Northeastern University, Department of Mathematics

MATH 4570 - Matrix Methods in Data Analysis and Machine Learning

• Instructor: He Wang Email: he.wang@northeastern.edu

§5 Inner product spaces

CONTENTS

1.	Inner Product Spaces	1
2.	Norms	3
3.	Orthogonal Projections and Orthonormal Bases	7
4.	Gram-Schmidt process and QR-factorization	10
5.	Orthogonal Transformations and Orthogonal Matrices	12

1. Inner Product Spaces

Recall that for vectors $\vec{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ in \mathbb{R}^n , the **dot product** of \vec{u} and \vec{v} is $\vec{u} \cdot \vec{v} = \mathcal{U}_1 | \vec{v}_1 + \dots + \mathcal{U}_n \mathcal{V}_n$ $\mathcal{U}_n + \mathcal{U}_n | \vec{u}_n | = \int \vec{u} \cdot \vec{u}$

Theorem 1 (Properties of the dot Product). For vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and a scalar $c \in \mathbb{R}$, the following hold: (1.) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ (2.) $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$ (3.) $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v})$ (4.) $\vec{u} \cdot \vec{u} \neq 0$ (5.) $\vec{u} \cdot \vec{u} = o \iff \vec{u} = \vec{o}$ $\vec{u} = \vec{v}$

$$\frac{PPP}{PP}: ||\overrightarrow{V}|| \ge 0$$

$$||\overrightarrow{V}|| = 0 \iff \overrightarrow{V} = \overrightarrow{0}$$

$$\frac{Pef}{T}: \overrightarrow{V}: \text{ unit vector } i \neq ||\overrightarrow{U}|| = |.$$

Proposition 7. For any vector $\vec{v} \in V$ and any scalar $c \in \mathbb{F}$ one obtains

$$|c \cdot \vec{v}|| = |c| \cdot ||\vec{v}||.$$

A vector space V with norm is called a **normed vector space**.

Definition 12. A norm on V is a map from V to \mathbb{F} such that (1) $||\vec{x}|| \ge 0$ for all $\vec{x} \in V$. $||\vec{x}|| = 0$ if and only if $\vec{x} = \vec{0}$. (2) $||c\vec{x}|| = c |\vec{x}||$ for all $\vec{x} \in V$ and $c \in \mathbb{F}$. (3) The triangle inequality $||\vec{u} + \vec{v}|| \leq ||\vec{u}|| + ||\vec{v}||$ holds for all vectors in V. **Example 13.** $(l^p \text{ spaces})$ Let $1 \leq p < \infty$, it is natural to define l^p norms on $\|\vec{v}\|_{p} = \int |v_{1}|^{p} + \cdots + |v_{n}|^{p}$ $\frac{e_{g}}{P-2} \implies \|\vec{v}\|_{2} = \|\vec{v}\| = \int v_{1}^{2} + \cdots + v_{n}^{n} \qquad \text{(a) Introduction of the original set of the ori$ $\begin{array}{c|c} & & & & & & \\ \hline P_{-} & \longrightarrow & & & \\ & & & & \\ \hline P_{+} & \\$ $\|\vec{v}\|_{\infty} = \max_{1 \le i \le n} \left\{ |v_i| \right\}$

Example 15. (Norms on $\mathbb{F}^{m \times n}$ induced by norms on \mathbb{F}^n) Normed matrix vector spaces $\mathbb{F}^{m \times n}$. Using norms on \mathbb{F}^n , one can define norms on matrix vector spaces

$$\|A\| = \sup \left\{ \|A \mathbf{x}\| \\ \vec{x} \in \mathbf{F}^n \text{ with } \|\vec{x}\| = 1 \right\}$$

smallest = $\sup \left\{ \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|} \\ \vec{x} \in \mathbf{F}^n \\ \vec{x} \in \mathbf{F}^n \right\}$

Example 16. Infinity norm on $\mathbb{F}^{m \times n}$.

$$\left\|\left|\left|A\right|\right|_{\mathcal{S}} = \max_{\substack{j \in i \leq n}} \int_{j=1}^{n} |a_{ij}|\right\}$$

Definition 17 (Distance Between Vectors). The **distance** dist (\vec{u}, \vec{v}) between vectors $\vec{u}, \vec{v} \in (\mathbb{R}^n)$ is defined as dist $(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}|| = \sqrt{(u_1 - v_1)^2 + \dots + (u_n - v_n)^2}.$ ũ) Defi let She a set. The (distance) of u, VES is $dist(-,-): S \times S \longrightarrow \mathbb{R}$ such that: (I) div(u, v) = div(v, u)(I) div(u, v) = div(v, u)(I) $div(u, v) = 0 \iff u = v$ (I) $div(u, v) \le div(u, w) + div(v, w)$ Lt meth nom $Ex: d(u, v) = \begin{cases} 0 & 4 & u = v \\ 1 & 1 & u \neq v \end{cases}$ with + scale prod, < > Innor phydult Spece

3. Orthogonal Projections and Orthonormal Bases (non-zela **Definition 18** (Orthogonal Set). A set $\{\vec{u}_1, \ldots, \vec{u}_p\}$ of vectors in a inner vector space V is called **orthogonal** if $\langle \vec{u}_i, \vec{u}_i \rangle = 0$ for all $i \neq j$. **Proposition 19.** (1) Orthogonal vectors are linear independent.' • Orthogonal vectors $\{\vec{u}_1, \ldots, \vec{u}_n\}$ in \mathbb{R}^n form a basis of \mathbb{R}^n . $\propto_1 \overline{u_1} + \cdots + \chi_p \overline{u_p} = \overline{\sigma}$ $F_{\mathbf{x}} \stackrel{\text{dif}}{=} \langle \vec{\mathcal{U}}_{i}, \pi, \vec{\mathcal{U}}_{i} + \dots + \chi_{p} \vec{\mathcal{U}}_{p} \rangle = \mathbf{0}$ $\chi_1 < \overline{\mathcal{U}}_1, \overline{\mathcal{U}}_1 > + \cdots + \chi_p < \overline{\mathcal{U}}_1, \overline{\mathcal{U}}_2 > = 0 \xrightarrow{\rightarrow} \chi_1 < \overline{\mathcal{U}}_1, \overline{\mathcal{U}}_1 > = 0$ Definition 20. • An **orthogonal basis** for a subspace (\dot{W}) of an inner product space V is any basis for \overline{W} which is also an orthogonal set. {\$\vec{u}_1\$ \cdots\$\vec{u}_1\$}
If each vector is a **unit** vector in an orthogonal basis, then it is an **orthonormal basis**. <u; u; >= { 0 i = j and W-spartin-u;

Let $L = \text{Span}\{\vec{w}\}$ be the subspace in V spanned by $\vec{w} \in V$. For a given vector $\vec{y} \in V$, the **orthogonal projection of** \vec{y} **onto** L

Let \vec{w} be a nonzero vector in V. Any vector $\vec{y} \in V$ can be uniquely written as the sum of a scalar product of $\vec{w} \in V$ and a vector orthogonal to \vec{w} .

•
$$p\hat{y}_{1}\hat{y} = (\hat{y}_{1}, \hat{w})$$

• $\hat{w}_{1}\hat{w} = (\hat{y}_{1}, \hat{w})$
• $\hat{w}_{1}\hat{w} = (\hat{y}_{1}, \hat{w})$

Theorem 21 (Coordinates with respect to an orthogonal basis). Let

$$\mathscr{B} = \{\vec{u}_1, \dots, \vec{u}_p\}$$
 be an **orthogonal** basis for a subspace W of an
inner product space V , and let (\vec{y}) be any vector in W . Then
 $(\vec{y}, \vec{u}_1) = (\vec{y}) = (\frac{\langle \vec{y}, \vec{u}_1 \rangle}{\langle \vec{u}_1, \vec{u}_1 \rangle}) \vec{u}_1 + \dots + (\frac{\langle \vec{y}, \vec{u}_p \rangle}{\langle \vec{u}_p, \vec{u}_p \rangle}) \vec{u}_p$

In particular, let $\mathscr{B} = \{\vec{u}_1, \ldots, \vec{u}_p\}$ be an **orthonormal** basis for a subspace W of \mathbb{R}^n , and let \vec{y} be any vector in W. Then

$$\vec{y} = \langle \vec{y}, \vec{u}_1 \rangle \vec{u}_1 + \dots + \langle \vec{y}, \vec{u}_p \rangle \vec{u}_p$$

$$\vec{y} = \langle \vec{y}, \vec{u}_1 \rangle \vec{u}_1 + \dots + \langle \vec{y}, \vec{u}_p \rangle \vec{u}_p$$

$$\vec{y} = c_1 \vec{u}_1 + \dots + c_p \vec{u}_p$$

$$\vec{y} = \vec{y} - \vec{p} \vec{y} \neq W$$

Definition 24 (Orthogonal Complements). Given a nonempty subset (finite or infinite) W of V, its orthogonal complement W^{\perp} is the set of all vectors $\vec{v} \in V$ orthogonal to W.

$$W^{\perp} = \left\{ \underbrace{all \ vectors \ in \ V}_{perpendicular} \stackrel{"}{perpendicular} to W \right\}$$
$$= \left\{ \overline{v} \in V \mid \langle \overline{v}, \overline{w} \rangle = 0 \text{ for all } \overline{w} \in V \right\}$$

$$\begin{array}{c} \underbrace{\mathsf{Ex}}_{k} \cdot S = \begin{cases} \overrightarrow{w}_{1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \overrightarrow{w}_{r} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \subset R^{2} = V \\ <, > = obt \quad prod. \\ \end{cases} \\ \overbrace{\mathbf{x}}_{1} = \underbrace{\mathsf{Sprn}\left\{\overrightarrow{w}_{1}, \quad \overrightarrow{w}_{2}\right\}}_{1} \subset V \\ \overbrace{\mathbf{x}}_{2} = \underbrace{\mathsf{Sprn}\left\{\overrightarrow{w}_{1}, \quad \overrightarrow{w}_{2}\right\}}_{1} \subset V \\ \overbrace{\mathbf{x}}_{1} = \underbrace{\mathsf{Sprn}\left\{\overrightarrow{w}_{1}, \quad \overrightarrow{w}_{2}\right\}}_{1} = \underbrace{\mathsf{Sprn}\left\{\overrightarrow{w}_{1}, \quad \overrightarrow{w}_{2}\right\}}_{2} =$$

 $\underline{E}: \cdot \underline{f} \langle \vec{v}, \vec{w} \rangle = 0$, $\langle \vec{v}, \vec{w} \rangle = 0$, then

 $\langle \vec{V}, \vec{X_1 W_1} + X_1 \vec{W_2} \rangle = 0$.

$$\begin{cases} x_{1}\overline{b} + -t\overline{y}\overline{b} \end{bmatrix} \stackrel{\text{def}}{=} x_{1}; \\ \end{cases}$$
Theorem 25. Let S be a subset of V. Let W = Span(S), then
() $\stackrel{\text{S}^{\perp}}{=} W^{\perp}$ is a subset of V. Let W = Span(S), then
() $\stackrel{\text{S}^{\perp}}{=} W^{\perp}$ is a subspace of V.
(e) $(W^{\perp})^{\perp} = W$
(f) dim W + dim W^{\perp} = dim V
(f) $W \cap W^{\perp} = f\overline{\partial}$ $\overline{u} \in W$ $\overline{u} \in W^{\perp}$
(g) $\overline{w} \cap W^{\perp} = f\overline{\partial}$ $\overline{u} \in W$ $\overline{u} \in W^{\perp}$
(f) $\overline{W} \cap W^{\perp} = f\overline{\partial}$ $\overline{u} \in W$ $\overline{u} \in W^{\perp}$
(g) $\overline{W} \cap W^{\perp} = f\overline{\partial}$ $\overline{u} \in W$ $\overline{w} \in W^{\perp}$
(g) $\overline{W} \cap W^{\perp} = f\overline{\partial}$ $\overline{u} \in W$ \overline{W}^{\perp}
(g) $\overline{W} \cap W^{\perp} = f\overline{\partial}$ $\overline{u} \in W$ \overline{W}^{\perp}
(g) $\overline{W} \cap W^{\perp} = f\overline{\partial}$ $\overline{u} \in W^{\perp}$
(g) $\overline{W} \cap W^{\perp} = f\overline{\partial}$ \overline{W}^{\perp}
(g) $\overline{W} \cap W^{\perp} = f\overline{\partial}$
(g) $\overline{W} \cap W^{\perp} = f\overline{$

4. Gram-Schmidt process and QR-factorization

The **Gram-Schmidt process** is an algorithm that produces an orthogonal (or orthonormal) basis for any subspace W of V by starting with any basis for W.

Theorem 28 (Gram-Schmidt (Orthogonalize)). Let W be a subspace of V and let
$$\vec{b}_1, \dots, \vec{b}_p$$
 be a basis for W. Define vectors $\vec{v}_1, \dots, \vec{v}_p$ as
(1) $\vec{V}_1 = \vec{b}_1$
(2) $\vec{V}_1 = \vec{b}_2 - \langle \vec{b}_1, \vec{V}_1 \rangle \vec{V}_1$
(3) $\vec{V}_p = \vec{b}_2^{-1} = \vec{b}_2 - \langle \vec{b}_2, \vec{V}_1 \rangle \vec{V}_1$
(5) $\vec{V}_p = \vec{b}_2^{-1} = \vec{b}_p - \langle \vec{b}_2, \vec{V}_1 \rangle \vec{V}_1 - \langle \vec{b}_2, \vec{V}_1 \rangle \vec{V}_2 - \cdots \langle \vec{b}_r, \vec{V}_{rr} \rangle \vec{V}_r$
(7) $\vec{V}_p = \vec{b}_p^{-1} = \vec{b}_p - \langle \vec{b}_2, \vec{V}_1 \rangle \vec{V}_1 - \langle \vec{V}_r, \vec{V}_2 \rangle \vec{V}_r - \cdots \langle \vec{V}_r, \vec{V}_r \rangle \vec{V}_r$
(7) Then $\{\vec{V}_1, \vec{V}_2, \cdots, \vec{V}_p\}$ is an orthogonal basis for W
Theorem 29 (Gram-Schmidt (Normalize)). If $\{\vec{v}_1, \dots, \vec{v}_p\}$ is an or-

Theorem 29 (Gram-Schmidt (Normalize)). If
$$\{v_1, \ldots, v_p\}$$
 is an or-
thogonal basis for W , then
$$\begin{cases}
\overline{V_i} \\ \overline{V_i}$$

Basis $\xrightarrow{\text{orthogonalize}}$ Orthogonal basis $\xrightarrow{\text{normalize}}$ Orthonormal basis.

$$\begin{array}{c} \underline{\operatorname{Inner}} \operatorname{preduct} \operatorname{space} & \bigvee_{, \pm, \operatorname{soder}} \operatorname{pred}, \swarrow_{, \times} \\ & \underbrace{\operatorname{Orthogenv}}_{i} \operatorname{best} \operatorname{forthonormal}}_{i} \operatorname{best}_{i} \operatorname{forthonormal}}_{i} \operatorname{forthoormal}}_{i} \operatorname{forthoormal}}_{i} \operatorname{fo$$

$$\begin{array}{c} \overline{(l_{i}H)=1} & \|\overline{(l_{i}H)}\|_{1}^{2} = \sqrt{(l_{i}H)}, \overline{(l_{i}H)} \\ = \int_{0}^{1} dt \\ = \int_{0}^{1} |dt \\ = \int_{0}^{1}$$

)

$$\begin{aligned} f(t) &= a_0 + a_1 \text{ shart} + b_1 \text{ abart} + \cdots \\ P_{W}^{n} \quad f(t) &= 4a_1 \text{ shart} + b_n \text{ abarrat} + \cdots \\ a_0 &= 4a_1 \text{ shart} + b_n \text{ abarrat} + \cdots \\ a_0 &= 4a_1 \text{ shart} + b_1 \text{ abarrat} + \cdots \\ a_0 &= 2a_1 \text{ shart} + b_1 \text{ abarrat} + \cdots \\ a_0 &= 2a_1 \text{ shart} + b_1 \text{ abarrat} + \cdots \\ a_0 &= 2a_1 \text{ shart} + b_1 \text{ abarrat} + \cdots \\ a_0 &= 2a_1 \text{ shart} + b_1 \text{ abarrat} + \cdots \\ a_0 &= 2a_1 \text{ shart} + b_1 \text{ abarrat} + \cdots \\ a_0 &= 2a_1 \text{ shart} + b_1 \text{ abarrat} + \cdots \\ a_0 &= 2a_1 \text{ shart} + b_1 \text{ shart} + b_1 \text{ abarrat} + \cdots \\ a_0 &= 2a_1 \text{ shart} + b_1 \text{ shart} + b_1 \text{ abarrat} + \cdots \\ a_0 &= 2a_1 \text{ shart} + b_1 \text{ sh$$

Green Schmidt

$$\int (\overline{b}_{1} = \overline{b}_{1} = 1)$$

$$(\overline{b}_{2} = \overline{b}_{1} - \frac{(\overline{b}_{1}, \overline{b}_{1})}{\sqrt{v_{1}}, \overline{v_{1}}}, \overline{v_{1}} = t - \frac{\int_{0}^{1} t dt}{\int_{0}^{1} 1 dt} 1 = (t - \frac{1}{2})$$

$$(\overline{b}_{2} = \overline{b}_{1} - \frac{(\overline{b}_{1}, \overline{b}_{1})}{\sqrt{v_{1}}, \overline{v_{1}}}, \overline{v_{1}} = \frac{(\overline{b}_{1}, \overline{b}_{2})}{\sqrt{v_{1}}, \overline{v_{1}}}, \overline{v_{2}}$$

$$= t^{2} - \frac{1}{3} - \frac{y_{12}}{y_{12}}(t - \frac{1}{2}) = (t^{2} - t + \frac{1}{6})$$

$$= \int_{0}^{1} (t - \frac{1}{2}) t^{2} - t + \frac{1}{6} \quad \text{is an orthogonal boss for } P_{2}$$

$$(\vec{u}_{1} = 1) \vec{u}_{2} = \frac{t-t}{|t-t_{1}||} = \sqrt{12} (t-t_{2}) \vec{u}_{2} = \frac{\vec{u}_{2}}{|\vec{u}_{1}||} = \frac{t^{2}-t-t}{|\vec{u}_{1}||} = \sqrt{180} (t^{2}-t-t_{2}) (t^{2}-t-t_{2})^{2} dt$$

• subspace of \mathbb{R}^{n} • \langle , \rangle is det prod. QR-Factorization is the matrix version of Gram-Schmidt process for a subspace W of \mathbb{F}^n :

Basis
$$\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_p\} \xrightarrow{\text{orthogonalize}} \text{Orthogonal basis } \mathscr{V} = \{\vec{v}_1, \dots, \vec{v}_p\}$$

$$\xrightarrow{\text{normalize}} \text{Orthonormal basis } \mathscr{U} = \{\vec{u}_1, \dots, \vec{u}_p\}.$$

Theorem 30. Given a
$$n \times p$$
 matrix $M = [\vec{b}_1 \dots \vec{b}_p]$ with independent columns. There is a unique decomposition $M = QR$ when $R = QM = QM$ where, $Q = [\vec{u}_1, \dots, \vec{u}_p]$ has orthonormal columns and R is an $p \times p$ upper triangular matrix with $r_{ii} = ||\vec{v}_i||$ for $i = 1, \dots, p$ and $r_{ij} = \langle \vec{u}_i, \vec{b}_j \rangle$ for $i < j$.

Proof. Proof(for p = 3): From Gram-Schmidt process, write \vec{b}_i as linear combinations of \vec{u}_i .

$$\vec{b}_{1} = \vec{v}_{1} = ||\vec{v}_{1}||\vec{u}_{1}$$

$$\vec{b}_{2} = \vec{v}_{2} + \frac{\langle \vec{b}_{2}, \vec{v}_{1} \rangle}{||\vec{v}_{1}||^{2}} \vec{v}_{1} = ||\vec{v}_{2}||\vec{u}_{2} + \langle \vec{b}_{2}, \vec{u}_{1} \rangle \vec{u}_{1}$$

$$\vec{b}_{3} = \vec{v}_{3} + \frac{\langle \vec{b}_{3}, \vec{v}_{1} \rangle}{||\vec{v}_{1}||^{2}} \vec{v}_{1} + \frac{\langle \vec{b}_{3}, \vec{v}_{2} \rangle}{||\vec{v}_{2}||^{2}} \vec{v}_{2} = ||\vec{v}_{3}||\vec{u}_{3} + \langle \vec{b}_{3}, \vec{u}_{1} \rangle \vec{u}_{1} + \langle \vec{b}_{3}, \vec{u}_{2} \rangle \vec{u}_{2}$$
So,
$$[\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}] = [\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}] \begin{bmatrix} ||\vec{v}_{1}|| & \langle \vec{u}_{1}, \vec{b}_{2} \rangle & \langle \vec{u}_{1}, \vec{b}_{3} \rangle \\ 0 & ||\vec{v}_{2}|| & \langle \vec{u}_{2}, \vec{b}_{3} \rangle \\ 0 & 0 & ||\vec{v}_{3}|| \end{bmatrix}$$

· An nxn mothix A is orthogone prel. $= |T_A(\vec{x})| = |\vec{x}|| \quad for all \vec{x} \in \mathbb{R}^n \text{ with observed}$ $\iff ||A\vec{x}|| = ||\vec{x}|| \qquad fr \quad a||\vec{x} \in \mathbb{R}^{n}$ $\langle A\overline{X}, A\overline{Y} \rangle = \langle \overline{X}, \overline{Y} \rangle$ for $m \times \overline{X}, \overline{Y} \in \mathbb{R}^{2}$ Columns of A, Sai, ..., and is orthonormal besis for mentioned and the second design of th $\mathbf{r} = \mathbf{a}_{i} \cdot \mathbf{a}_{j} = \begin{cases} \mathbf{a}_{i} \cdot \mathbf{a}_{j} = \end{cases} \\ \mathbf{a}_{i} \cdot \mathbf{a}_{j} = \begin{cases} \mathbf{a}_{i} \cdot \mathbf{a}_{j} = \end{cases} \\ \mathbf{a}_{i} \cdot \mathbf{a}_{j} = \end{cases} \end{cases}$ if i≠j $A^T A = I$ $A^T = A^{-1}$ · { b, ... b } is an orthonormal set in R $B = [\overline{b_1} \cdots \overline{b_p}]$ NXP methic Ssti)fy

nxn matrix.

5. Orthogonal Transformations and Orthogonal Matrices

Let V be a inner product space.

Definition 31. A linear transformation $T: V \to V$ is called **orthogonal** if $||T(\vec{x})|| = ||\vec{x}||$ for all $\vec{x} \in V$

that is, T preserves the length of vectors.

Example 32. Whether or not the following transformations are orthogonal.

(1.) Rotations $S : \mathbb{R}^2 \to \mathbb{R}^2$ are orthogonal transformations.

The matrix of rotation $S = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.

(2.) Reflections $R : \mathbb{R}^2 \to \mathbb{R}^2$ are orthogonal transformations.

The matrix of reflection matrix $R = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$ with $a^2 + b^2 = 1$ is orthogonal.

(3.) Orthogonal projections $P:\mathbb{R}^2\to\mathbb{R}^2$ are NOT orthogonal transformations.

The matrix of an orthogonal transformation $T : \mathbb{F}^n \to \mathbb{F}^n$ is called an **orthogonal matrix**.

Theorem 33. Let U be an $n \times n$ orthogonal matrix and let \vec{x} and \vec{y} be any vectors in \mathbb{F}^n . Then (1) $||U\vec{x}|| = ||\vec{x}||$. (2) $\langle U\vec{x}, U\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$. (3) $\langle U\vec{x}, U\vec{y} \rangle = 0$ if and only if $\langle \vec{x}, \vec{y} \rangle = 0$. **Proposition 34.** U is an orthogonal matrix if and only if $\langle U\vec{x}, U\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ for any \vec{x} and \vec{y} in \mathbb{R}^n .

Using the geometric meaning of the orthogonal transformation, we have

Theorem 35. 1. If A is orthogonal, then A is invertible and A⁻¹ is orthogonal.
2. If A and B are orthogonal, then AB is orthogonal.

Theorem 36. The $n \times n$ matrix U is orthogonal if and only if $\{\vec{u}_1, \ldots, \vec{u}_n\}$ is an orthonormal set.

Application to real matrix A.

Recall the transpose of a matrix: Given an $m \times n$ matrix A, we define the **transpose matrix** A^T as the $n \times m$ matrix whose (i, j)-th entry is the (j, i)-th entry of A. The dot product can be written as matrix product

$$\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$$

Theorem 37. The $n \times n$ matrix A is orthogonal if and only if $A^T A = I_n$; if and only if $A^{-1} = A^T$.

