Northeastern University, Department of Mathematics

MATH 4570 - Matrix Methods in Data Analysis and Machine Learning

• Instructor: He Wang Email: he.wang@northeastern.edu

§4. Bases and dimension

CONTENTS

1.	Linear Independence	1
2.	Basis of a vector space	3
3.	The Dimension of a Subspace	5
4.	Basis of Null space and range	8

An infinite subset W of a vector space V is said to be <u>linearly independent</u> if all finite subsets of W are linearly independent. $\begin{cases} 1, \ell, \ell, \ell, \ell, \ell, \dots, \ell^{1}, \dots, \ell^{1$ We say a vector (\vec{v}_i) (for $i \ge 2$) is **redundant** if it is a linear combination of the preceding vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_{i-1}\}$. $(\vec{v}_i) = c_i \vec{v}_i + c_{i-1} \vec{v}_{i-1}$

Proposition 2. Suppose \vec{v}_i is <u>redundant</u> in $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Then $\left\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}\right\} = \left\{\vec{v}_1, \dots, \vec{v}_p\right\}$

Proposition 3. • Suppose v₁ ≠ 0. The set {v₁, v₂,..., v_p} is independent if and only if none of them is redundant.
• If the set {v₁,..., v_p} of vectors contains the zero vector 0, then it is linearly dependent.
• If a subset of the set {v₁, ..., v_p} is linearly dependent, then {v₁,..., v_p} is dependent.

Example 4. (1) A set $\{\vec{v}\}$ is linearly dependent if and only if $\vec{v} = \vec{o}$ (2) A set $\{\vec{u}, \vec{v}\}$ is linearly dependent if and only if $\vec{v} = c \vec{u} \quad \text{or} \quad \vec{c} = c \vec{v}$.

 $[\vec{u}_1 \cdots \vec{u}_p] = A$

ln 🏴

Proposition 5. The set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\} \subset \mathbb{F}^n$ is independent if and only if $\forall Gh \not A = \rho$

Proposition 6. If p > n, then a set $\{\vec{v}_1, \ldots, \vec{v}_p\}$ of vectors in \mathbb{F}^n is linearly dependent.

 $\underline{\mathbf{5}_{x2}}: \quad \chi_1(t^2 + t + 1) + \eta_1(t + 1) + \chi_1 2 = \mathbf{0}$ $(t)X_1 + t(X_1 + X_1) + (X_1 + X_1 + 2X_3) = 0$ Exj $\pi_{1} \begin{vmatrix} 1 & 2 \\ 3 & \chi \end{vmatrix} + \chi_{2} \begin{vmatrix} 2 & 7 \\ \varphi & \Gamma \end{vmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & p \end{bmatrix}$

2. Basis of a vector space

Let V be vector space over \mathbb{F} .

Definition 7. A subset
$$B = \{\vec{b}_1, \dots, \vec{b}_n\}$$
 of V is called a basis for V if
 $0 \quad \bigvee = \underbrace{\sum_{i=1}^{n} \{\vec{b}_i \cdots \vec{b}_n\}}_{i=1}^{n} \underbrace{\sum_{i=1}^{n} (\vec{b}_i)}_{i=1}^{n} \underbrace{\sum$

3. The Dimension of a Subspace

For a finite-dimensional vector space V, it has many different bases. However, they contain some common properties.

Theorem 14. If
$$\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_p\}$$
 and $\mathscr{D} = \{\vec{d}_1, \dots, \vec{d}_m\}$ are two bases
for V then $(p = m)$.
For $V \leq p \leq kt \in \mathcal{C}\} = \{a_i^{out} \in e^{it} \mid a_i \in \mathcal{C}\}$
Ex: $P = \{a \parallel p \mid p \mid a_m m \mid_{1}\}$ $\underbrace{\{1, t, t, \cdot, -t, t, t'', \cdots \}}_{\text{bill}}$
Definition 15 (The Dimension of a Vector Space). The dimension of
a vector space V is defined as
 $d_m \setminus U = \# \{a, bos\}, f_P \setminus I\}$
 $? R = \{1, t, t'\}$ is a bash f_P . $d_P(P_2) = 3$
 $: R^{2m} = \{\begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix} \\ d_P(P_1) = f_P + \begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix} = 0$
Theorem 16. Suppose $\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_p\}$ is a basis for V .
(1) Any set of more than p vectors is linearly dependent.
(2) Any set of less than p vectors can not span V .
 $d_P(P_2) = 0$
Theorem 17 (The Basis Theorem). Let V be a vector space with
 $\dim(V) = \mathbb{P} \ge 1$.
 $f_P = \{\vec{a}_1, \dots, \vec{p}_p\}$, then $\{\vec{m}_1 \dots \vec{m}_p\}$ is a bash $f_P \setminus V$.
 $f_P = \{a_1 + a_1 + a_1 \mid a_1 \in \mathbb{P}\}$ $d_P R = 3$
 $i \{f + t + l, t+l, 2\} \in bosh f_P R = 3$
 $i \{f + t + l, t+l, 2] \in bosh f_P R = 3$

Theorem 21. Suppose V is a finite dimensional and U_1, \ldots, U_p are subspaces of V such that $V = U_1 + \cdots + U_p$ and $\dim V = \dim U_1 + \cdots + \dim U_p$. Then $V = U_1 \oplus \cdots \oplus U_p$.

Let
$$T: V \to W$$
 be a linear transformation.
 $\cdot \frac{Yank}{R} = \frac{1}{2} \lim_{n \to \infty} \frac{1}{$

$$T_{A} \xrightarrow{:} \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \qquad A^{=} \left[\overrightarrow{\alpha_{1}} \cdots \overrightarrow{\alpha_{n}} \right]$$

Theorem 23 (Basis for im(A)). A basis for the image im(A) is given by the pivot columns of A. In particular, dim(im A) = rank A.

$$\overline{\chi} = \varsigma_1 \overline{V_1} + \varsigma_2 \overline{V_2} + \cdots + \varsigma_q \overline{V_p}$$

Theorem 24 (Basis for ker(A)). Let A be an $m \times n$ matrix. Solve the matrix equation $A\vec{x} = \vec{0}$. Write \vec{x} as a linear combination of vectors $\vec{v}_1, \ldots, \vec{v}_p$ with the weights corresponding to the free variables. Then $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is a basis for ker(A).

Proposition 25 (The Dimensions of ker(A) and im(A)). Let A be an $m \times n$ matrix. Then, $\dim(\ker(A)) + \dim(\operatorname{im}(A)) = n.$ rachA

Proposition 26. Let A be an $n \times n$ square matrix. A is *invertible*, if and only if $\dim(U+V) = \dim(U+\dim V) - \dim(U)$ · Bessi for UtV, U, V are easy. $\underbrace{E_X}: U = \operatorname{Spend} \underbrace{\overrightarrow{u_1} \cdots \overrightarrow{u_2}}_{= \operatorname{in} A} \quad V = \operatorname{Spend} \underbrace{\overrightarrow{u_1} \cdots \overrightarrow{u_2}}_{= \operatorname{in} B}.$ $q \vec{u}_1 + q \vec{u}_2 = d_1 \vec{v}_1 + d_1 \vec{v}_2$ · Resis for UNV = }= }= | EKU and EVE

 $\mathcal{U} = \operatorname{Spen} \left\{ \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix}$ $(\hat{D}\vec{u}_{1} + \hat{D}\vec{u}_{2}) \in (\hat{D}\vec{v}_{1} \in (\hat{D}\vec{v}_{2}) = \vec{0})$ $\mathcal{M} = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & -\vec{v}_1 & -\vec{v}_2 \end{bmatrix}$ $M = \frac{221}{222} \rightarrow mefm = 1$ $\overline{\chi} = \chi_{4} \begin{bmatrix} c_{1} \\ c_{2} \\ d_{1} \\ d_{2} \end{bmatrix}$ $slu f (M\bar{x}=\bar{d})$ $\mathcal{U}(\mathcal{U}) = \left\{ \mathcal{U}(\mathcal{U}) + \mathcal{U}(\mathcal{U}) \right\}^{2}$ $DY \equiv \left\{ \left. \mathcal{A} \right\| \left(d_{1}\overline{V_{1}} + d_{1}\overline{V_{0}} \right) \right\}$

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$ $\overline{V} = \alpha_0 + \alpha_1 t + \alpha_1 t^2 / \dots$ liher map: W $\frac{\sqrt{C}}{R^{s}} \xrightarrow{C} \sqrt{R^{s}}$ 1 (w)_{Bu} $\left[\vec{V}\right]_{B_{i}}$ motrix Exs