Northeastern University, Department of Mathematics

MATH 4570 - Matrix Methods in Data Analysis and Machine Learning

• Instructor: **He Wang**

Email: he.wang@northeastern.edu

§1. Fields

1. Background:

Definition 1. (1) A linear equation in variables x_1, x_2, \ldots, x_n is of the form

 $a_1x_1 + a_2x_2 + \dots + a_nx_n = b.$

Here, $a_1, a_2, \ldots, a_n \in \mathbb{R}$ (or a field \mathbb{F}) are **coefficients**. (2) A system of linear equations (or linear system) is a collection of linear equations in the same variables.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Matrix/vector notation:

tor notation:

$$\vec{a}_{1} \quad \vec{a}_{2} \quad \vec{a}_{n} \quad \vec{a}_{n}$$

$$A = [a_{ij}] = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}^{a_{12} \cdots a_{1n}} a_{22} \cdots a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m2} \cdots & a_{mn} \end{bmatrix}_{m < \eta} \vec{b} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix} \notin \mathbb{R}^{m}$$

$$\cdot \begin{bmatrix} A \mid \vec{b} \end{bmatrix}$$

$$\cdot \quad \chi_{1} \quad \vec{a}_{1} + \chi_{2} \quad \vec{a}_{n} + \cdots + \chi_{n} \quad \vec{a}_{n} = \vec{b}^{n}$$

$$\cdot \quad A \quad \vec{x} = \vec{b}$$

Goal: Find the set of all solutions.

Method: Gauss-Jordan elimination (Gaussian elimination).

Theorem 2. A linear system (matrix equation $A\vec{x} = \vec{b}$) has either no solution, or exactly one solution, or infinitely many solutions.

2. Sets and functions

Definition 3. A set S is a *well-defined*, *unordered* collection of *distinct* elements.

Non-well-defined example, (Russell' s paradox): $S \in S \iff S \notin S$ $S = \{x \mid x \notin x\}$, i.e., set of all sets that are not members of themselves. The teacher that teaches all who don't teach themselves.

Proposition 12. A map $T: V \to W$ is bijective if and only if it is invertible.

$$\begin{array}{c} + & \underbrace{i \text{ clentifies}}_{[0]} & \underbrace{i \text{ ruthing}}_{[1]} & \underbrace{i \text{$$

Proposition 15. Identity is unique in a monoid.

Definition 16. A monoid (M, *) is called a <u>commutative</u> (or abelian), if a * b = b * a for any $a, b \in M$

Definition 20. A ring *R* is called a **commutative** if $ab = b \cdot Q$

(Denote e^{\prime} as 1) n commutative ring.)

Example 21. Integers \mathbb{Z} is a commutative ring. $\begin{array}{c} + & 0 & a + (-q) = 0 \\ \times & 1 & ? \end{array}$ $2 \cdot \frac{1}{2} = 1$

Example 22. Set of all polynomials $\mathbb{R}[t]$ with sum and product is a commutative ring. $\mathfrak{a}_{\mathfrak{h}}+\mathfrak{q}_{\mathfrak{h}}t+\mathfrak{q}_{\mathfrak{h}}t^{\mathfrak{h}}+\cdots+\mathfrak{q}_{\mathfrak{h}}t^{\mathfrak{h}}$

a. ... an cr

Example 23. Set of all polynomials $\mathbb{R}[x_1, x_2, \ldots, x_n]$ is a commutative ring.

Example 24. (2) is a ring without identity.

$$Z_{2} = \{(0), (1)\}$$

$$Z_{2} = \{(0), (1)\}$$

$$Z_{3} = \{(-5, 4, -7, -2, -1, 0, 1, 2, 3, 4, 5, 6, -7\}$$
Definition 25. A field F is a commutative ring (F, +, .) such that
(5) any non-zero element has a multiplicative inverse.

$$0 \neq 3 \in \mathbb{T}$$
Remark: $(F - \{0\}, 0)$ are abelian groups.

$$Z_{4} = \{[0], (1), (2), [3]\}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

$$\begin{bmatrix} x_{3} = \{0\}, 0, 1, 1, 2\}, [3] \}$$

Two offerentials:
$$\begin{bmatrix} [a] + b] := [a+b] \\ [a] \times (b) := [axb] \\ \vdots \\ \begin{bmatrix} abritter & for & sum : [0] & sine & [0] + [a] = 1a \\ \vdots & prod: & [1] & she(e & 1) \times [a] = 1a \\ \vdots & prod: & [1] & she(e & 1) \times [a] = 1a \\ \end{bmatrix}$$

SUM Inverse of (a) $-[a] = (a)^{-[a]} = (a$

•

For $n > 0 \in \mathbb{Z}$, let $\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\}\)$ =the set of congruence classes modulo n.

Proposition 26. $(\mathbb{Z}_n, +, \times)$ is a commutative ring.

Example 27. \mathbb{Z}_2 is a field.

Zy

Example 28. \mathbb{Z}_6 is not a field. (Reason: [2] has no multiplicative inverse.)

Proposition 29 (\mathbb{Z}_n) is a field if and only if n = p is a prime number.

Remark: \mathbb{Q} is the smallest field containing \mathbb{Z} .

In our class, we will focus on fields \mathbb{R} , \mathbb{C} , (and \mathbb{Z}_p)

The idea of group and field was created by Évariste Galois (1811 - 1832).

GX+bx+(=0

 $Q_{\chi}^{\psi} + q_{\chi}^{\chi}^{3} + q_{\chi}^{\chi}^{2} + q_{\chi}^{\chi}^{+} q_{\chi}^{\chi}^{+}$

 $\mathbb{Q}, \mathbb{R}, \mathbb{C} \text{ are(fields.)}$

https://en.wikipedia.org/wiki/%C3%89variste_Galois

Definition 30. A homomorphism $f : A \to B$ between any two algebraic objects is a function preserving all operations, i.e.,

$$f(x * y) = f(x) * f(y)$$
 for any $x, y \in A$

For ring with identity, we also need the homomorphism sends identity to identity.

Definition 31. (Terminology first by Nicolas Bourbaki (1934-).)

- (1) An injective homomorphism is called **monomorphism**.
- (2) A surjective homomorphism is called an **epimorphism**.
- (3) A function $f : A \to B$ is called **isomorphism**, if it is monomorphism and epimorphism. In this case, we consider A and B are the "same".

https://en.wikipedia.org/wiki/Nicolas_Bourbaki

Further extended reading:

- 1. Classification finite fields.
- 2. Classification of finite abelian groups.
- 3. "Classification of finite groups",

