Northeastern University, Department of Mathematics
MATH 4570 - Matrix Methods in Data Analysis and Machine Learning

- Instructor: He Wang Email: he.wang@northeastern.edu
§2. Matrix Algebra and matrix factorizations.

1. Sum and scalar product
2. Matrix Product
3. Gauss-Jordan Elimination
4. Inverse of a matrix
5. The transpose A^{T}
6. LU factorizations and Gaussian elimination

7. Sum and scalar product

Definition 1. - The sum $A+B$ of $m \times n$ matrices A and B is $A+B=\left[a_{i j}+b_{j}\right]$

- The scalar product $r \cdot A$ of a scalar $r \in \mathbb{E}$) and A is

$$
\begin{aligned}
& \mathbb{F}^{m \times n}:=\left\{\begin{array}{l}
r A l l \\
m \times n \\
m+r+c e s \\
\\
\mathbb{F} \times \mathbb{F}^{m \times n} \\
\left.r a_{i j}\right]
\end{array} \longrightarrow \mathbb{F}^{m \times n}\right. \\
& 0=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & \sigma & 0
\end{array}\right]
\end{aligned}
$$

Theorem 2. For $n \times m$ matrices A, B, C and scalar r, s, the following hold.
(1) $A+B=B+A$;
(2) $(A+B)+C=A+(B+C)$;
(3) $A+\boldsymbol{0}=A$;
(4) $A+(-A)=0$;

(5) $r(A+B)=r A+r B$;
(6) $(r+s) A=r A+s A$;
(7) $r(s A)=(r s) A$;
(8) $1 A=A$.

Geometric meanings of vectors:

Definition 3. A vector \vec{b} in $\mathbb{F}^{m \times x}$ is called linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ in \mathbb{F}^{m} if

$$
\vec{b}=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{n} \vec{v}_{n}
$$

2. Matrix Product

- Product of a matrix A and a vector $\vec{x} \in \mathbb{F}^{n}$.

Definition 4. The product of A and \vec{x} defined to be

$$
A \vec{x}=\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+x_{n} \vec{a}_{n} .
$$

The product of A and \vec{x} can be computed as
$A \vec{x}=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\ \vdots \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}\end{array}\right]$

Theorem 5 (Algebraic Rules for $A \vec{x}$). If A is an $m \times n$ matrix, \vec{u} and \vec{v} are vectors in \mathbb{F}^{n} and c is a scalar, then
(1.) $A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}$
(2.) $A(c \vec{u})=c(A \vec{u})$.

Definition 6. The dot product of two vectors $\vec{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$
is defined as

$$
\vec{u} \cdot \vec{v})=u_{1} v_{1}+u_{2} v_{2}+\cdots u_{n} v_{n}
$$

More generally, we can define the product of two matrices:
Definition 7. Let A be an $m \times n$ matrix and B be a $n \times p$ natrix.
Define the product of A and B, to be the $m \times p$ matrix

$$
A B:=\left[\begin{array}{llll}
A \vec{b}_{1} & A \vec{b}_{2} & \ldots & A \vec{b}_{p}
\end{array}\right]
$$

- The Row-Column Rule for Computing $A \cdot B$

The (i, j)-th entry of $A B$ is

$$
\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j},
$$

which equals the dot product of the i-th row of A with the j-th column of B
Theorem 8 (Properties of Matrix Multiplication). Let A be an $m \times n$ matrix, and let B and C be matrices for which the indicated operations are defined. Let I_{n} denote the $n \times n$ identity matrix.
$\frac{A(B C)=(A B) C}{-A(B+C)=A B+A C .}$
$-(A+B) C=A C+B C$.$\left(r^{n \times n}, t\right.$, product $)\left(r^{\prime} q\right)$

- $r(A B)=(r A) B$ where r is any scalar.
- $I_{m} A=A=A I_{n}$.

Proof.

$$
\begin{gathered}
{[A(B C)]_{i j}=\sum_{k=1}^{n} a_{i k}(B C)_{k j}=\sum_{k=1}^{n} a_{i k}\left(\sum_{l=1}^{p} b_{k l} c_{l j}\right)=\sum_{k=1}^{n} \sum_{l=1}^{p} a_{i k} b_{k l} c_{l j}} \\
{[(A B) C]_{i j}=\sum_{l=1}^{p}(A B)_{i l} c_{l j}=\sum_{l=1}^{p}\left(\sum_{k=1}^{n} a_{i k} b_{k l}\right) c_{l j}=} \\
\sum_{l=1}^{p} \sum_{k=1}^{n} a_{i k} b_{k l} c_{l j}=\sum_{k=1}^{n} \sum_{l=1}^{p} a_{i k} b_{k l} c_{l j}
\end{gathered}
$$

So, $A(B C)=(A B) C$.
[example 9. $\underline{A B}=\left[\begin{array}{ll}1^{A} & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \neq B A \Rightarrow\left\{\mathbb{R}^{n \times n}, \quad x\right]$ not commutative $A B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 3 & 4\end{array}\right]=A \Rightarrow B=C$

$$
\overparen{A B}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Definition 10. If A is an $n \times n$ matrix. We define the k-th power of A as

Example 11. Calculate $X^{2}, X^{3}, X^{4}, \ldots$ for the following matrices

Go back to matrix $[A \mid \vec{b}]$.
The leftmost nonzero entry of a row is called leading entry(or pivot).
Definition 12. A matrix is in row-echelon form (ref) if
(1.) All entries in a column below a leading entry are zeros.
(2.) Each row above it contains a leading entry further to the left.

A matrix is in reduced row-echelon form (rref), if it satisfies (1) (2) and
(3.) The leading entry in each nonzero row is 1 .
(4.) All entries in a column above a leading entry are zeros.

Condition 2 implies that all zero rows are at the bottom of the matrix.
One example of ref, ($\boldsymbol{\square}$: non-zero number, * any number) and one example of rref
$\operatorname{ref}=\left[\begin{array}{cccccc}\boldsymbol{\square} & * & * & * & * & * \\ 0 & 0 & \boldsymbol{\square} & * & * & * \\ 0 & 0 & 0 & \boldsymbol{\square} & * & * \\ 0 & 0 & 0 & 0 & \boldsymbol{\square} & * \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \quad \rightarrow \cdots \rightarrow \quad \operatorname{rref}=\left[\begin{array}{cccccc}1 & * & 0 & 0 & 0 & * \\ 0 & 0 & 1 & 0 & 0 & * \\ 0 & 0 & 0 & 1 & 0 & * \\ 0 & 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Examples.

$\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 1 & 0 & 5\end{array}\right]$	$\left[\begin{array}{lllll}0 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 5\end{array}\right]$	$\left[\begin{array}{llllll}0 & 0 & 3 & 4 & 5 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 5\end{array}\right]$
$\left[\begin{array}{lllll}1 & 2 & 0 & 4 & 5 \\ 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 1 & 5\end{array}\right]$	$\left[\begin{array}{lllll}0 & 1 & 0 & 4 & 0 \\ 0 & 0 & 1 & 7 & 0 \\ 0 & 0 & 0 & 0 & 5\end{array}\right]$	

Elementary Row Operations:
(1.) Scaling: Multiply a row R_{i} by a nonzero scalar $k \neq 0$.
(2.) Replacement: Replace a row R_{i} by adding a multiple of another row $k R_{j}$.
(3.) Interchange: Interchange two rows.

$$
A \rightarrow \cdots \rightarrow \operatorname{rref}(A)
$$

Elementary row operations do not change solutions of the linear system.
Theorem 13. Using the elementary row operations, one can change a matrix to reduced row-echelon form.
(Proof. Gauss-Jordan elimination:

1. Begin with the leftmost nonzero column.
V_{2}. Select a nonzero entry as a pivot, and interchange its row to the first row.
2. Use ERO to create zeros in all positions below the pivot.
3. Omit the first row and repeat this process.
4. Repeat the process until the last nonzero row.
5. Scale all pivots to 1's.

+	0	1	2
0	0	1	
1	1	2	
2		10	

7. Beginning with the rightmost pivot and working upward and to l the left. 2331

Theorem 14. A matrix A has a unique reduced row echelon form $\operatorname{rref}(A)$.

Definition 15. If $A \xrightarrow{E R O} \cdots \xrightarrow{E R O} B$, then A is called rowequivalent to B.

Proposition 16. Row-equivalent is an equivalent relation.

Proof. 1. (reflexive)
2. (symmetric)
3. (transitive)

Theorem 17. A linear system $[A \mid \vec{b}]$ is inconsistent (no solution) if and only if $\boldsymbol{r r e f}([A \mid \vec{b}])$ has a row

$$
\left[\begin{array}{lllll|l}
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right] .
$$

If a linear system is consistent, it has either

- a unique solution (no free variables), or
- infinitely many solutions (at least one free variable).

Definition 18. The rank of a matrix A is
$\operatorname{rank}(A)=$ the number of pivots in $\operatorname{rref}(A)$.

Example 20. Suppose the coefficient matrix A is of size $m \times n$. Then,

1. $\operatorname{rank}(A) \leq m$ and $\operatorname{rank}(A) \leq n$.
2. If the system is inconsistent, then $\operatorname{rank}(A)<m$.
3. If the system has exactly one solution, then $\operatorname{rank}(A)=n$.
4. If the system has infinitely many solutions, then $\operatorname{rank}(A)<n$.

Definition 21. An $m \times n$ matrix A has full rank, if $\operatorname{rank}(A)=$ $\min (m, n)$.

Proposition 22. A linear system with an $n \times n$ coefficient matrix A has exactly one solution if and only if $\operatorname{rank}(A)=n$ if and only if $\operatorname{rref}(A)=I_{n}$.

Remark:

1. We can apply Gaussian elimination over any field including \mathbb{Z}_{p}). p prime
2. We can apply Gaussian elimination over integers \mathbb{Z}. However, we can not achieve ref.
3. Buchberger's algorithm is a generalization of Gaussian elimination to polynomials to obtain a Grobnear basis in commutative algebra.

$$
\left[\begin{array}{ccc}
\overline{x^{2}+x} & 3 x+1 & x^{2} 4 \\
3 x^{4} & \ddots & \ddots \\
- & - & \cdot
\end{array}\right]
$$

4. Inverse of a matrix

Definition 23. An $n \times n$ matrix A is called invertible if there exists an $n \times n$ matrix B such that

$$
A(B)=(B) A=I_{n}
$$

Proposition 24. If A is invertible, then it has only one inverse.

Theorem 25. Let A and B be $n \times n$ invertible matrices.
(1) The matrix A is invertible.
(2) 1 mere is a square matrix B such that $B A-1$.
(B) The linear system $A \vec{P}=\overrightarrow{0}$ Has only the trivial solution.
(4) wank $A=-2$
(5) The read
(6) the matrix A is /a product of elementary s mat rices.
(9) There is a square matron. C such that $A C=I$
48) The linear system $A \vec{x}=\vec{b}$ has a unique solution for every $\vec{b} \in \mathbb{F}^{n}$.

$$
\text { then: } \begin{aligned}
(A B)^{-1} & =B^{-1} A^{-1} \\
& \cdot\left(A^{-1}\right)^{-1}
\end{aligned}=A
$$

Definition 26 (Elementary matrices).

- $E_{i j}$ denotes the matrix obtained by switching the i-th and j-th rows of I_{n}.
- $E_{i}(c)$ denotes the matrix obtained by multiplying the i-th row by a nonzero c.

$$
I \stackrel{C C_{i}}{\Longrightarrow} E_{i}(c)
$$

- $E_{i j}(d)$ denotes the matrix adding d times the j-th row to the i-th row.

$$
I \xrightarrow{R_{i}+d R} E_{i j}(d)
$$

Proposition 27 (Elementary matrices multiplications). Multiply a matrix A with an elementary on the left side is equivalent to an elementary row operation is performed on the matrix A.
(1) $A \xrightarrow{R_{i} \leftrightarrow R_{i}} B=E_{i j} A$
(2) $A \xrightarrow{k R_{i}} B=E_{i}(k) A$
(3) $\quad A \xrightarrow{R_{i}+d R_{j}} B=E_{i j}(d) A$

Example 28. The inverse of the elementary matrices.
$\left(E_{i j}^{-1}=E_{i j}\right.$
$E_{i}(c)^{-1}=E_{i}\left(\frac{1}{c}\right)$
$E_{i j}(d)^{-1}=E_{i j}(-d)$

Theorem 29 (The inverse matrix theorem). Let A be an $n \times n$ matrix. Then the next statements are all equivalent (that is, they are either all true or all false).
(1) The matrix A is invertible.
(2) There is a square matrix B such that $B A=I$.
(3) The linear system $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
(4) $\operatorname{rank} A=n$.
(5) The reduced row echelon form of A is identity matrix, ie. $\operatorname{rref}(A)=I_{n}$.
(6) The matrix A is a product of elementary matrices.
(7) There is a square matrix C such that $A C=I_{n}$.
(8) The linear system $A \vec{x}=\vec{b}$ has a unique solution for every $\vec{b} \in \mathbb{F}^{n}$.

Theorem 30 (Algorithm for Computing A^{-1}). Given an $n \times n$ matrix A.

1. Define an $n \times 2 n$ "augmented matrix"

$$
\left[A \mid I_{n}\right]
$$

2. Find $\boldsymbol{r r e f}\left[A \mid I_{n}\right]$ using elementary row operations to

Example. Find the inverse of matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2\end{array}\right]$

Example 31. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible, find A^{-1}.

Definition 32. Given an $m \times n$ matrix A, we define the transpose matrix
$A^{T}=\left[c_{i j}\right]$, as $c_{i j}=a_{j i}$.

Theorem 33 (Properties of Matrix Transposition). Let A and B be matrices such that the indicated operations are well defined.

- $\left(A^{T}\right)^{T}=A$.
- $(A+B)^{T}=A^{T}+B^{T}$.
- $(r A)^{T}=r A^{T}$ for any scalar r.
- $(A B)^{T}=B^{T} A^{T}$.

Proof. Compare the (i, j)-entry of the matrix.

$$
\begin{gathered}
{\left[(A B)^{T}\right]_{i j}=[A B]_{j i}=\sum_{k} a_{j k} b_{k i}} \\
{\left[B^{T} A^{T}\right]_{i j}=\sum_{k}\left[B^{T}\right]_{i k}\left[A^{T}\right]_{k j}=\sum_{k} b_{k i} a_{j k}=\sum_{k} a_{j k} b_{k i} .}
\end{gathered}
$$

Theorem 34. If $A B$ is defined, then $\operatorname{rank}(A B) \leq \operatorname{rank} A$.

Theorem 35. $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.

Theorem 36. If $A B$ is defined, then $\operatorname{rank}(A B) \leq$ $\min \{\operatorname{rank} A)$ rank $B\}$.

$H=L \sum 1 j^{\top}$
6. $\mathbf{L U}$ factorizations and Gaussian elimination

LU-decomposition is a matrix product version of Gaussian elimination.
Definition 37. An $m \times m$ matrix L with entries $l_{i j}$ is called lower triangular if $l_{i j}=0$ whenever $j>i$.

- unit lower triangular if it is lower triangular, and $l_{i i}=1$ for each $i=1, \ldots, m$.

$$
\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{22} & 1
\end{array}\right]
$$

creplecment elementary row operation
$m \times n$

dementeny matrix corresponding to 0 ,

chit lower tricgntr

$$
\begin{aligned}
& \text { - } u=\operatorname{ref}(A) \\
& \text { • } L=E_{1}^{-1} E_{-2}^{-1} \cdots\left(E_{s}^{-1}\right) \cdot I \\
& I \xrightarrow{O_{s}^{-1}} \ldots . . \xrightarrow{O_{2}^{-1}} \xrightarrow{O_{1}^{-1}} L \quad A=L \\
& A=\left[\begin{array}{ccc}
(2) & -1 & 2 \\
-6 & 0 & -2 \\
8 & -1 & 5
\end{array}\right] \xrightarrow[R_{3}-4 R_{1}]{R_{2}+3 R_{1}}\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & -3 & 4 \\
0 & 3 & -3
\end{array}\right] \xrightarrow{R_{3}+R_{2}}\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & -3 & 4 \\
0 & 0 & 1
\end{array}\right]=U \\
& I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{R_{3}-R_{2}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \xrightarrow[R_{2}-3 R_{1}]{R_{3}+4 R_{1}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
4 & -1 & 1
\end{array}\right]=L
\end{aligned}
$$

Definition 38. Let A be an $m \times n$ matrix. An LU factorization for A is given by writing A as the product

$$
A=L \cdot U
$$

with L a unit lower triangular $m \times m$ matrix, and U an $m \times n$ matrix in
ref. ref.
Use of LU factorizations: Solve
Use of LU factorizations:

Algorithm for Finding an LU Factorization:

Suppose A is an $m \times n$ matrix that can be transformed into a matrix in echelon form by using only Row-Replacement operations.

Then an LU factorization of A can be obtained as follows.

1. Reduce A to echelon form U using only Row-Replacement operations.
2. Let L be the matrix obtained from I_{m} by applying the inverse RowReplacement operations from Step 1, in reverse order.

$$
A=\left[\begin{array}{ccc}
2 & -1 & 2 \\
-6 & 0 & -2 \\
8 & -1 & 5
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
4 & -1 & 1
\end{array}\right] \frac{\left[\begin{array}{ccc}
2 & -1 & 2 \\
0 & -3 & 4 \\
0 & 0 & 1
\end{array}\right]}{n}=L
$$

Remark: There are several variations of LU-factorization: e.g.,

1. LDU-decomposition. $A=L D U$. Here D means a diagonal matrix and U is an unit upper triangular matrix.

$$
A=\left[\begin{array}{cc}
& A
\end{array}\right]\left[\begin{array}{rrr}
1 & & \\
-3 & 1 & \\
4 & -1 & 1
\end{array}\right]\left(\begin{array}{lll}
2 & & \\
& -3 & \\
& & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 / 2 & 1 \\
& 1 & 4 / 3 \\
& & 1
\end{array}\right]
$$

2. LU-factorization with pivoting) $P A=\underline{L U}$. Here P is a permutation matrix, obtained by multiplication of elementary matrices $E_{i j}$.

$$
\left.\begin{array}{l}
\text { Ex: } A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
\text { Ex: } A=\left[\frac{10^{-20}}{1}\right. \\
1
\end{array}\right]=L
$$

