Northeastern University, Department of Mathematics

MATH 4570 - Matrix Methods in Data Analysis and Machine Learning

- Email: he.wang@northeastern.edu • Instructor: **He Wang**
- §2. Matrix Algebra and matrix factorizations.

234/ Contents 2331 Sum and scalar product 1. 1 **Matrix Product** 2. 3 **Gauss-Jordan Elimination** 3. 6 Inverse of a matrix 10 4. The transpose A^T 5. 13 (6.)LU factorizations and Gaussian elimination 15F any field +: F^{mxm} × F^{mxm} / F^{mxn} [Q;j] • The sum A + B of $m \times n$ matrices A and B is Definition 1. AtB= [aj+bj] • The *scalar product* $r \cdot A$ of a scalar $r \in \mathbb{F}$ and A is $\mathbf{O} = \begin{pmatrix} \mathbf{O} & \mathbf{O} & \mathbf{O}^{-} \\ \mathbf{O} & \mathbf{O}^$

1

Theorem 2. For $n \times m$ matrices A, B, C and scalar r, s , the following
hold. a helien
$(1) A + B = B + A; \qquad $
(2)(A+B) + C = A + (B+C);
$(3) A + \mathbf{O} = A; \qquad / \qquad $
(4) A + (-A) = 0;
(5) r(A+B) = rA + rB;
(6) (r+s)A = rA + sA;
(7) r(sA) = (rs)A;
$(8) \ 1A = A.$

Geometric meanings of vectors:

Definition 3. A vector \vec{b} in $\mathbb{F}^{m^{\mathbf{x}^{l}}}$ is called *linear combination* of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ in \mathbb{F}^{m} if $\vec{b} = x_{1}\vec{v}_{1} + x_{2}\vec{v}_{2} + \cdots + x_{n}\vec{v}_{n}$

2. Matrix Product

• Product of a matrix A and a vector $\vec{x} \in \mathbb{F}^n$.

Definition 4. The *product* of A and
$$\vec{x}$$
 defined to be
 $A\vec{x} = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_n\vec{a}_n.$

The product of A and \vec{x} can be computed as

$$A\vec{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix}$$

Theorem 5 (Algebraic Rules for $A\vec{x}$). If A is an $m \times n$ matrix, \vec{u} and \vec{v} are vectors in \mathbb{F}^n and c is a scalar, then (1.) $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$ (2.) $A(c\vec{u}) = c(A\vec{u})$.

More generally, we can define the product of two matrices:

Definition 7. Let A be an $m \times n$ matrix and B be a $n \times p$ matrix. Define the **product** of A and B, to be the $m \times p$ matrix $AB := [A\vec{b}_1 \quad A\vec{b}_2 \quad \dots \quad A\vec{b}_p]$

• The Row-Column Rule for Computing $A \cdot B$

The (i, j)-th entry of AB is

$$\sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj},$$

which equals the dot product of the *i*-th row of A with the *j*-th column of B

Proof.

$$[A(BC)]_{ij} = \sum_{k=1}^{n} a_{ik} (BC)_{kj} = \sum_{k=1}^{n} a_{ik} \left(\sum_{l=1}^{p} b_{kl} c_{lj} \right) = \sum_{k=1}^{n} \sum_{l=1}^{p} a_{ik} b_{kl} c_{lj}$$

$$[(AB)C]_{ij} = \sum_{l=1}^{p} (AB)_{il} c_{lj} = \sum_{l=1}^{p} \left(\sum_{k=1}^{n} a_{ik} b_{kl} \right) c_{lj} =$$

$$\sum_{l=1}^{p} \sum_{k=1}^{n} a_{ik} b_{kl} c_{lj} = \sum_{k=1}^{n} \sum_{l=1}^{p} a_{ik} b_{kl} c_{lj}$$
So, $A(BC) = (AB)C$.

Example 9.
$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \neq BA \implies \langle \mathcal{R}, \mathcal{R}, \mathcal{R} \rangle$$
 Not connected by $AB \neq \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} AC \end{pmatrix} \not\Rightarrow B=C$
 $AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Definition 10. If A is an $n \times n$ matrix. We define the k-th power of A as $A^{k} = \underbrace{A \cdot A \cdots A}_{k \text{ factors}}.$

Example 11. Calculate X^2 , X^3 , X^4 , ... for the following matrices

3. Gauss-Jordan Elimination

Go back to matrix $[A \mid \vec{b}]$.

The leftmost nonzero entry of a row is called **leading entry**(or **pivot**).

Definition 12. A matrix is in *row-echelon form* (ref) if

(1.) All entries in a column below a leading entry are zeros.

(2.) Each row above it contains a leading entry further to the left.

A matrix is in *reduced row-echelon form* (**rref**), if it satisfies (1) (2) and

(3.) The leading entry in each nonzero row is 1.

(4.) All entries in a column above a leading entry are zeros.

Condition 2 implies that all zero rows are at the bottom of the matrix.

One example of $\mathbf{ref},~(\blacksquare:$ non-zero number, * any number) and one example of \mathbf{rref}

		*	*	*	*	*		[1 *	0	0	0	*	
	0	0		*	*	*			$\begin{bmatrix} 1 & * \\ 0 & 0 \end{bmatrix}$					
$\mathbf{ref} =$	0	0	0		*	*	$ ightarrow \cdots ightarrow {f rref}$	=	0 0	0	1	0	*	
	0								0 0	0	0	1	*	
	0	0	0	0	0	0			0 0	0	0	0	0	

Examples.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 0 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 3 & 4 & 5 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 0 & 4 & 5 \\ 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 4 & 0 \\ 0 & 0 & 1 & 7 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

Elementary Row Operations:

(1.) **Scaling:** Multiply a row R_i by a nonzero scalar $k \neq 0$.

(2.) **Replacement:** Replace a row R_i by adding a multiple of another row kR_j .

(3.) **Interchange:** Interchange two rows.

 $A \longrightarrow rref(A)$

0

(V), (V), (Z)

Elementary row operations do not change solutions of the linear system.

Theorem 13. Using the elementary row operations, one can change a matrix to a reduced row-echelon form.

- *Proof.* Gauss-Jordan elimination:
- 1. Begin with the *leftmost* **nonzero** column.
- 2. Select a *nonzero* entry as a **pivot**, and interchange its row to the first row.
- 3. Use ERO to create zeros in all positions below the pivot. \downarrow
- 4. Omit the first row and repeat this process.
- 5. Repeat the process until the last nonzero row.
- 6. Scale all pivots to 1's.
- 7. Beginning with the **rightmost** pivot and working upward and to the left. \Box

Theorem 14. A matrix A has a unique reduced row echelon form rref(A).

Definition 15. If $A \xrightarrow{ERO} \cdots \xrightarrow{ERO} B$, then A is called **row-equivalent** to B.

Proposition 16. Row-equivalent is an equivalent relation.

Proof. 1. (reflexive)

- 2. (symmetric)
- 3. (transitive)

Theorem 17. A linear system $[A|\vec{b}]$ is inconsistent (no solution) if and only if $rref([A|\vec{b}])$ has a row

 $[0 0 0 \dots 0 | 1].$

If a linear system is consistent, it has either

- a unique solution (no free variables), or
- infinitely many solutions (at least one free variable).

Definition 18. The **rank** of a matrix A is

 $\operatorname{rank}(A)$ = the number of pivots in $\operatorname{rref}(A)$.

Proposition 19. Row-equivalent matrices have the same rank.

Example 20. Suppose the coefficient matrix A is of size $m \times n$. Then,

- 1. $\operatorname{rank}(A) \leq m$ and $\operatorname{rank}(A) \leq n$.
- 2. If the system is inconsistent, then $\operatorname{rank}(A) < m$.
- 3. If the system has exactly one solution, then $\operatorname{rank}(A) = n$.
- 4. If the system has infinitely many solutions, then $\operatorname{rank}(A) < n$.

Definition 21. An $m \times n$ matrix A has full rank, if rank $(A) = \min(m, n)$.

Proposition 22. A linear system with an $n \times n$ coefficient matrix A has exactly one solution if and only if rank(A) = n if and only if $rref(A) = I_n$.

Remark:

La nhy

1. We can apply Gaussian elimination over any field including \mathbb{Z}_p) P prime

2. We can apply Gaussian elimination over integers \mathbb{Z} . However, we can not achieve **rref**.

3. Buchberger's algorithm is a generalization of Gaussian elimination to polynomials to obtain a Grobnear basis in commutative algebra.

4. Inverse of a matrix

Definition 23. An $n \times n$ matrix A is called **invertible** if there exists an $n \times n$ matrix B such that

$$AB = BA = I_n.$$

Proposition 24. If A is invertible, then it has only one inverse.

Theorem 25. Let A and B be $n \times n$ invertible matrices. The matrix A is invertible. /a/square matrix B such that BA=1. The linear system $A\vec{x} = \vec{0}$ has only the trivial solution. ank The reduced row echelon form of Ais identity matrix, i P The matrix A is a product of elementary matrices There is a square matrix C such that $AC = I_{\mu}$. The linear system $A\vec{x} = \vec{b}$ has a unique solution for every $\vec{b} \in \mathbb{F}^n$. $\cdot (A^{+})^{-} = A$ • $\left(A^{\top}\right)^{-1} = \left(A^{-1}\right)^{\top}$

Definition 26 (Elementary matrices).

• E_{ij} denotes the matrix obtained by switching the *i*-th and *j*-th rows of I_n .

$$(I) \xrightarrow{R_i \leftrightarrow R_j} (E_{ij})$$

• $E_i(c)$ denotes the matrix obtained by multiplying the *i*-th row by a nonzero c.

$$I \xrightarrow{cR_i} E_i(c)$$

• $E_{ij}(d)$ denotes the matrix adding d times the j-th row to the i-th row. $I \xrightarrow{R_i + dR_j} E_{ij}(d)$

Proposition 27 (Elementary matrices multiplications). Multiply a matrix A with an elementary on the **left** side is equivalent to an elementary row operation is performed on the matrix A.

(1)
$$A \xrightarrow{R_i \leftrightarrow R_j} B = E_{ij} A$$

$$(Z) \qquad A \xrightarrow{k \mathbb{R}_{i}} B = E_{i}(k)/A$$

(3)
$$A \xrightarrow{R_i + dR_j} B = E_{ij}(d) A$$

Example 28. The inverse of the elementary matrices.

Theorem 29 (The inverse matrix theorem). Let A be an $n \times n$ matrix. Then the next statements are all equivalent (that is, they are either all true or all false). (1) The matrix A is invertible) (2) There is a square matrix B such that BA = I. (3) The linear system $A\vec{x} = \vec{0}$ has only the trivial solution. (4) rank A = n. (5) The reduced row echelon form of A is identity matrix, i.e. $rref(A) = I_n$. (6) The matrix A is a product of elementary matrices. (7) There is a square matrix C such that $AC = I_n$. (8) The linear system $A\vec{x} = \vec{b}$ has a unique solution for every $\vec{b} \in \mathbb{F}^n$. **Theorem 30** (Algorithm for Computing A^{-1}). Given an $n \times n$ matrix A.

1. Define an $n \times 2n$ "augmented matrix"

 $[A \mid I_n]$

2. Find $rref[A | I_n]$ using elementary row operations to

Example. Find the inverse of matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix}$

Theorem 33 (Properties of Matrix Transposition). Let A and B be matrices such that the indicated operations are well defined.

- $(A^T)^T = A$.
- $(A+B)^T = A^T + B^T$.
- $(rA)^T = rA^T$ for any scalar r.
- $(AB)^T = B^T A^T$.

Proof. Compare the
$$(i, j)$$
-entry of the matrix.

$$[(AB)^T]_{ij} = [AB]_{ji} = \sum_k a_{jk}b_{ki}$$

$$[B^T A^T]_{ij} = \sum_k [B^T]_{ik} [A^T]_{kj} = \sum_k b_{ki}a_{jk} = \sum_k a_{jk}b_{ki}.$$

Theorem 34. If AB is defined, then $rank(AB) \leq rank A$.

6. LU factorizations and Gaussian elimination

LU-decomposition is a matrix product version of Gaussian elimination.

U = ref(A)• $L = E_1^{-1} E_2^{-1} \cdots E_s^{-1} \cdot I$ $\int O_s^{-1} K = O_s^{-1} O_s^{-1} \cdot I$ A=LU $A = \begin{pmatrix} 2 & -1 & 2 \\ -6 & 0 & -2 \\ 8 & -1 & 5 \\ \end{pmatrix} \begin{pmatrix} R_2 + 1 & R_1 \\ R_3 - 4 & R_1 \\ 0 & 3 & -3 \\ \end{pmatrix} \begin{pmatrix} 2 & -1 & 2 \\ 0 & -3 & 4 \\ 0 & 3 & -3 \\ \end{pmatrix} \begin{pmatrix} R_1 + & R_2 \\ 0 & -3 & 4 \\ 0 & 0 & 1 \\ \end{pmatrix} = U$ $I_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_{3} - R_{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{R_{3} + 4R_{1}} \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -3 & 1 & 0 \\ -3 & 1 & 0 \\ -4 & -1 & 1 \end{bmatrix} = L$

Algorithm for Finding an LU Factorization:

Suppose A is an $m \times n$ matrix that can be transformed into a matrix in echelon form by using only Row-Replacement operations.

Then an LU factorization of A can be obtained as follows.

1. Reduce A to echelon form U using only Row-Replacement operations.

2. Let L be the matrix obtained from I_m by applying the inverse Row-Replacement operations from Step 1, in reverse order.

$$A = \begin{bmatrix} 2 - 1 & 2 \\ -6 & 0 & -2 \\ 3 & -1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \\ 0 & -3 & 4 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -3 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

Remark: There are several variations of LU-factorization: e.g.,

1. LDU-decomposition. A = LDU. Here D means a diagonal matrix and U is an unit upper triangular matrix.

2. LU-factorization with pivoting PA = LU. Here P is a permutation matrix, obtained by multiplication of elementary matrices E_{ij} .

$$E_{X}: A = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \qquad I \xrightarrow{k_i \in K_i} \rightarrow \dots \xrightarrow{k_k \in K_k} P$$

$$E_{X} = \begin{bmatrix} 10^{-2s} & 1 \\ 1 & 2 \end{bmatrix} = \int U$$