Northeastern University, Department of Mathematics
MATH 4570 - Matrix Methods in Data Analysis and Machine Learning

- Instructor: He Wang Email: he.wang@northeastern.edu

§5 Inner product spaces

Contents

1. Inner Product Spaces 1
2. Norms 3
3. Orthogonal Projections and Orthonormal Bases 7
4. Gram-Schmidt process and QR-factorization 10
5. Orthogonal Transformations and Orthogonal Matrices 12
6. Inner Product Spaces
Recall that for vectors $\vec{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right] \xrightarrow{\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}}$ \vec{u} and \vec{v} is $\vec{u} \cdot \vec{v}=U_{1} V_{1}+\cdots+U_{n} V_{n} \xrightarrow[u_{n}]{\text { Want }}\|\vec{u}\|=\sqrt{\overrightarrow{u_{n}} \cdot \vec{u}}$

Theorem 1 (Properties of the dot Product). For vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$ and a scalar $c \in \mathbb{R}$, the following hold:
(1.) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
$\left\{\begin{array}{l}(2 .)(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}\}\end{array}\right.$
(3.) $(c \vec{u}) \cdot \vec{v}=c(\vec{u} \cdot \vec{v})$
(4.) $\vec{u} \cdot \vec{u} \geqslant 0$
(5.) $\vec{u} \cdot \vec{u}=0 \Leftrightarrow \vec{u}=\overrightarrow{0}$

$$
\mathbb{I}=\mathbb{R} \text { or } \Gamma \quad 1
$$

Definition 2 (Inner Product). Let V be a(real)vector space. An inner product on V is a binary function

$$
\langle-,-\rangle: \underline{V \times V \rightarrow \mathbb{R}, \text { or } \mathbb{C}}
$$

such that for vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and a scalar $c \in \mathbb{R}$, the following hold:
(1.) $\langle\vec{u}, \vec{v}\rangle=\langle\vec{v}, \vec{u}\rangle$. . $\left.\left.\left.\quad\right|^{\prime}\right\rangle,\langle\vec{u}, \vec{v}\rangle=\overrightarrow{\langle }, \vec{u}\right\rangle \mathbb{C}$
(2.) $\langle\vec{u}+\vec{v}, \vec{w}\rangle=\langle\vec{u}, \vec{w}\rangle+\langle\vec{v}, \vec{w}\rangle$.
(3.) $\langle c \vec{u}, \vec{v}\rangle=c\langle\vec{u}, \vec{v}\rangle$.
(4.) $\langle\vec{u}, \vec{u}\rangle \geq 0$
(5.) $\langle\vec{u}, \vec{u}\rangle=0$ if and only if $\vec{u}=\overrightarrow{0}$.

We call V an inner product space.

$$
\begin{aligned}
& \left\langle p^{m p}: \text { over } \mathbb{R}: \quad\langle\vec{u}, c \vec{v}\rangle=c\langle\vec{u}, \vec{v}\rangle\right. \\
& \text { ore } \mathbb{C}:\langle\vec{u}, c \vec{V}\rangle=\bar{c}\langle\vec{u}, \vec{v}\rangle \\
& \frac{\|}{\langle\vec{v}, \vec{u}\rangle}=\overline{c\langle\vec{v}, \vec{u}\rangle}=\bar{c} \overline{\langle\vec{u} \vec{u}\rangle} \\
& \begin{array}{l|r}
\text { Ex: Cot pred. on } \mathbb{C}^{n} \\
& \underbrace{\vec{u}} \cdot \vec{c} \\
\hline
\end{array}
\end{aligned}
$$

Example 3. (Weighted dot products Let c_{1}, \ldots, c_{n} be positive numbers. The weighted inner product on \mathbb{F}^{n} is

$$
\begin{aligned}
&\langle\vec{u}, \vec{v}\rangle_{w}: \\
&=c_{1} u_{1} \bar{v}_{1}+\cdots+c_{n} u_{n} \bar{v}_{n} \\
&=\vec{u}^{\top}\left[\begin{array}{c}
c_{1} \\
\\
\\
\\
\\
\\
\\
\\
c_{n}
\end{array}\right] \stackrel{ }{\vec{v}}
\end{aligned}
$$

Example 4. Let $P_{n}(\mathbb{F})$ be the vector space of polynomials of degree at most n with coefficient in $\mathbb{F}=\mathbb{R} \underset{\mathbb{C}}{\mathbb{C}}$ An inner product on $P_{n}(\mathbb{F})$ can be defined as

$$
\langle f(t), \stackrel{\widetilde{c}}{\mathscr{C}}(t)\rangle:=\int_{\underline{a}}^{\stackrel{b}{=}} f(t) \overline{g(t)} d t
$$

Definition 5. Two vectors \vec{u} and \vec{v} are called orthogonal if

$$
\begin{aligned}
\langle\vec{u}, \vec{v}\rangle=0 \\
\text { inner pied } \Rightarrow 2 . \text { Norms } \quad \begin{aligned}
\left\|e^{x}\right\| & =\sqrt{\left\langle e^{y}, e^{x}\right\rangle} \\
& =\sqrt{\int_{0}^{1}\left(e^{x}\right)^{2} d x}
\end{aligned}
\end{aligned}
$$

Definition 6 (Norm of a Vector). Let V be a inner product space over \mathbb{F}. The length or norm of a vector $\vec{v} \in V$ induced by inner product, denoted by $\|\vec{v}\|$, is defined as

$$
\|\vec{V}\|=\sqrt{\langle\vec{V}, \vec{V}\rangle}
$$

$$
\begin{aligned}
& \text { prop: }\|\vec{V}\| \geqslant 0 \\
&\|\vec{V}\|=0 \Leftrightarrow \vec{V}=\overrightarrow{0}
\end{aligned}
$$

Def: \vec{v} is unit vector if $\|\vec{V}\|=1$.
Proposition 7. For any vector $\vec{v} \in V$ and any scalar $c \in \mathbb{F}$ one obtains

$$
\|c \cdot \vec{v}\|=|c| \cdot\|\vec{v}\| .
$$

Theorem 8 (Pythagorean Theorem). If two vectors $\vec{u}, \vec{v} \in V$ are orthoqonal, then they satisfy the Pythagorean Relation

$$
\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}
$$

Theron 9 (Cauchy-Schwarz inequality).

$$
\|\langle\vec{x}, \vec{y}\rangle\|<\|\vec{x}\|\|\vec{y}\|
$$

equality holds $\Leftrightarrow \vec{y}=c \vec{x}$.

Proposition 10 (Triangle Inequality). Two vectors $\vec{u}, \vec{v} \in V$ satisfy

$$
\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\| .
$$

Definition 11. (Angles Between Vectors) The angle between two nonzero vectors $\vec{u}, \vec{v} \in V$ is the the angle $0 \leq \theta \leq \pi$ satisfying

$$
\cos \vec{\theta}=\frac{\langle\vec{u}, \vec{v}\rangle}{\|\vec{u}\|\|\vec{v}\|}
$$

A vector space V with norm is called a normed vector space.

Definition 12. A norm on V is a map from V to \mathbb{F} such that
(1) $\|\vec{x}\| \geq 0$ for all $\vec{x} \in V$. $\|\vec{x}\|=0$ if and only if $\vec{x}=\overrightarrow{0}$.
(2) $\llbracket|c \vec{x}\|=|c| \mid \vec{x}\|$ for all $\vec{x} \in V$ and $c \in \mathbb{F}$.
(3) The triangle inequality $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|$ holds for all vectors in V.

Example 13. (l^{p} spaces) Let $1 \leq p<\infty$, it is natural to define l^{p} norms on $W_{n}^{n} \in \mathbb{R}^{n}$
$\widehat{V}=\left[\begin{array}{c}V_{1} \\ \vdots \\ V_{n}\end{array}\right]$

$$
\begin{aligned}
& \|\vec{v}\|_{p}=\sqrt[p]{\left|V_{1}\right|^{p}+\cdots+\left|V_{n}\right|^{p}} \\
& \text { ecg. } P=2 \Rightarrow\|\vec{v}\|_{2}=\|\vec{v}\|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}=\sqrt{\langle\vec{v}, \vec{v}\rangle} \underset{\leftarrow}{幺} \operatorname{dot} \text { prod. } \\
& p=1 \quad \Rightarrow\|\vec{v}\|_{1}=\left|v_{1}\right|+\cdots+\left|v_{n}\right|
\end{aligned}
$$

- If $P \neq 2,\|\vec{v}\|_{p}$ is not induced from any inner pred.

Example 14. (l^{∞} spaces) It is natural to define l^{∞} norms on \mathbb{F}^{n}

$$
\|\vec{V}\|_{\infty}=\max _{1 \leqslant i \leqslant n}\left\{\left|v_{i}\right|\right\}
$$

Example ${ }^{*}$ 15. (Norms on $\mathbb{F}^{m \times}$ induced by norms on $\left(\mathbb{F}^{n}\right)$ Normed matrix vector spaces $\mathbb{F}^{m \times n}$. Using norms on \mathbb{F}^{n}, one can define norms on matrix vector spaces

$$
\begin{aligned}
& \|A\| \\
& \qquad=\sup \left\{\|A \vec{x}\| \mid \bar{x}^{\prime} \in \mathbb{F}^{n} \text { with }\|\vec{x}\|=1\right\} \\
& \text { smallest upper bound. } \\
& \quad=\sup \left\{\frac{\|A \bar{x}\|}{\|\vec{x}\|} \left\lvert\, \begin{array}{l}
\bar{x}^{\prime} \in \mathbb{F}^{n} \\
x_{0}
\end{array}\right.\right]
\end{aligned}
$$

Example 16. Infinity norm on $\mathbb{F}^{m \times n}$.

$$
\left(\|A\|_{\infty}=\underset{1 \leqslant i c n}{ } \quad \sum_{j=1}^{n}\left|a_{i j}\right|\right\}
$$

Definition 17 (Distance Between Vectors). The distance $\operatorname{dist}(\vec{u}, \vec{v})$ between vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ is defined as

Def: Let S be a set.
The (distance) of $u, v \in S$ is

$$
\operatorname{dist}(-,-): S \times S \longrightarrow \mathbb{R}
$$

such that: ((1) $\operatorname{dist}(u, v)=\operatorname{dist}(v, u)$
(2) $d i s+(u, v)=0 \Leftrightarrow u=v$
(3) $\operatorname{dist}(u, v) \leq \operatorname{dist}(u, w)+\operatorname{dot}(v, w)$

- Inner nidus Space $/ /$ with + scaberpnd $<>$

3. Orthogonal Projections and Orthonormal Bases

Definition 18 (Orthogonal Set). A set $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ of vectors in a inner vector space V is called orthogonal if

$$
\left\langle\vec{u}_{i}, \vec{u}_{j}\right\rangle=0 \text { for all } i \neq j \text {. }
$$

Proposition 19. (1) Orthogonal' vectors ate linear independent.'

- Orthogonal vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{\underline{n}}\right\}$ in \mathbb{R}^{n} form a basis of \mathbb{R}^{n}.
(I)
- $x_{1} \vec{u}_{1}+\cdots+x_{p} \vec{u}_{p}=\overrightarrow{0}$

For ci
$\left\langle\vec{u}_{i}, x_{1} \vec{u}_{1}+\cdots+x_{p} \vec{u}_{p}\right\rangle=0$

$$
x_{1}\left\langle\vec{u}_{i}, \vec{u}_{1}\right\rangle+\cdots+x_{p}\left\langle\vec{u}_{i}, \vec{u}_{p}\right\rangle=0 \quad \Rightarrow x_{i}\left\langle\underline{\vec{u}_{i}}, \vec{u}_{i}\right\rangle=0
$$

Definition 20. - An orthogonal basis for a subspace W of an inner product space V is any basis for W which is also an orthogonal set. $\left\{\vec{u}_{1} \cdots \vec{u}_{p}\right\}$
If each vector is a vector in an orthogonal basis, then it is an

Let $L=\operatorname{Span}\{\vec{w}\}$ be the subspace in V spanned by $\vec{w} \in V$. For a given vector $\vec{y} \in V$, the orthogonal projection of \vec{y} onto L

Let \vec{w} be a nonzero vector in V. Any vector $\vec{y} \in \sqrt{\text { can be uniquely written as }}$ the sum of a scalar product of $\vec{w} \in V$ and a vector orthogonal to \vec{w}.

$$
\text { - } \operatorname{pij}_{L} \vec{y}=\frac{\langle\vec{y}, \vec{w}\rangle}{\langle\vec{w}, \vec{w}\rangle} \cdot \vec{w} \quad \in L
$$

$$
\text { - Check } y^{\perp}:=\vec{y}-\operatorname{pin}^{-} \vec{y}
$$

theorem 21 (Coordinates with respect to an orthogonal basis). Let $\mathscr{B}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal basis for subspace (W) of an inner product space V, and let (\overparen{y}) be any vector $n(\mathbb{W}$. Then

$$
\operatorname{pr}^{\hat{y}} \vec{w}_{W}^{\hat{y}}=(\hat{y})=\left(\frac{\left\langle\vec{y}, \vec{u}_{1}\right\rangle}{\left\langle\vec{u}_{1}, \vec{u}_{1}\right\rangle}\right) \vec{u}_{1}+\cdots+\left(\frac{\left\langle\vec{y}, \vec{u}_{p}\right\rangle}{\left\langle\vec{u}_{p}, \vec{u}_{p}\right\rangle}\right) \vec{u}_{p}
$$

In particular, let $\mathscr{B}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthonormal basis for a subspace W of \mathbb{R}^{n}, and let \vec{y} be any vector in W. Then

$$
\begin{aligned}
& \vec{y}=\left\langle\vec{y}, \vec{u}_{1}\right\rangle \vec{u}_{1}+\cdots+\left\langle\vec{y}, \vec{u}_{p}\right\rangle \vec{u}_{p}
\end{aligned}
$$

Theorem 22 (Orthogonal Decomposition). Let W be any subspace of V and let $\vec{y} \in V$ be any vector. Then there exists a unique decomposition

$$
\vec{y}=\operatorname{proj}_{W}(\vec{y})+\vec{y}^{\perp}
$$

with $\operatorname{proj}_{W}(\vec{y}) \in W$ and \vec{y}^{\perp} is perpendicular to W.
Theorem 23 (Qrtrodonal Decomposition). If $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is an orthogonal basis) for (W) then
and $\vec{y}^{\perp}=\vec{y}-\operatorname{proj}_{W}(\vec{y})$.

$$
\begin{aligned}
& \text { for }(W) \text { then } \\
& \operatorname{proj}_{W}(\vec{y})=\left(\frac{\left\langle\vec{y}, \vec{u}_{1}\right\rangle}{\left\langle\vec{u}_{1}, \vec{u}_{1}\right\rangle}\right) \vec{u}_{1}+\cdots+\left(\frac{\left\langle\vec{y}, \vec{u}_{p}\right\rangle}{\left\langle\vec{u}_{p}, \vec{u}_{p}\right\rangle}\right) \vec{u}_{p} \\
& \vec{y}-\operatorname{proj}_{W}(\vec{y}) .
\end{aligned}
$$

Definition 24 (Orthogonal \neq Complements). Given a nonempty subset (finite or infinite) W of V, its orthogonal complement $\left(W^{-}\right)$is the set of all vectors $\vec{v} \in V$ orthogonal to W.

$$
\begin{aligned}
& =\left\{\begin{array}{l|l}
\vec{V} \in V & \langle\vec{v}, \vec{w}\rangle=0 \\
\text { fr } d\|\vec{w} \in\|
\end{array}\right.
\end{aligned}
$$

Ex: $S=\left\{\vec{w}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \vec{w}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]\right\} \subset \mathbb{R}^{3}=V$
$\operatorname{im}\left[\begin{array}{ll}1 & 2 \\ 2 & 3 \\ 3 & 4\end{array}\right]=W=\frac{\operatorname{spqq}\left\{\vec{w}_{1}, \vec{w}_{v}\right] \subset V}{\langle,\rangle} \subset \operatorname{dot}$ pred.
$A^{\prime} W^{\perp}=S^{\perp}=\left\{\vec{v} \in \mathbb{R}^{3} \left\lvert\, \frac{\left\langle\vec{v}, \overrightarrow{w_{1}}\right\rangle=0}{\left\langle\vec{v}, \overrightarrow{w_{v}}\right\rangle=0}\right.\right\}$

$$
\vec{V}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{1}
\end{array}\right] \in \mathbb{R}^{3}
$$

* The: $(\operatorname{im} A)^{1}=\operatorname{ker}\left(A^{\top}\right)$

$$
S_{\text {pen }}\left\{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\}
$$

Ex: $1 f\left\langle\vec{v}, \vec{w}_{1}\right\rangle=0,\left\langle\vec{v}, \vec{w}_{v}\right\rangle=0$, then

$$
\left\langle\vec{v}, \underline{\left.x_{1} \overrightarrow{v_{1}}+x_{2} \overrightarrow{w_{v}}\right\rangle}=0 .\right.
$$

$$
\left\{x_{1} \vec{b}_{1}+\cdots+x_{p} \vec{b}_{p} \mid \text { all } x_{i}\right\}
$$

Theorem 25. Let $\underline{S \text { be a subset }}$ of $\underline{\underline{V}}$. Let $\underline{W=\operatorname{Span}(S)}$, then
(1) $S^{\perp}=W^{\perp}$ is a subspee of V.
(2) $\left(W^{\perp}\right)^{\perp}=W$

$$
\left\{\begin{array}{l}
\text { (3) } \operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V \\
(4) W \cap W^{\perp}=\{\overrightarrow{0}\}
\end{array}\right.
$$

$$
\Rightarrow\langle\vec{u}, \vec{u}\rangle=0 \Rightarrow \vec{u}=\overrightarrow{0}
$$

Theorem 27. Let A be an $m \times n$ matrix, then

$$
\text { Row } A)^{\perp}=\operatorname{ker}(A) \quad \text { and } \quad(\operatorname{iim} A)^{\perp}=\operatorname{ker} A^{T} . \quad=W^{\perp}
$$

More over,

A^{\top}
4. Gram-Schmidt process and QR-factorization

The Gram-Schmidt process is an algorithm that produces an orthogonal (or orthonormal) basis for any subspace W of V by starting with any basis for W.

Theorem 28 (Gram-Schmidt (Orthogonalize)). Let W be a subspace of V and let $\mid \vec{b}_{1}, \cdots, \vec{b}_{p}$ be a basis for W. Define vectors $\vec{v}_{1}, \ldots, \vec{v}_{p}$ as
(1) $\vec{V}_{1}=\vec{b}_{1}$
(2) $\overrightarrow{V_{v}}=\overrightarrow{b_{2}}=\overrightarrow{b_{x}}-\frac{\left\langle\overrightarrow{b_{2}}, \overrightarrow{v_{1}}\right\rangle}{\left\langle\overrightarrow{V_{1}}, \overrightarrow{V_{1}}\right\rangle} \vec{v}_{1}$

Then $\left\{\vec{V}_{1}, \vec{V}_{v}, \cdots, \vec{V}_{p}\right)$ is an orthoginal bests for W

Theorem 29 (Gram-Schmidt (Normalize)). If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an orthogonal basis for W, then

$$
\left\{\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}, \cdots, \frac{\vec{V}_{p}}{\left\|\vec{v}_{p}\right\|}\right\} \text { is in orthonormal boos }
$$

\square

- Inner product space V, \pm, scale prod, \langle, \geqslant

- 10 how to use it?
- $\vec{y} \in V$
(2) how to find it?

$$
\left\{\begin{array}{l}
\text { (1) } \left.p_{w} \vec{y}_{w}^{\vec{y}}=\frac{\left\langle\vec{y}, \vec{v}_{1}\right\rangle}{\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle} \vec{v}_{1}+\cdots+\frac{\left\langle\vec{y}, \vec{v}_{p}\right.}{\left\langle\overrightarrow{v_{p}}, \vec{v}_{p}\right\rangle}\right\rangle \vec{v}_{p} \\
\text { (2) Gram - Schmidt }
\end{array}\right.
$$

$$
V=W \oplus W^{\perp}
$$

$\underline{\underline{E x}}$: Inner product on $C[0,1]=\{f:[0,1] \rightarrow \mathbb{R}\}$ cont.

$$
\begin{aligned}
&\langle f, g\rangle:=\int_{0}^{1} f(t) g(t) d t . \\
& \cdot B=\left\{\begin{array}{l}
1 \\
= \\
\vec{u}_{0}(t)
\end{array} \frac{\cos 2 \pi t}{\frac{11}{\vec{u}_{1}(t)}}, \frac{\sin 2 \pi t}{\vec{v}_{1}(t)}, \frac{\cos 4 \pi t}{\vec{u}_{2}(t)}, \frac{\sin 4 \pi t}{\vec{v}_{2}(t)} \ldots \sin 2 n \pi t\right.
\end{aligned} .
$$

-The: B is orthogonal.

$$
\begin{aligned}
& \overrightarrow{\vec{u}_{0}(t)=1}\left\|\vec{u}_{3}^{\prime}(t)\right\|:=\sqrt{\left\langle\vec{u}_{0}(t), \vec{u}_{0}(t)\right\rangle} \\
& =\sqrt{\int_{0}^{1} 1 d t} \\
& =\sqrt{\left.x\right|_{0} ^{1}}=1 \\
& \|\sin 2 \pi t\|^{2}=\int_{0}^{1} \sin 2 \pi n t \sin 2 \pi n t d t=\frac{1}{2} \\
& \|\cos 2 x t\|^{2}=\int_{0}^{1} \cos 2 x n t \cos 2 \pi n t d t=\frac{1}{2} \\
& \text { - Ref: } N=\operatorname{span} B \text {. }
\end{aligned}
$$

- B is an orthogonal basis for W.
- Fourier Transform
for any $\underline{\underline{f(t)}}:[0,1] \rightarrow \mathbb{R}$

$$
\begin{aligned}
& f(t)=a_{0}+a_{1} \sin 2 \pi t+b_{1} \cos 2 \pi t+\cdots \cdot \\
& P \cdot \int_{W} f(t) \\
&+a_{n} \sin 2 \pi n t+b_{n} \cos 2 \pi n t+\cdots \\
& a_{0}= \\
& a_{n}=\frac{\langle f(t), \sin 2 \pi n t\rangle}{1 / 2}=2 \int_{0}^{1} f(t) \sin 2 \pi n t d t . \\
& b_{n}=
\end{aligned}
$$

(2). Gram-Schmidt
bsil \longrightarrow ortignal besis \longrightarrow ortionormel.

$$
V=P_{2}=\left\{a_{0}+a_{1} t+a_{1} t^{2}\right\}
$$

- $\langle f, g\rangle=\int_{0}^{1} f(t) d(t) d t$.
$\begin{array}{lll}\overrightarrow{b_{r}} & \overrightarrow{b_{2}} & \overrightarrow{b_{3}} \\ n_{2}\end{array}$

(β is not otogral. $\langle 1, t\rangle=\int_{0}^{1} t d t=\left.\frac{t^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}$

Grem-Schmilf

$$
\begin{aligned}
& \left(T_{2}\right)=\vec{b}_{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\vec{v}}_{3}=\vec{ज}_{3}-\frac{\left\langle\vec{b}_{3}, \overrightarrow{v_{1}}\right)}{\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle} \vec{v}_{1}-\frac{\left\langle\overrightarrow{r_{1}}, \overrightarrow{v_{v}}\right\rangle}{\left\langle\vec{v}_{v}, \vec{v}_{v}\right\rangle} \vec{v}_{v} \\
& =t^{2}-\frac{1}{3}-\frac{y / 12}{1 / 12}\left(t-\frac{1}{2}\right)=\left(t^{2}-t+\frac{1}{6}\right.
\end{aligned}
$$

$=\left\{1,\left(t-\frac{1}{2}, t^{2}-t+\frac{1}{6}\right\}\right.$ is an ortignond b881) for P_{2}

$$
\left\{\begin{array}{l}
\vec{u}_{1}=1 \\
\vec{u}_{v}=\frac{t-\frac{1}{2}}{\left\|t-\frac{1}{2}\right\|}=\sqrt{12}\left(t-\frac{1}{2}\right) \\
\overrightarrow{\vec{u}_{3}}=\frac{\overrightarrow{v_{s}}}{\|\overrightarrow{3}\|}=\frac{t^{2}-t-\frac{1}{6}}{\sqrt{\int_{0}\left(t^{2}-t-\frac{1}{6}\right)^{2} d t}}=\sqrt{180}\left(t^{2}-t-\frac{1}{6}\right)
\end{array}\right.
$$

- subsprau of \mathbb{R}^{n}
- <, > is dot prod.
$Q R$-Factorization is the matrix version of Gram-Schmidt process for a subspace W of \mathbb{F}^{n} :

Basis $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\} \xrightarrow{\text { orthogonalize }}$ Orthogonal basis $\mathscr{V}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ $\xrightarrow{\text { normalize }}$ Orthonormal basis $\mathscr{U}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$.

Theorem 30. Given a $n \times p$ matrix $M=\left[\vec{b}_{1} \ldots \vec{b}_{p}\right]$ with independent columns. There is a unique decomposition
where, $Q=\left[\vec{u}_{1}, \ldots, \vec{u}_{p}\right]$ has orthonormal columns and R is an $p \times p$ upper triangular matrix with

$$
r_{i i}=\left\|\vec{v}_{i}\right\| \text { for } i=1, \ldots, p \text { and } r_{i j}=\left\langle\vec{u}_{i}, \vec{b}_{j}\right\rangle \text { for } i<j .
$$

Proof. Proof(for $p=3$): From Gram-Schmidt process, write \vec{b}_{i} as linear combinations of \vec{u}_{i}.

$$
\begin{aligned}
& \vec{b}_{1}=\vec{v}_{1}=\left\|\vec{v}_{1}\right\| \vec{u}_{1} \\
& \vec{b}_{2}=\vec{v}_{2}+\frac{\left\langle\vec{b}_{2}, \vec{v}_{1}\right\rangle}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}=\left\|\vec{v}_{2}\right\| \vec{u}_{2}+\left\langle\vec{b}_{2}, \vec{u}_{1}\right\rangle \vec{u}_{1} \\
& \vec{b}_{3}=\vec{v}_{3}+\frac{\left\langle\vec{b}_{3}, \vec{v}_{1}\right\rangle}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}+\frac{\left\langle\vec{b}_{3}, \vec{v}_{2}\right\rangle}{\left\|\vec{v}_{2}\right\|^{2}} \vec{v}_{2}=\left\|\vec{v}_{3}\right\| \vec{u}_{3}+\left\langle\vec{b}_{3}, \vec{u}_{1}\right\rangle \vec{u}_{1}+\left\langle\vec{b}_{3}, \vec{u}_{2}\right\rangle \vec{u}_{2}
\end{aligned}
$$

So,

$$
\left.\underline{\left[\vec{b}_{1} \vec{b}_{2} \vec{b}_{3}\right.}\right]=\left[\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\left(\begin{array}{ccc}
\left\|\vec{v}_{1}\right\| & \left\langle\vec{u}_{1}, \vec{b}_{2}\right\rangle & \left\langle\vec{u}_{1}, \vec{b}_{3}\right\rangle \\
0 & \left\|\vec{v}_{2}\right\| & \left\langle\vec{u}_{2}, \vec{b}_{3}\right\rangle \\
0 & 0 & \left\|\vec{v}_{3}\right\|
\end{array}\right]\right.
$$

- $A_{n} n \times n$ "Matrix" A is orthogonal
$\Leftrightarrow\left\|T_{A}(\vec{x})\right\|=\|\vec{x}\|$ for all $\vec{x}^{\prime} \in \mathbb{R}^{n}$ with dot
$\Longleftrightarrow\|A \vec{x}\|=\|\vec{x}\| \quad$ for a $\| \vec{x} \in \mathbb{R}^{n}$
$\Leftrightarrow\langle A \vec{x}, A \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle \quad$ for $\operatorname{sng} \vec{x}, \vec{y} \in \mathbb{R}^{n}$
\Leftrightarrow columns of $A,\left\{\overrightarrow{a_{1}}, \cdots, \overrightarrow{a_{n}}\right\}$ is orthonormal bess) fro

$$
\begin{aligned}
& {[J] \vec{a}_{i}^{\top} \vec{a}_{j}=\vec{a}_{i} \cdot \vec{a}_{j}= \begin{cases}0 & \text { if } i \neq j \\
1 & \text { if } i=j\end{cases} } \\
& \quad \Leftrightarrow A^{\top} A=I_{n} \\
& \quad \Leftrightarrow A^{\top}=A^{-1}
\end{aligned}
$$

- $\left\{\overrightarrow{b_{1}}, \cdots \cdot \overrightarrow{b_{p}}\right\}$ is an "ortonomul" set in \mathbb{R}^{n}

$$
\Leftrightarrow B=\left[\begin{array}{lll}
\overrightarrow{1} & \cdots & \overrightarrow{b_{p}}
\end{array}\right] \quad \underline{n \times p \operatorname{matix}} \text { ssitify }
$$

$$
B_{\operatorname{mxp} p x}^{B^{\top} B=I_{p}}
$$

-Q: what is $\frac{B^{\top} B^{\top}}{n \times n \text { mantix }}$?
5. Orthogonal Transformations and Orthogonal Matrices

Let V be a inner product space.

Definition 31. A linear transformation $T: V \rightarrow V$ is called orthogonat if

$$
\|T(\vec{x})\|=\|\vec{x}\| \text { for all } \vec{x} \in V
$$

that is, T preserves the length of vectors.

Example 32. Whether or not the following transformations are orthogonal.
(1.) Rotations $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are orthogonal transformations.

The matrix of rotation $S=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal.
(2.) Reflections $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are orthogonal transformations.

The matrix of reflection matrix $R=\left[\begin{array}{cc}a & b \\ b & -a\end{array}\right]$ with $a^{2}+b^{2}=1$ is orthogonal.
(3.) Orthogonal projections $P: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are NOT orthogonal transformatons.

The matrix of an orthogonal transformation $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is called an orthogonal matrix.

Theorem 33. Let U be an $n \times n$ orthogonal matrix and let \vec{x} and \vec{y} be any vectors in \mathbb{F}^{n}. Then
(1) $\|U \vec{x}\|=\|\vec{x}\|$.
(2) $\langle U \vec{x}, U \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle$.
(3) $\langle U \vec{x}, U \vec{y}\rangle=0$ if and only if $\langle\vec{x}, \vec{y}\rangle=0$.

Proposition 34. U is an orthogonal matrix if and only if $\langle U \vec{x}, U \vec{y}\rangle=$ $\langle\vec{x}, \vec{y}\rangle$ for any \vec{x} and \vec{y} in \mathbb{R}^{n}.

Using the geometric meaning of the orthogonal transformation, we have
Theorem 35. 1. If A is orthogonal, then A is invertible and A^{-1} is orthogonal.
2. If A and B are orthogonal, then $A B$ is orthogonal.

Theorem 36. The $n \times n$ matrix U is orthogonal if and only if $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal set.

Application to real matrix A.

Recall the transpose of a matrix: Given an $m \times n$ matrix A, we define the transpose matrix A^{T} as the $n \times m$ matrix whose (i, j)-th entry is the (j, i)-th entry of A. The dot product can be written as matrix product

$$
\vec{v} \cdot \vec{w}=\vec{v}^{T} \vec{w}
$$

Theorem 37. The $n \times n$ matrix A is orthogonal if and only if $A^{T} A=$ I_{n}; if and only if $A^{-1}=A^{T}$.

$$
U^{\top} U=I_{p}
$$

Theorem 38. Let W be any subspace of \mathbb{R}^{n} with an orthonormal basis $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$. Let $U=\left[\vec{u}_{1} \vec{u}_{2} \cdots \vec{u}_{p}\right]$. For any $\vec{y} \in \mathbb{R}^{n}$,

That is, the matrix of the projection onto W is

