Northeastern University, Department of Mathematics
MATH 4570 - Matrix Methods in Data Analysis and Machine Learning

- Instructor: He Wang

Email: he.wang@northeastern.edu

§4. Bases and dimension

Contents

1. Linear Independence
2. Basis of a vector space
3. The Dimension of a Subspace
4. Basis of Null space and range

1. Linear Independence

Let $\left[\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right]$ be vectors in a vector space V.
Definition 1. • The set of vectors $\vec{v}_{1,}, \because, \vec{v}_{p}$ in V is said to be (linearly) independent if
(x) $x_{1} \overrightarrow{v_{1}}+\cdots+x_{p} \overrightarrow{v_{p}}=\overrightarrow{0}$ only has tribal solution $\vec{x}=\overrightarrow{0}$.

- The set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is said to be (linearly) dependent if there is a non-tanul sola $\vec{x}=\vec{C}$ for (A).
$c_{1} \vec{V}_{1}+\cdots+c_{p} \vec{V}_{\rho}=\overrightarrow{0}$ is the depenclese relation.
An infinite subset W of a vector space V is said to be linearly independent if all finite subsets of W are linearly independent.

$$
\begin{aligned}
& \text { beets of } W \text { are linearly independent. }\} \text { for vector spec of } \\
& \left\{1, t, t^{2}, t^{\prime}, \cdots, t^{n}, \cdots\right\} \text { al plynumnods. }
\end{aligned}
$$

We say a vector $\left(\overrightarrow{v_{2}} \hat{i}\right.$ (for $\left.i \geq 2\right)$ is redundant if it is a linear combination of the preceding vectors $\left\{\underline{\left.\vec{v}_{1}, \vec{v}_{2}, \ldots, \overrightarrow{v_{i-1}}\right\} . \quad \overrightarrow{v_{i}}}=c_{1} \overrightarrow{v_{1}}+\ldots+c_{i-1} \vec{v}_{i-1}\right.$

Proposition 2. Suppose \vec{v}_{i} is redundant in $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$. Then

$$
\operatorname{Span}\left\{\vec{v}_{1} \ldots \vec{v}_{p}\right\}=\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \hat{\vec{V}}_{i}, \ldots \vec{V}_{p}\right\}
$$

Proposition 3. - Suppose $\vec{v}_{1} \neq \overrightarrow{0}$. The set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is independent if and only if none of them is redundant.

- If the set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ of vectors contains the zero vector $\overrightarrow{0}$, then it is linearly dependent.
- If a subset of the set $\left\{\vec{v}_{1},(\ldots,) \vec{v}_{p}\right\}$ is linearly dependent, then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is dependent.

Example 4. (1) A set $\{\vec{v}\}$ is linearly dependent if and only if $\vec{V}=\overrightarrow{0}$
(2) A set $\{\vec{u}, \vec{v}\}$ is linearly dependent if and only if $\vec{V}=c \vec{u}$ or $\vec{u}=c \vec{V}$.

$$
\left[\begin{array}{lll}
\vec{u}_{1} & \cdots & \vec{u}_{p}
\end{array}\right]=A
$$

Proposition 5. The set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\} \subset \mathbb{F}^{n}$ is independent if and only if

$$
\operatorname{rank} A=P
$$

Proposition 6. If $p>n$, then a set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ of vectors in \mathbb{F}^{n} is linearly dependent.

Ex): $\left\{\underline{e}^{t}, \sin t\right\}$
$0: \mathbb{R} \rightarrow R$
$t \rightarrow 0$
for any $\quad x^{(x)} e^{t}+x_{2} \sin t=0$
$\left\{\begin{array}{l}x_{1}=0 \\ x_{1}=0\end{array}\right.$
Ex: $\quad x_{1}\left(t^{2}+t+1\right)+x_{2}(t+1)+x_{1} 2=0$

$$
\begin{array}{r}
\left(t^{2}\right) x_{1}+t\left(x_{1}+x_{2}\right)+\left(x_{1}+x_{2}+2 x_{3}\right)=0 \\
\left\{\begin{array} { l }
{ x _ { 1 } = 0 } \\
{ x _ { 1 } + x _ { 1 } = 0 } \\
{ x _ { 1 } + x _ { 2 } + 2 x _ { 1 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{1}=0
\end{array}\right.\right.
\end{array}
$$

Ex 3 $\quad x_{1}\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]+x_{2}\left[\begin{array}{ll}2 & 7 \\ 4 & 5\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

2. Basis of a vector space

Let V be vector space over \mathbb{F}.
Definition 7. A subset $B=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ of $\underline{\underline{V}}$ is called a basis for V if

$$
\begin{aligned}
& \text { (1) } V=\operatorname{Spn}\left\{\overrightarrow{b_{1}} \cdots \vec{b}_{n}\right\} \\
& \text { (2) }\left\{\vec{b}_{1} \cdots \overrightarrow{b_{n}} \mid\right. \text { is independent. }
\end{aligned}
$$

Example 8. Standard basis for \mathbb{R}^{n}

$$
\vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \ldots \vec{e}_{n}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

Example 9. Find a basis for the vector space M_{2} of all 2×2 matrices.

$$
\begin{array}{r}
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right.
\end{array}
$$

Example 10. Find a basis for the vector space P_{2} of all polynomials of degree ≤ 2.

$$
\left\{1, t, t^{2}\right\}
$$

$V=\left[\vec{r}_{1} \cdots \vec{v}_{n}\right]$

- Theorem 11. If $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{0}\right\}$ is independent, and $V=$ Span\{ $\left.\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{\text {ma }}\right\}$, then $w=\left[\vec{w}_{1} \cdots \vec{w}_{b}\right] \quad n \leqslant m$.
$N \subset \mathbb{R}^{3}$

$$
\vec{V}_{i}=a_{i}, \vec{w}_{1}+\cdots+\vec{a}_{i_{m}} \vec{W}_{m} \quad \text { for } i=1, \cdots, n
$$

$$
\begin{aligned}
& V=W A \\
& s \times n \quad 5 \times m \quad m \times n \\
& n=r_{\operatorname{ank}}=\underline{=} \leqslant \operatorname{ran}(W A) \leqslant A \\
& \int_{\operatorname{rank}(M N)} \leqslant \min \{\operatorname{rank} M, \operatorname{rank} N\}
\end{aligned}
$$

Theorem 12 (Spanning Set Theorem). Let V be a vector space and let $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ be a subset of V with $\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}=H$.

- If one of the vectors in S, say \vec{v}_{k}, is a linear combination of the remaining vectors in S, then the set $S-\left\{\vec{v}_{k}\right\}$ still spans H,

$$
H=\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k-1}, \vec{v}_{k+1}, \ldots, \vec{v}_{p}\right\}
$$

- If $H \neq\{\overrightarrow{0}\}$ then some subset of S is a basis for H

Proposition 13. (1) Every spanning set of a finite-dimensional vector space can be reduced to a basis.
(2) Any finite-dimensional vector space has a basis.
(3) Any independent set in a finite-dimensional vector space can be extended to a basis.

3. The Dimension of a Subspace

For a finite-dimensional vector space V, it has many different bases. However, they contain some common properties.

Theorem 14. If $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$ and $\mathscr{D}=\left\{\vec{d}_{1}, \ldots, \vec{d}_{m}\right\}$ are two bases for V, then $p=m$.
Ex: V: $\operatorname{Span}\left\{\sin t, e^{t}\right\}=\left\{a_{1}^{\text {suntan }} E X: \quad P=\{, \| l l\right.$ plynominls $\}\left\{1, t, t^{2}, \cdots, t^{n}, t^{n+1}, \ldots\right]$
basis $\left\{\right.$ silt, $\left.e^{t}\right] \quad$ ant $=2$
Definition 15 (The Dimension of a Vector Space). The dimension of a vector space V is defined as

$$
\operatorname{dim} V=\#\{a \text { bess is for } V\}
$$

- $P_{2} \quad\left\{1, t, t^{2}\right\}$ is a hess for $P_{2} . \quad \operatorname{dm}\left(P_{2}\right)=3$
- $\mathbb{R}^{2 \times 2} \quad\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \cdots\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right] \quad \operatorname{dim}\left(\mathbb{R}^{2 \times 2}\right)=4$.

Lemma 16. Suppose $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{\mathbb{D}}\right\}$ is a basis) for V.
(1) Any set of more than p vectors is linear y dependent.
(2) Any set of $\overline{\text { less }}$ than \bar{p} vectors can not span V.

$$
\operatorname{dim}\{\overrightarrow{0}\}=0
$$

Theorem 17 (The Basis Theorem). Let V be a vector space with $\operatorname{dim}(V)=\mathbb{D} \geq 1$.

- If $\vec{B}_{B}=\left\{\vec{v}_{1} \cdots \vec{v}_{p}\right\}$ is independent, then B is a basil for V.
- If $V=\operatorname{San}\left\{\vec{m}_{1,}, \overrightarrow{w_{p}}\right\}$, then $\left\{\vec{w}_{1} \cdots \vec{w}_{p}\right\}$ is a basil for V.

$$
\begin{aligned}
& \text { Ex: } P_{2}=\left\{\underline{a_{0}+a_{1} t+a_{i} t^{2}} \mid a_{i} \in \mathbb{R}\right) \quad \text { dim } P_{2}=3 \\
& I_{\}}\left\{t^{\prime}+t+1, t+1,2\right] \text { a basis for } P_{2} ? \text { Yes }
\end{aligned}
$$

Theorem 18. Let U be a subspace of a finite-dimensional space V. There is a subspace W such that $V=U \oplus W$.

- Start fou a bess of U, then expanded it to a bess of V

$$
\left\{b_{1} \cdots b_{s}\right\}
$$

$$
\left\{b_{1} \cdots b_{3}, b_{3+1} \cdots b_{n}\right\}
$$

$E x: V=\mathbb{R}^{\}} \quad U=a$ plane. $\quad W=\operatorname{Span}_{\text {an }}\left\{b_{\text {sit }} \cdots b_{n}\right\}$
Theorem 19. Let U and V be subspaces of a finite-dimensional space. ${ }^{\text {on d }}$
Then

$$
\operatorname{dim}(U+V)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V) \text { bess is had." }
$$

- Corollary 20. Let U and W be subspaces of an n-dimersional space (V.) Suppose $\operatorname{dim} U+\operatorname{dim} W=n$ and $U \cap W=\{\overrightarrow{0}\}$, then

$$
V=U \oplus W \quad T_{h m}^{\Leftrightarrow} V=u+W \text { and } u n W=\{\overrightarrow{0}\rangle
$$

Theorem 21. Suppose V is a finite dimensional and U_{1}, \ldots, U_{p} are subspaces of V such that $V=\left(U_{1}\right)+\cdots+U_{p}$ and $\operatorname{dim} V=\operatorname{dim} U_{1}+\cdots+$ $\operatorname{dim} U_{p}$. Then $V=U_{1} \oplus \cdots \oplus U_{p}$.

$$
\begin{gathered}
\vec{V}=\vec{u}_{1}+\cdots+\vec{U}_{p} \\
\leqslant \\
\stackrel{\rightharpoonup}{w_{1}}+\cdots+\cdots
\end{gathered}
$$

$$
\vec{v}=\vec{u}_{1}+\vec{u}_{n}+\stackrel{\rightharpoonup}{0}
$$

veter spore 4. Basis of Null space and range
Let $T: V \rightarrow \stackrel{\rightharpoonup}{W}$ be a "linear' transformation.

$$
\begin{aligned}
& \text { - } \underline{\operatorname{rank} T}:=\operatorname{dim}(\operatorname{im} T) \\
& \text { - nu \|i+y } T:=\operatorname{dim}(\operatorname{ker} T)
\end{aligned}
$$

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

rank_nulli+y, the_ nullity $T:=\operatorname{dim}(\operatorname{ker} T)$
Theorem 22. Let $T: V \rightarrow W$ be a linear transformation.
$\operatorname{dim} V=\operatorname{rank} T+$ nullity T

- Start from a basin of , extend to be a basis of V. $\left\{\vec{u}_{1} \cdots \vec{u}_{p}\right\} \xlongequal{ }\left\{\vec{u}_{1} \ldots \vec{u}_{p} \vec{b}_{1} \cdots \vec{b}_{m}\right\}$
- Check $\left\{T\left(\vec{b}_{1}\right) \cdots T\left(\overrightarrow{b_{n}}\right)\right\}$ is (basis) $\}$ or in $T .10$ indelenelem Let A be an $m \times n$ matrix. The linear transformation defined by A is is $\left.^{(}\right)=5 p_{2}\{-7$

Theorem 23 (Basis for $\operatorname{im}(A)$). A basis for the image $\operatorname{im}(A)$ is given by the pivot columns of A. In particular, $\operatorname{dim}(\operatorname{im} A)=\operatorname{rank} A$.

$$
\vec{X}=s_{1} \vec{V}_{1}+s_{2} \vec{V}_{v}+\cdots+s_{p} \vec{V}_{p}
$$

Theorem 24(Basis for $\operatorname{ker}(A))$. Let A be an $m \times n$ matrix. Solve the matrix equation $A \vec{x}=\overrightarrow{0}$. Write \vec{x} as a linear combination of vectors $\vec{v}_{1} \ldots, \vec{v}_{p}$ with the weights corresponding to the free variables. Then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a basis for $\operatorname{ker}(A)$.

Proposition 25 (The Dimensions of $\operatorname{ker}(A)$ and $\operatorname{im}(A)$). Let A be an $m \times n$ matrix. Then,

$$
\left.\operatorname{dim}(\operatorname{ker}(A))+\operatorname{sim}_{\text {ran }}^{\operatorname{dim}(A)}\right)=n .
$$

Proposition 26. Let A be an $n \times n$ square matrix. A is invertible, if and only if \qquad

- $\operatorname{dim}(U+V)=\underline{\operatorname{dim} u+\operatorname{dim} V}-\operatorname{dim}(U \cap V)$
- Resistor U+V, U, V are easy.

$$
\operatorname{Sppen}\left\{_{11}^{u_{1}} \cdots \vec{u}_{s} \vec{b}_{i}^{\prime} \cdots \cdot \vec{V}_{t}\right)
$$

$$
\text { Ex: } U=\underline{\operatorname{Sper}\left\{\vec{u}_{1} \cdots \vec{u}_{z}\right\}} \quad V=\underline{\operatorname{Span}\left\{\vec{v}_{1} \cdots \vec{v}_{t}\right\}} \subset \mathbb{R}^{n}
$$

$$
=\operatorname{in} A
$$

$$
=\operatorname{im} B .
$$

$$
c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}=d_{1} \vec{v}_{1}+d_{2} \vec{v}_{v}
$$

$$
\begin{aligned}
& \text { (C) } \overrightarrow{u_{1}}+\vec{c}_{2} \vec{u}_{0} \in \text { (6) } \overrightarrow{v_{1}} \in\left(\operatorname{CD} \vec{v}_{2}=\overrightarrow{0}\right. \\
& M=\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{v} & -\vec{v}_{1} & -\vec{v}_{v}
\end{array}\right] \\
& \left(\begin{array}{l}
\left(\begin{array}{l}
c_{1} \\
c_{1} \\
d_{l} \\
d_{l}
\end{array}\right) \in \operatorname{Ler} M
\end{array}\right. \\
& M=\left[\begin{array}{lllll}
0 & 2 & 1 & 1 \\
\hline 1 & 2 & 2 & 1 \\
2 & 2 & 2 & 2
\end{array}\right] \rightarrow \operatorname{rrefn}=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& 1 & \cdot \\
& & 1
\end{array}\right] \\
& \text { Solu fo } M \vec{x}=\overrightarrow{0} \quad \vec{x}=x_{4}\left[\begin{array}{l}
c_{1} \\
c_{2} \\
d_{l} \\
d_{l}
\end{array}\right] \\
& u \cap V=\left\{\begin{array}{lll}
c_{1} & \vec{u}_{1}+c_{1} \vec{u}_{v}
\end{array}\right\} ? \\
& o r=\left\{a l l d_{1} \vec{V}_{1}+d_{2} \overrightarrow{v_{v}}\right\}
\end{aligned}
$$

$\underline{E x_{i}} V=P_{2}=\left\{\underline{a_{0}+a_{1} t+a_{2} t^{2}} \mid a_{i} \in \mathbb{R}\right\}$

$$
b_{0}, k=\left\{1, t, t^{2}\right\}
$$

The: If $f_{b}=\left\langle\vec{b}_{1} \cdots \overrightarrow{b_{p}}\right]$ is a basis for V over x_{1} then any $\vec{v} \in V$

$$
\begin{aligned}
& \vec{v}=x_{1} \vec{b}_{1}+\cdots+x_{p} \vec{b}_{p} \text { exist and unique }
\end{aligned}
$$

The:

$$
\begin{aligned}
& \vec{\nabla}=a_{0}+a_{1} t+a_{2} t^{2} \mu \gg\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=[\vec{v}]_{B .} .
\end{aligned}
$$

- Mhear map: $V \xrightarrow{T} W_{\vec{\sigma}}$

