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1. Sum and scalar product

Definition 1. • The sum A + B of m⇥ n matrices A and B is

• The scalar product r · A of a scalar r 2 F and A is

1

 



Theorem 2. For n⇥m matrices A,B,C and scalar r, s, the following
hold.
(1) A + B = B + A;
(2) (A + B) + C = A + (B + C);
(3) A + 0 = A;
(4) A + (�A) = 0;
(5) r(A + B) = rA + rB;
(6) (r + s)A = rA + sA;
(7) r(sA) = (rs)A;
(8) 1A = A.

Geometric meanings of vectors:

Definition 3. A vector ~b in Fm is called linear combination of
~v1,~v2, . . . ,~vn in Fm if

~b = x1~v1 + x2~v2 + · · · + xn~vn



2. Matrix Product

• Product of a matrix A and a vector ~x 2 Fn.

Definition 4. The product of A and ~x defined to be

A~x =
⇥
~a1 ~a2 . . . ~an

⇤

2

664

x1

x2
...
xn

3

775 = x1~a1 + x2~a2 + · · · + xn~an.

The product of A and ~x can be computed as

A~x =

2

664

a11 a12 · · · a1n

a21 a22 · · · a2n
... ... ... ...

am1 am2 · · · amn

3

775

2

664

x1

x2
...
xn

3

775 =

2

6664

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

3

7775

Theorem 5 (Algebraic Rules for A~x). If A is an m⇥ n matrix, ~u
and ~v are vectors in Fn and c is a scalar, then
(1.) A(~u + ~v) = A~u + A~v

(2.) A(c~u) = c(A~u).

Definition 6. The dot product of two vectors

~u =

2

664

u1

u2
...
un

3

775 and ~v =

2

664

v1

v2
...
vn

3

775

is defined as
~u · ~v = u1v1 + u2v2 + · · · unvn



More generally, we can define the product of two matrices:

Definition 7. Let A be an m⇥ n matrix and B be a n⇥ p matrix.
Define the product of A and B, to be the m⇥ p matrix

AB := [A~b1 A~b2 . . . A~bp]

• The Row-Column Rule for Computing A · B

The (i, j)-th entry of AB is

nX

k=1

aikbkj = ai1b1j + ai2b2j + · · · + ainbnj,

which equals the dot product of the i-th row of A with the j-th column of B

Theorem 8 (Properties of Matrix Multiplication). Let A be an m ⇥ n

matrix, and let B and C be matrices for which the indicated operations
are defined. Let In denote the n⇥ n identity matrix.
• A(BC) = (AB)C.
• A(B + C) = AB + AC.

• (A + B)C = AC + BC.

• r(AB) = (rA)B where r is any scalar.
• ImA = A = AIn.

Proof.

[A(BC)]ij =
nX

k=1

aik(BC)kj =
nX

k=1

aik

 
pX

l=1

bklclj

!
=

nX

k=1

pX

l=1

aikbklclj

[(AB)C]ij =
pX

l=1

(AB)ilclj =
pX

l=1

 
nX

k=1

aikbkl

!
clj =

pX

l=1

nX

k=1

aikbklclj =
nX

k=1

pX

l=1

aikbklclj

So, A(BC) = (AB)C. ⇤



Example 9. AB =


1 2
3 4

� 
1 1
0 1

�
6= BA

AB =


0 1
0 0

� 
1 2
3 4

�
=


0 1
0 0

� 
0 0
3 4

�
= AC

AB =


0 1
0 0

� 
3 4
0 0

�
=


0 0
0 0

�

Definition 10. If A is an n⇥ n matrix. We define the k-th power of A
as

A
k = A · A · · · · · A| {z }

k factors

.

Example 11. Calculate X2, X3, X4, ... for the following matrices

A =

"
1
2

1
2

1
2

1
2

#
B =


1 1

0 1

�
C =

2

4
0 1 2
0 0 3
0 0 0

3

5 D =

2

4
1 0 0
0 2 0
0 0 3

3

5



3. Gauss-Jordan Elimination

Go back to matrix [A | ~b].

The leftmost nonzero entry of a row is called leading entry(or pivot).

Definition 12. A matrix is in row-echelon form (ref) if
(1.) All entries in a column below a leading entry are zeros.
(2.) Each row above it contains a leading entry further to the left.
A matrix is in reduced row-echelon form (rref), if it satisfies (1)
(2) and
(3.) The leading entry in each nonzero row is 1.
(4.) All entries in a column above a leading entry are zeros.

Condition 2 implies that all zero rows are at the bottom of the matrix.

One example of ref, (⌅ : non-zero number, ⇤ any number) and one example
of rref

ref =

2

66664

⌅ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 ⌅ ⇤ ⇤ ⇤
0 0 0 ⌅ ⇤ ⇤
0 0 0 0 ⌅ ⇤
0 0 0 0 0 0

3

77775
! · · · ! rref =

2

66664

1 ⇤ 0 0 0 ⇤
0 0 1 0 0 ⇤
0 0 0 1 0 ⇤
0 0 0 0 1 ⇤
0 0 0 0 0 0

3

77775

Examples.

2

4
1 2 3 4 5
0 0 1 4 5
0 0 1 0 5

3

5,

2

4
0 2 3 4 5
0 0 0 0 0
0 0 1 0 5

3

5,

2

4
0 0 3 4 5
0 1 0 0 0
0 0 1 0 5

3

5

2

4
1 2 0 4 5
0 0 1 4 5
0 0 0 1 5

3

5,

2

4
0 1 0 4 0
0 0 1 7 0
0 0 0 0 5

3

5



Elementary Row Operations:

(1.) Scaling: Multiply a row Ri by a nonzero scalar k 6= 0.

(2.) Replacement: Replace a row Ri by adding a multiple of another row
kRj.

(3.) Interchange: Interchange two rows.

Elementary row operations do not change solutions of the linear system.

Theorem 13. Using the elementary row operations, one can change
a matrix to a reduced row-echelon form.

Proof. Gauss-Jordan elimination:
1. Begin with the leftmost nonzero column.
2. Select a nonzero entry as a pivot, and interchange its row to the first
row.
3. Use ERO to create zeros in all positions below the pivot.
4. Omit the first row and repeat this process.
5. Repeat the process until the last nonzero row.
6. Scale all pivots to 1’s.
7. Beginning with the rightmost pivot and working upward and to the
left. ⇤



Theorem 14. A matrix A has a unique reduced row echelon form
rref(A).

Definition 15. If A
ERO���! · · · ERO���! B, then A is called row-

equivalent to B.

Proposition 16. Row-equivalent is an equivalent relation.

Proof. 1. (reflexive)

2. (symmetric)

3. (transitive) ⇤

Theorem 17. A linear system [A|~b] is inconsistent (no solution) if
and only if rref([A|~b]) has a row

[ 0 0 0 . . . 0 | 1 ].

If a linear system is consistent, it has either
• a unique solution (no free variables), or
• infinitely many solutions (at least one free variable).

Definition 18. The rank of a matrix A is

rank(A) = the number of pivots in rref(A).



Proposition 19. Row-equivalent matrices have the same rank.

Example 20. Suppose the coe�cient matrix A is of size m⇥ n. Then,

1. rank(A)  m and rank(A)  n.

2. If the system is inconsistent, then rank(A) < m.

3. If the system has exactly one solution, then rank(A) = n.

4. If the system has infinitely many solutions, then rank(A) < n.

Definition 21. An m ⇥ n matrix A has full rank, if rank(A) =
min(m,n).

Proposition 22. A linear system with an n ⇥ n coe�cient matrix
A has exactly one solution if and only if rank(A) = n if and only if
rref(A) = In.

Remark:

1. We can apply Gaussian elimination over any field (including Zp).

2. We can apply Gaussian elimination over integers Z. However, we can not
achieve rref.

3. Buchberger’s algorithm is a generalization of Gaussian elimination to poly-
nomials to obtain a Grobnear basis in commutative algebra.



4. Inverse of a matrix

Definition 23. An n ⇥ n matrix A is called invertible if there exists
an n⇥ n matrix B such that

AB = BA = In.

Proposition 24. If A is invertible, then it has only one inverse.

Theorem 25. Let A and B be n⇥ n invertible matrices.

(1) The matrix A is invertible.
(2) There is a square matrix B such that BA = I.
(3) The linear system A~x = ~0 has only the trivial solution.
(4) rankA = n.
(5) The reduced row echelon form of A is identity matrix, i.e.
rref(A) = In.
(6) The matrix A is a product of elementary matrices.
(7) There is a square matrix C such that AC = In.
(8) The linear system A~x = ~b has a unique solution for every ~b 2 Fn.



Definition 26 (Elementary matrices).
• Eij denotes the matrix obtained by switching the i-th and j-th rows of
In.

I
Ri$Rj����! Eij

• Ei(c) denotes the matrix obtained by multiplying the i-th row by a
nonzero c.

I
cRi��! Ei(c)

• Eij(d) denotes the matrix adding d times the j-th row to the i-th row.

I
Ri+dRj����! Eij(d)

Proposition 27 (Elementary matrices multiplications). Multiply a ma-
trix A with an elementary on the left side is equivalent to an elemen-
tary row operation is performed on the matrix A.



Example 28. The inverse of the elementary matrices.

E
�1
ij

=

Ei(c)�1 =

Eij(d)�1 =

Theorem 29 (The inverse matrix theorem). Let A be an n⇥n matrix.
Then the next statements are all equivalent (that is, they are either
all true or all false).
(1) The matrix A is invertible.
(2) There is a square matrix B such that BA = I.
(3) The linear system A~x = ~0 has only the trivial solution.
(4) rankA = n.
(5) The reduced row echelon form of A is identity matrix, i.e.
rref(A) = In.
(6) The matrix A is a product of elementary matrices.
(7) There is a square matrix C such that AC = In.
(8) The linear system A~x = ~b has a unique solution for every ~b 2 Fn.



Theorem 30 (Algorithm for Computing A�1). Given an n⇥ n matrix
A.
1. Define an n⇥ 2n “augmented matrix ”

[A | In]
2. Find rref[A | In] using elementary row operations to

Example. Find the inverse of matrix A =

2

4
1 1 1
2 3 2
3 8 2

3

5

Example 31. If A =


a b

c d

�
is invertible, find A

�1.

5. The transpose A
T

Definition 32. Given an m ⇥ n matrix A, we define the transpose

matrix

A
T = [cij], as cij = aji.

Theorem 33 (Properties of Matrix Transposition). Let A and B be
matrices such that the indicated operations are well defined.
• (AT )T = A.

• (A + B)T = A
T + B

T .
• (rA)T = rA

T for any scalar r.
• (AB)T = B

T
A

T .



Proof. Compare the (i, j)-entry of the matrix.

[(AB)T ]ij = [AB]ji =
X

k

ajkbki

[BT
A

T ]ij =
X

k

[BT ]ik[A
T ]kj =

X

k

bkiajk =
X

k

ajkbki.

⇤

Theorem 34. If AB is defined, then rank(AB)  rankA.

Theorem 35. rank(A) = rank(AT ).

Theorem 36. If AB is defined, then rank(AB) 
min{rankA, rankB}.



6. LU factorizations and Gaussian elimination

LU-decomposition is a matrix product version of Gaussian elimination.

Definition 37. An m⇥m matrix L with entries lij is called
• lower triangular if lij = 0 whenever j > i.
• unit lower triangular if it is lower triangular, and lii = 1 for each
i = 1, . . . ,m.





Definition 38. Let A be an m⇥ n matrix. An LU factorization for
A is given by writing A as the product

A = L · U
with L a unit lower triangular m⇥m matrix, and U an m⇥ n matrix in
ref.

Use of LU factorizations:

Algorithm for Finding an LU Factorization:

Suppose A is anm⇥n matrix that can be transformed into a matrix in echelon
form by using only Row-Replacement operations.

Then an LU factorization of A can be obtained as follows.

1. Reduce A to echelon form U using only Row-Replacement operations.

2. Let L be the matrix obtained from Im by applying the inverse Row-
Replacement operations from Step 1, in reverse order.



Remark: There are several variations of LU-factorization: e.g.,

1. LDU-decomposition. A = LDU . Here D means a diagonal matrix and U is
an unit upper triangular matrix.

2. LU-factorization with pivoting. PA = LU . Here P is a permutation matrix,
obtained by multiplication of elementary matrices Eij.


