
-6 \\
y_{t}
\end{array}\right]
$$

In particular, if we consider dot product on \mathbb{R}^{n}, we have the following formula.

Any nam mating.
$A \bar{X}_{*}^{\prime}=p^{n \cdot g} \bar{b}^{7} A$
Theorem 2. (Normal Equation) The Least-Square solutions of $A \vec{x}=$ \vec{b} coincide with the solutions of of normal equations

$$
\left(A^{T} A\right) \vec{x}=A^{T} \vec{b} .
$$

$$
A \vec{x}_{*}=\operatorname{poj} \operatorname{im}_{\operatorname{in} A} \vec{n}^{7}
$$

More generally, we can also consider weighted dot product on \mathbb{R}^{n},
where W is a " "positive-definite" symmetric" matrix.
$A \vec{x}=\vec{b}^{7}$ nor sulu.

- Suntion $A \vec{x}_{*}=\operatorname{proj}_{\operatorname{im} A}^{w} \vec{b}^{7}$

$A^{\top} W A \vec{x}_{*}^{\top}=A^{\top} w \vec{b}$

Example 3. Find the least-squares solutions for $A \vec{x}=\vec{b}$, where $A=$ and $\vec{b}=\left[\begin{array}{c}14 \\ -4 \\ 0\end{array}\right]$

$\left(A^{\top} A\right)=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 4 & 8 & 4\end{array}\right]\left[\begin{array}{cc}-1 & 4 \\ 1 & 8 \\ -1 & 4\end{array}\right]=\left[\begin{array}{cc}3 & 0 \\ 0 & 96\end{array}\right]$
$A^{\top} b^{5}=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 4 & 8 & 4\end{array}\right]\left[\begin{array}{c}14 \\ -4 \\ 0\end{array}\right]=\left[\begin{array}{c}-18 \\ 24\end{array}\right]$
solve the normal equation $A^{\dagger} A \vec{X}^{\top}=A^{\top} \bar{b}^{\prime}$
$\left[\begin{array}{cc|c}3 & 0 & -18 \\ 0 & 96 & 24\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & 0 & -6 \\ 0 & 1 & 4\end{array}\right]$

(2) The image $\operatorname{im}(A)$ is a plane in \mathbb{R}^{3} passing the origin. Find the distance from the vector \vec{b}) (or the point $(14,-4,0)$) to the plane $\operatorname{im}(A)$."

The distance is given be the norm of $\vec{b}^{\perp}=\vec{b}-\operatorname{proj}_{\operatorname{im}(A)} \vec{b}$.
We know that $\operatorname{proj}_{\operatorname{im}(A)} \vec{b}=A x_{*}=\left[\begin{array}{cc}-1 & 4 \\ 1 & 8 \\ -1 & 4\end{array}\right]\left[\begin{array}{c}-6 \\ 1 / 4\end{array}\right]=\left[\begin{array}{c}7 \\ -4 \\ 7\end{array}\right]$.
So, $\vec{b}^{\perp}=\left[\begin{array}{c}14 \\ -4 \\ 0\end{array}\right]-\left[\begin{array}{c}7 \\ -4 \\ 7\end{array}\right]=\left[\begin{array}{c}7 \\ 0 \\ -7\end{array}\right]$. So the distance is $\left\|\vec{b}^{\perp}\right\|=7 \sqrt{2}$.

Example 4 . Find the least-squares solutions for the system $A \vec{x}=\vec{b}$, where
$A=\left(\begin{array}{lll}1 \\ 1 & 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1\end{array}\right)$ and $\vec{b}=\left[\begin{array}{l}1 \\ 3 \\ 2 \\ 4\end{array}\right]$

Sept. Construct the normal equation $A^{\top} A \vec{x}=A^{\top} \vec{b}$
$A^{\top} A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2\end{array}\right]$
$\left(\hat{A}^{\top} 5\right)=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{c}10 \\ 4 \\ 6\end{array}\right]$
Solve the normal equate

$$
\begin{array}{r}
{\left[\begin{array}{lll|l}
4 & 2 & 2 & 10 \\
2 & 2 & 0 & 4 \\
2 & 0 & 2 & 6
\end{array}\right] \rightarrow \cdots \rightarrow \text { ref }=\left[\begin{array}{ccc|c}
1 & 0 & 1 & 3 \\
0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
\begin{array}{l}
x_{1}=3-x_{3} \\
x_{2}=-1+x_{3} \\
x_{1} \text { free }
\end{array} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{cc}
3-x_{3} \\
-1+x_{3} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \quad}
\end{array}
$$

A technical property:
Proposition 5. Let A be an $n \times m$ matrix.

$$
\operatorname{ker}(A)=\operatorname{ker}\left(A^{T} A\right)
$$

$$
\operatorname{rank} A=\operatorname{rark} A^{\top} A
$$

Corollary 6. If $\operatorname{rank} A=m$) the normal equation unique solution:
$A^{T} A \vec{x}=A^{T} \vec{b}$ has a

QR factorization method suppose A is $n \times m$ matrix with full column

 rank. Solve the least squares solution using QR factorization $(A=\widehat{Q R})$ where Q is an orthogonal matrix $n \times m$ and R is an $m \times m$ upper triangular matrix with rank m.$$
\vec{x}_{\vec{x}=R^{-1} Q^{\top} \vec{b}} \quad \underline{Q^{\top}=Q^{-1}}
$$

3. Data Fitting

Problem: Fitting a function of a certain type of data. We use the following three example to illustrate this application.
Example 7. Find a cubic polynomial $f(t)=c_{0}+c_{2} t+\left(c_{2} t^{2}+c_{3} t^{3}\right.$ whose graph passes through the points (

Solution:

We need to solve the linear system $\begin{cases}c_{0} & =5 \\ c_{0}+c_{1}+c_{2}+c_{3} & =3 \\ c_{0}-c_{1}+c_{2}-c_{3} & =13 \\ c_{0}+2 c_{1}+4 c_{2}+8 c_{3} & =1\end{cases}$

$$
[A \mid \vec{b}]=\left[\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 5 \\
1 & 1 & 1 & 1 & 3 \\
1 & -1 & 1 & -1 & 13 \\
1 & 2 & 4 & 8 & 1
\end{array}\right] \rightarrow \cdots \rightarrow \underline{\operatorname{rref}[A \mid \vec{b}]}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 & -4 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & -1
\end{array}\right]
$$

So, the linear system has the unique solution $\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{c}5 \\ -4 \\ 3 \\ -1\end{array}\right]$ So, the cubic polynomial is $f(t)=5-4 t+3 t^{2}-t^{3}$.

$$
\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
5 \\
-4 \\
3 \\
-1
\end{array}\right] \text { So, the cubic }
$$

> perfect fit, but alcuktion is hood.

Example 8. Fit a quadratic function $g(t)=c_{0}+c_{1} t+c_{2} t^{2}$ to the four data points $(0,5),(1,3),(-1,13),(2,1)$

We need to solve the linear system

$$
f(0)=5 \begin{cases}c_{0} & =5 \\ c_{0}+c_{1}+c_{2} & =3 \\ c_{0}-c_{1}+c_{2} & =13 \\ c_{0}+2 c_{1}+4 c_{2} & =1\end{cases}
$$

"Lot prowl"

As matrix equation $A \vec{x}=\vec{b}$, where $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & 4\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}5 \\ 3 \\ 13 \\ 1\end{array}\right]$

$$
A^{\top} A=\left[\begin{array}{lll}
4 & 2 & 6 \\
2 & 6 & 8 \\
6 & 8 & 18
\end{array}\right] \quad A^{\top} b^{\top}=\left[\begin{array}{l}
22 \\
-8 \\
20
\end{array}\right]
$$

Solve the normal equation ($A^{T} A x=A=\left(\begin{array}{l}+ \\ b\end{array} \quad \bar{x}=\left[\begin{array}{c}5.9 \\ -.3 \\ 1.5\end{array}\right]=\vec{c}^{*}\right.$

$$
\begin{aligned}
& A C^{*}=\left[\begin{array}{l}
g(a) \\
g\left(a_{2}\right) \\
g(a) \\
g\left(a_{a}\right)
\end{array}\right] \quad b^{2}=\left[\begin{array}{l}
b_{1} \\
h \\
b_{h} \\
b_{4}
\end{array}\right]
\end{aligned}
$$

The sum of the withal distances between graph ard dote ports is minimal.

Example 9. Fit a linear function $h(t)=c_{0}+c_{1} t$ to the four data points $(0,5)$, $(1,3),(-1,13),(2,1)$

We need to solve the linear system

$$
\begin{cases}\left(c_{0}\right. & =5 \\ c_{0}+c_{1} & =3 \\ c_{0}-c_{1} & =13 \\ c_{0}+2 c_{1} & =1\end{cases}
$$

As matrix equation $A \vec{x}=\vec{b}$, where $A=\left[\begin{array}{c|c}1 & 0 \\ 1 & 1 \\ 1 & -1 \\ 1 & 2\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}5 \\ 3 \\ 13 \\ 1\end{array}\right]$

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & -1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right] \\
& A^{\top} B=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
5 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{c}
22 \\
1
\end{array}\right]
\end{aligned}
$$

Solve the nom al equation $A^{\top} A \vec{x}=A_{\bar{b}} \quad \vec{\theta}=\left[\begin{array}{l}7,4 \\ -38\end{array}\right]$
So the liner function i $h(t)=7.4-3.8 t$

Remark: mare ganerlly we can consider n-ports $\left(a, b_{1}\right),\left(a_{2}, b_{n}\right) ; \cdots,\left(a_{n}, b_{n}\right)$.

- Find a linear function $h(t)=C_{0}+C_{1} t$
fits the data by the heat squares.

More generally, the following question is very standard in statistics.
Example 10. Consider the data with n points $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$. Find a linear function $h(t)=c_{0}+c_{1} t$ fits the data by the least squares. (Suppose $a_{1} \neq a_{2}$)

dot. prod.

$A^{\top} A \bar{x}=A^{\top} b^{-}$
$A=\left[\begin{array}{cc}1 & a_{1} \\ 1 & a_{2} \\ \vdots & \\ 1 & a_{n}\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$
$A^{T} A=\left[\begin{array}{cc}1 & a_{1} \\ 1 & a_{2} \\ \vdots & \\ 1 & a_{n}\end{array}\right]\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ a_{1} & a_{2} & \cdots & a_{n}\end{array}\right]=\left[\begin{array}{cc}n & \sum_{i=1}^{n} a_{i} \\ \sum_{i=1}^{n} a_{i} & \sum_{i=1}^{n} a_{i}^{2}\end{array}\right]$
$A^{T} b=\left[\begin{array}{cc}1 & a_{1} \\ 1 & a_{2} \\ \vdots & \\ 1 & a_{n}\end{array}\right]\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]=\left[\begin{array}{c}\sum_{i=1}^{n} b_{i} \\ \sum_{i=1}^{n} a_{i} a_{i}\end{array}\right]$
Since $a_{1} \neq a_{2}$, we know that rank $A=2$.
The normal equation $A^{T} A \vec{x}=A^{T} b$ has a unique solution

$$
\begin{aligned}
\vec{x}_{*}= & \left(A^{T} A\right)^{-1} A T \vec{b}-\frac{1}{n \sum_{i=1}^{n} a_{i}^{2}-\left(\sum_{i=1}^{n} a_{i}\right)^{2}}\left[\begin{array}{cc}
\sum_{i=1}^{n} a_{i}^{2} & -\sum_{i=1}^{n} a_{i} \\
-\sum_{i=1}^{n} a_{i}
\end{array}\right]\left[\begin{array}{c}
\sum_{i=1}^{n} b_{i} \\
\sum_{i=1}^{n} a_{i} a_{i}
\end{array}\right] \\
& \left.=\frac{\left[\sum_{i=1}^{n} a_{i}^{2}-\left(\sum_{i=1}^{n} a_{i}\right)^{2}\right.}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}\right)-\left(\sum_{i=1}^{n} a_{i}\right)} \begin{array}{l}
\left.-\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} b_{i}\right)+n \sum_{i=1}^{n} a_{i} a_{i}\right)
\end{array}\right]
\end{aligned}
$$

Example 11. Consider the data with m inputs and 1 output:
$\left(a_{11}, a_{12}, \ldots, a_{1 m},\left(b_{1}\right),\left(a_{21}, a_{22}, \ldots, a_{2 m}, b_{2}\right), \ldots,\left(a_{n 1}, a_{n 2}, \ldots, a_{n m}, b_{n}\right)\right.$.
Find a linear" function $h\left(t_{1}, t_{2}, \ldots, t_{n}\right)=c_{0}+c_{1} t_{1}+c_{2} t_{2}+\cdots+c_{n} t_{n}$ fits the data by the least squares.

For example, when $m=2$,

$h\left(\vec{a}^{(i)}\right)=b^{(i)}$

$$
\left[\begin{array}{cccc}
{ }_{c} a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{12} \\
1 & & b_{2} \\
1 & & & 1 \\
1 & & &
\end{array}\right]
$$

$\left[\begin{array}{cccc}1 & a_{11} & a_{12} & \ldots \\ 1 & a_{21} & a_{22} & \ldots \\ \vdots & \vdots & \vdots & \ldots \\ 1 & a_{n 1} & a_{n 2} & \ldots\end{array}\right.$ and $\vec{b}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$
Example 12. Consider the data with m inputs and s outputs. $\left(a_{11}, a_{12}, \ldots, a_{1 m}, b_{11}, \ldots, b_{1 s}\right),\left(a_{21}, a_{22}, \ldots, a_{2 m}, b_{21}, \ldots, b_{2 s}\right), \ldots,\left(a_{n 1}, a_{n 2}, \ldots, a_{n m}\right.$, Find a linear function $H(\vec{t})=\vec{c}_{0}+C \vec{t}$ fits the data by the least squares.

- V inner product space
- $W \subset V$ subspace
- $\vec{b} \in V \quad \vec{b} \notin W$
- Least quires problem:

Find $\vec{z} \in W$ s.t. $\|\vec{b}-\vec{z}\| \leqslant\|\vec{b}-\vec{\omega}\|$ for any $\vec{\omega} \in W$.

- Answer: $\vec{z}=\operatorname{proj} \underset{W}{\vec{b}}$
"Application:" Solve "least squares" sola for $A \vec{x}=\vec{b}$
- $W=\operatorname{im} A$
$V=\mathbb{R}^{m}$ (sine inner product). eff. (cot pred.")
- $\vec{b} \in V \quad \vec{b} \notin W$.

Answer : $\left.A\left(\hat{\hat{x}_{x}}\right)=\operatorname{Proj}_{W}^{\mathrm{b}}\right)$

4．＂Best Approximation for Functions ＂Crest＂
Set up：
Let V be the vector space of $\left\{\begin{array}{c}f: \mathbb{R} \rightarrow \rightarrow \mathbb{R}\end{array}\right.$

Let (W) be the subspace of polynomials of degree $\leq n$ ． $\rightarrow\|f\|=\sqrt{(f, f\rangle}$

Consider a unction $f(x) \in V$（e．g．，$f(x)=e^{x}$ ）
Question：
Find the＂best degree n polynomial approximation of $f(x)$ ． ＂と㢈刦＂
\Leftrightarrow Find $\underline{\vec{z}}=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in W$ s．t．$\|\cdot f(x)-\vec{z}\| \leqslant\|f(x)-\vec{w}\|$
Answer：

$$
\vec{z}=\operatorname{pro}_{W} f(x)
$$

Method I．
If W hes orthogonal basis $\left\{\vec{V}_{0}, \cdots, \vec{V}_{n}\right\}$ ，then

$$
\vec{z}=P^{n} \hat{\eta}_{v} f=\frac{\left\langle f, \vec{V}_{0}\right)}{\left\langle\vec{V}_{0}, \vec{V}_{0}\right\rangle} \vec{V}_{0}+\cdots+\frac{\left\langle f, \overrightarrow{V_{n}}\right\rangle}{\left\langle\vec{V}_{n}^{\prime} \vec{V}_{n}\right\rangle} \vec{V}_{n}
$$

Method 2 Using stepdad besis for W

Example:

$$
\begin{aligned}
& \quad\left\{1, x, x^{2}, \ldots, x^{n}\right\rangle \\
& W=\left\{a_{0}+a_{1} x+a_{2} x^{2}\right\} \quad\langle f, \delta\rangle=\int_{0}^{1} f \cdot g d x
\end{aligned}
$$

- $\left\{1, x_{1} x^{2}\right\}$ is a basilfow.
- Grem-Schmidt $\Rightarrow\left\{\frac{1}{v_{0}} \frac{t-\frac{1}{2}}{v_{1}}, \frac{t^{2}-t+\frac{1}{6}}{v_{2}}\right.$ besis for W is ortagorit
-Q: Find the lese plynomod ((S2) appox for f(x) $=e^{x}$,
Metholf: pig $f(x):=$
- Mathod 2 Use $\frac{\left(\left\{1, x, x^{2}\right\} \text { besi) }\right.}{\|}$ fr W.

$$
\left\{\begin{array}{l}
\langle f-\vec{z}, \mid\rangle=0 \\
\langle f-\vec{z}, x\rangle=0 \\
\left\langle f-\vec{z}, x^{2}\right\rangle=0
\end{array}\right.
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\int_{0}^{1}\left(e^{x}-c_{0}-c_{1} x-c_{1} x^{2}\right) \mid=0 \\
\int_{0}^{1}\left(e^{x}-c_{0}-c_{1} x-c_{2} x^{2}\right)(x)=0 \\
\int_{0}^{1}\left(e^{x}-c_{0}-c_{1} x-c_{1} x^{2}\right) x^{2}=0 \\
c_{0}+\frac{1}{2} c_{1}+\frac{1}{3} c_{2}-(e-1)=0 \\
\frac{1}{2} c_{0}+\frac{1}{3} c_{1}+\frac{1}{4} c_{2}-1=0 \\
\frac{1}{3} c_{0}+\frac{1}{4} c_{1}+\frac{1}{5} c_{2}-(e-2)=0 \\
\frac{1}{2} \\
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right]\left[\begin{array}{l}
\frac{1}{5} c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
e-1
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{l}
C_{0} \\
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{l}
1.013 \\
0.8511 \\
0.8592
\end{array}\right]
$$

$$
\vec{z}=1.013+0.8511 x+0.8792 x^{2}
$$

HWY: (6)

Question 6. Let $P_{2}(\mathbb{R})$ be the space of polynomials with degree less or equal than 2 . Let S be the subspace of the inner product space $P_{2}(\mathbb{R})$ generated by the polynomials $1-x$ and $2-x+x^{2}$ where $\langle f, g\rangle$ is defined to be $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$. Find a basis for the orthogonal complement of S. (Hint: Let $\left.f(x)=a+b x+\overline{c x}\right)^{2}$ be in $P_{2}(\mathbb{R})$. Use definition of orthogonal complement to set up a linear system.)

$$
\begin{aligned}
& S=\operatorname{Span}\left\{\begin{array}{l}
1-x, \underline{2-x+x^{2}} \\
\text { Is }\left\{1-x, 2-x+x^{2} \mid\right. \text { orfi.goul ? }
\end{array}\right. \\
& S^{\perp}=\left\{f(x)=\underline{a+b x+c x^{2}} \in \downarrow \mid f(x) \perp S\right\} \\
& \begin{cases}\langle f(x), & 1-x\rangle=0 \\
\langle f(x), & \left.2-x+x^{2}\right\rangle=0\end{cases} \\
& \Leftrightarrow\left\{\begin{array}{l}
\int_{0}^{1}\left(a+b x+c x^{2}\right)(1-x) d x=0 \\
\int_{0}^{1}\left(a+b x+c x^{2}\right)\left(2-x+x^{2}\right) d x=0
\end{array}\right. \\
& \Rightarrow\left[\begin{array}{ccc}
40 & 15 & 8 \\
110 & 55 & 37
\end{array}\right] \\
& \left\{\begin{array}{l}
a=23 t \\
b=-1 \omega t
\end{array}\right. \\
& c=110 t
\end{aligned}
$$

$$
\begin{array}{r}
\left.f(x)=t[2]-120 x+110 x^{2}\right) \\
\left.\left\{23-120 x+110 x^{2}\right] \text { is a bos } 1\right) \text { for } S 1
\end{array}
$$

