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1. Inner Product Spaces

Recall that for vectors ~u =

2

4
u1
...

un

3

5 and ~v =

2

4
v1
...

vn

3

5 in Rn
, the dot product of

~u and ~v is

Theorem 1 (Properties of the dot Product). For vectors ~u,~v, ~w 2 Rn

and a scalar c 2 R, the following hold:

(1.)

(2.)

(3.)

(4.)

(5.)

1



Definition 2 (Inner Product). Let V be a real vector space. An inner
product on V is a binary function

h�,�i : V ⇥ V ! R
such that for vectors ~u,~v, ~w 2 V and a scalar c 2 R, the following hold:

(1.) h~u,~vi = h~v, ~ui.
(2.) h~u + ~v, ~wi = h~u, ~wi + h~v, ~wi.
(3.) hc~u,~vi = ch~u,~vi.
(4.) h~u, ~ui � 0

(5.) h~u, ~ui = 0 if and only if ~u = ~0.
We call V an inner product space.

Example 3. (Weighted dot products) Let c1, ..., cn be positive numbers. The
weighted inner product on Fn

is

Example 4. Let Pn(F) be the vector space of polynomials of degree at most

n with coe�cient in F = R or C. An inner product on Pn(F) can be defined as



Definition 5. Two vectors ~u and ~v are called orthogonal if

2. Norms

Definition 6 (Norm of a Vector). Let V be a inner product space over

F. The length or norm of a vector ~v 2 V induced by inner product ,

denoted by ||~v||, is defined as

Proposition 7. For any vector ~v 2 V and any scalar c 2 F one

obtains

||c · ~v|| = |c| · ||~v||.

Theorem 8 (Pythagorean Theorem). If two vectors ~u,~v 2 V are or-

thogonal, then they satisfy the Pythagorean Relation

||~u + ~v||2 = ||~u||2 + ||~v||2.



Theorem 9 (Cauchy-Schwarz inequality).

Proposition 10 (Triangle Inequality). Two vectors ~u,~v 2 V satisfy

||~u + ~v||  ||~u|| + ||~v||.

~v

~u
~u + ~v

Definition 11. (Angles Between Vectors) The angle between two
nonzero vectors ~u,~v 2 V is the the angle 0  ✓  ⇡ satisfying



A vector space V with norm is called a normed vector space.

Definition 12. A norm on V is a map from V to F such that

(1) ||~x|| � 0 for all ~x 2 V . ||~x|| = 0 if and only if ~x = ~0.
(2) ||c~x|| = c||~x|| for all ~x 2 V and c 2 F.
(3) The triangle inequality ||~u + ~v||  ||~u|| + ||~v|| holds for all vectors

in V .

Example 13. (lp spaces) Let 1  p < 1, it is natural to define lp norms on

Fn

Example 14. (l1 spaces) It is natural to define l1 norms on Fn

Example 15. (Norms on Fm⇥n
induced by norms on Fn

) Normed matrix

vector spaces Fm⇥n
. Using norms on Fn

, one can define norms on matrix

vector spaces



Example 16. Infinity norm on Fm⇥n
.

Definition 17 (Distance Between Vectors). The distance dist(~u,~v) be-
tween vectors ~u,~v 2 Rn

is defined as

dist(~u,~v) = ||~u� ~v|| =
p
(u1 � v1)2 + · · · + (un � vn)2.



3. Orthogonal Projections and Orthonormal Bases

Definition 18 (Orthogonal Set). A set {~u1, . . . , ~up} of vectors in a inner

vector space V is called orthogonal if

Proposition 19. • Orthogonal vectors are linear independent.

• Orthogonal vectors {~u1, . . . , ~un} in Rn
form a basis of Rn

.

Definition 20. • An orthogonal basis for a subspace W of an

inner product space V is any basis for W which is also an orthogonal

set.

• If each vector is a unit vector in an orthogonal basis, then it is an

orthonormal basis.

Let L = Span{~w} be the subspace in V spanned by ~w 2 V . For a given vector

~y 2 V , the orthogonal projection of ~y onto L

L
~w

~y

projL(~y)

~y?

Let ~w be a nonzero vector in V . Any vector ~y 2 V can be uniquely written as

the sum of a scalar product of ~w 2 V and a vector orthogonal to ~w.



Theorem 21 (Coordinates with respect to an orthogonal basis). Let
B = {~u1, . . . , ~up} be an orthogonal basis for a subspace W of an

inner product space V , and let ~y be any vector in W . Then

~y =

✓
h~y, ~u1i
h~u1, ~u1i

◆
~u1 + · · · +

✓
h~y, ~upi
h~up, ~upi

◆
~up

In particular, let B = {~u1, . . . , ~up} be an orthonormal basis for a subspace

W of Rn
, and let ~y be any vector in W . Then

~y = h~y, ~u1i~u1 + · · · + h~y, ~upi~up

Theorem 22 (Orthogonal Decomposition). Let W be any subspace of V
and let ~y 2 V be any vector. Then there exists a unique decomposition

~y = projW (~y) + ~y?

with projW (~y) 2 W and ~y? is perpendicular to W .

Theorem 23 (Orthogonal Decomposition). If {~u1, . . . , ~up} is an orthog-

onal basis for W , then

projW (~y) =

✓
h~y, ~u1i
h~u1, ~u1i

◆
~u1 + · · · +

✓
h~y, ~upi
h~up, ~upi

◆
~up

and ~y? = ~y � projW (~y).

Definition 24 (Orthogonal Complements). Given a nonempty subset
(finite or infinite) W of V , its orthogonal complement W?

is the set

of all vectors ~v 2 V orthogonal to W .





Theorem 25. Let S be a subset of V . Let W = Span(S), then

Theorem 26. Let W be a subspace of V , then

V = W �W?

Theorem 27. Let A be an m⇥ n matrix, then

(RowA)? = ker(A) and (imA)? = kerAT.

More over,

Rm
= kerAT � imA



4. Gram-Schmidt process and QR-factorization

The Gram-Schmidt process is an algorithm that produces an orthogonal

(or orthonormal) basis for any subspace W of V by starting with any basis for

W .

Theorem 28 (Gram-Schmidt (Orthogonalize)). Let W be a subspace of

V and let ~b1, · · · ,~bp be a basis for W . Define vectors ~v1, . . . ,~vp as

Theorem 29 (Gram-Schmidt (Normalize)). If {~v1, . . . ,~vp} is an or-

thogonal basis for W , then

Basis
orthogonalize�������! Orthogonal basis

normalize�����! Orthonormal basis.











QR-Factorization.

QR-Factorization is the matrix version of Gram-Schmidt process for a sub-

space W of Fn
:

Basis B = {~b1, . . . ,~bp}
orthogonalize�������! Orthogonal basis V = {~v1, . . . ,~vp}

normalize�����! Orthonormal basis U = {~u1, . . . , ~up}.

Theorem 30. Given a n⇥p matrix M = [~b1 . . . ~bp] with independent

columns. There is a unique decomposition

M = QR

where, Q = [~u1, . . . , ~up] has orthonormal columns and R is an p ⇥ p
upper triangular matrix with

rii = ||~vi|| for i = 1, . . . , p and rij = h~ui,~bji for i < j.

Proof. Proof(for p = 3): From Gram-Schmidt process, write ~bi as linear
combinations of ~ui.

~b1 = ~v1 = ||~v1||~u1

~b2 = ~v2 +
h~b2,~v1i
||~v1||2

~v1 = ||~v2||~u2 + h~b2, ~u1i~u1

~b3 = ~v3 +
h~b3,~v1i
||~v1||2

~v1 +
h~b3,~v2i
||~v2||2

~v2 = ||~v3||~u3 + h~b3, ~u1i~u1 + h~b3, ~u2i~u2

So,

[~b1 ~b2 ~b3] = [~u1 ~u2 ~u3]

2

4
||~v1|| h~u1,~b2i h~u1,~b3i
0 ||~v2|| h~u2,~b3i
0 0 ||~v3||

3

5

⇤







5. Orthogonal Transformations and Orthogonal Matrices

Let V be a inner product space.

Definition 31. A linear transformation T : V ! V is called orthogo-
nal if

||T (~x)|| = ||~x|| for all ~x 2 V

that is, T preserves the length of vectors.

Example 32. Whether or not the following transformations are orthogonal.

(1.) Rotations S : R2 ! R2
are orthogonal transformations.

The matrix of rotation S =


cos ✓ � sin ✓
sin ✓ cos ✓

�
is orthogonal.

(2.) Reflections R : R2 ! R2
are orthogonal transformations.

The matrix of reflection matrix R =


a b
b �a

�
with a2 + b2 = 1 is orthogonal.

(3.) Orthogonal projections P : R2 ! R2
are NOT orthogonal transforma-

tions.

The matrix of an orthogonal transformation T : Fn ! Fn
is called an orthog-

onal matrix.

Theorem 33. Let U be an n ⇥ n orthogonal matrix and let ~x and ~y
be any vectors in Fn

. Then

(1) ||U~x|| = ||~x||.
(2) hU~x, U~yi = h~x, ~yi.
(3) hU~x, U~yi = 0 if and only if h~x, ~yi = 0.



Proposition 34. U is an orthogonal matrix if and only if hU~x, U~yi =
h~x, ~yi for any ~x and ~y in Rn

.

Using the geometric meaning of the orthogonal transformation, we have

Theorem 35. 1. If A is orthogonal, then A is invertible and A�1
is

orthogonal.

2. If A and B are orthogonal, then AB is orthogonal.

Theorem 36. The n ⇥ n matrix U is orthogonal if and only if

{~u1, . . . , ~un} is an orthonormal set.



Application to real matrix A.

Recall the transpose of a matrix: Given an m ⇥ n matrix A, we define the

transpose matrix AT
as the n ⇥ m matrix whose (i, j)-th entry is the

(j, i)-th entry of A. The dot product can be written as matrix product

~v · ~w = ~vT ~w

Theorem 37. The n⇥n matrix A is orthogonal if and only if ATA =

In; if and only if A�1
= AT

.

Theorem 38. Let W be any subspace of Rn
with an orthonormal basis

{~u1, . . . , ~up}. Let U = [~u1 ~u2 · · · ~up]. For any ~y 2 Rn
,

projW (~y) = UUT~y.

That is, the matrix of the projection onto W is

P = UUT


