Northeastern University, Department of Mathematics
MATH 4570 - Matrix Methods in Data Analysis and Machine Learning

- Instructor: He Wang

Email: he.wang@northeastern.edu

## §1. Fields

## 1. Background:

Definition 1. (1) A linear equation in variables $x_{1}, x_{2}, \ldots, x_{n}$ is of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b .
$$

Here, $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ (or a field $\mathbb{F}$ ) are coefficients.
(2) A system of linear equations (or linear system) is a collection of linear equations in the same variables.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

Matrix/vector notation: $\begin{array}{llll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \vec{a}_{n}\end{array}$

$$
\cdot[A \mid \vec{B}]
$$

$$
\cdot x_{1} \overrightarrow{a_{1}}+x_{2} \overrightarrow{a_{n}}+\cdots+x_{n} \overrightarrow{a_{n}}=\vec{b}
$$

$$
\text { - } A \vec{x}=\vec{b}
$$

Goal: Find the set of all solutions.
Method: Gauss-Jordan elimination (Gaussian elimination).
Theorem 2. A linear system (matrix equation $A \vec{x}=\vec{b}$ ) has either no solution, or exactly one solution, or infinitely many solutions.
2. Sets and functions

Definition 3. A set $S$ is a "well-defined, unordered collection of "distinct" elements.

Non-well-defined) example, (Russell's paradox):

$$
S \in S \Leftrightarrow S \notin S
$$

$S=\{x \mid x \notin x\}$, ie., set of all sets that are not members of themselves.
The teacher that teaches all who don't teach themselves.

Review of set operations: $A, B$ subsets of $S$


- Union $A \cup B=\{x \mid x \in A$ or $x \in B\}$
- Intersection $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- Complement of $A \subset S, A^{c}=\{x \in S \mid x \notin A\}$
- (Cartesian) Product $\frac{X \times Y}{2}=\frac{\{(x, y) \mid x \in X, y \in Y\}}{y}$.

$$
\begin{equation*}
E \times \quad \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2} \tag{x,y}
\end{equation*}
$$

$$
E x: \quad[0,1] \times \mathbb{R}
$$



$$
\text { Ex: } f: \mathbb{R} \rightarrow\{0,1\}\left\{\begin{array}{l|l}
(x, y) & 0(x \leq 1
\end{array}\right\}
$$

Definition 4. A function(map) $f$ between two sets $A$ and $B$ is a rule

$$
f: A \rightarrow B
$$

sending every $a \in A$ to (an) element $f(a) \in B$.


Definition 5. Let $f: A \rightarrow B$ be a function.
(1) $f$ is called injective (one-to-one), if

$$
f(x)=f(y) \text { implies } x=y \text { for any } x, y \in A \text {. }
$$


(2) $f$ is called surjective (onto), if

$$
\forall b \in B, \underset{\text { for any }}{\forall x \in A,} \text { st. } f(x)=b \text {. }
$$

(3) $f$ is called bijective, if $f$ is subjective ad infective.


Consider a function $f: A \rightarrow B$ and the equation $f(x)=b$ for every $b \in B$.
Proposition 6.

- $f$ is injective $\Leftrightarrow f(x)=b$ has at mot one solution.
- $f$ is surjective $\Leftrightarrow f(x)=b$ has at least one solution.
- $f$ is bijective $\Leftrightarrow f(x)=b$ has Exactly one solution.

Example 7. Consider functions

$h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(x)=2 x+1$.


Definition 8. The composition $T \circ S(\underset{x}{ }$ f two functions $S: U \rightarrow V$ and $T: V \rightarrow W$

$$
\text { TS: } \begin{aligned}
U & \longrightarrow W \\
x & \longrightarrow T(S(x))
\end{aligned}
$$

Theorem 9. Consider functions $R: V \rightarrow W$ and $L: W \rightarrow V$. If left inverse $>L^{\text {right invest }}$

$$
L \circ R=\operatorname{id}_{V}
$$

then $L$ is surjective and $R$ is injective. (That is $V \xrightarrow{R} W \xrightarrow{L} V$ )



## Theorem 10.

(1) A map $T: V \rightarrow W$ is ejective if and only if it has a left-inverse
(2) A map $\overline{T: V \rightarrow W}$ is surjective if and only if it has a right-inverse.
(1)
$\xrightarrow{T} W \xrightarrow{L=?} \mathrm{C}$
(ג)
 $L=R \frac{\text { the innere of } T}{R}$

Theorem 11. Suppose a function $T: V \rightarrow W$ has both a left-inverse $L$ and a right-inverse $R$. Then

$$
\Leftrightarrow \text { Sujuctic }
$$

$$
L=R: W \rightarrow V
$$



Proposition 12. A map $T: V \rightarrow W$ is bijective if and only if it is invertible.

Ex| $\mathbb{R}=\left\{\begin{array}{lllll}1 & 1 & 1 & \rightarrow \\ -1 & 0 & 1 / 2 & 1 & e \\ \pi\end{array}\right\}$
Tho operstions:

$$
\text { 1. Sum }(t)
$$



(2) $a+b=b+a$ )
(3) $(\underset{3}{ } \times \vec{x}) \times c=c \times(b \times c)$
(4) $a b=b a$

$$
\because(a+t) c=a \times c+b \times c
$$

Ex 2


$$
-[1]=?
$$

Two operations on $S$

$$
(1)+?=107
$$

| $\left(\begin{array}{c}\text { sum } \\ +\end{array}\right.$ | $(0)$ | $(1)$ |
| :---: | :---: | :---: |
| $(10)$ | 10 | 11 |
| $[1]$ | 11 | $(10)$ |


| prodnit | $10)$ | 11 |
| :---: | :---: | :---: |
| 10 | $(0)$ | 107 |
| $[1]$ | 10 | 11 |



$$
\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}
$$

3. Algebraic objects:


Definition 13. A binary operation on a set $S$ is a map/funition

$$
\text { *: } \underset{(a, b)}{S \times S} \longrightarrow \underset{a * b}{S}
$$

Definition 14. A monoid is a set $\overparen{M}$ with a binary operation $*: M \times$ $M \rightarrow M$ satisfying two axioms:
(1) (Identity) There exiles $\quad e \in M$ such then $e * x=x=x * e \quad f^{e}$ on $y x \in M$.
(2) (Associativity)

$$
(a * b) * c=a *(b * c)
$$

Proposition 15. (Identity is unique in a monoid.

Definition 16. A monoid $(M, *)$ is called a commutative (or abelian), if

$$
a * b=b * a \quad \text { for any } a, b \in M
$$

Definition 17. A group is a monoid $(G, \cdot)$ satisfies
(3) (Inverse) For any $g \in G$, there exit e $h \in G$ such that $g * h=h * *$ fe $(\forall)$
$h$ is called the inverse of $g$, dented by $h=: g^{-1}$
Proposition 18. In a group $G$, inverse is unique in for any $g \in G$.

Denote commutative abelian) group as $(G, \stackrel{\bullet 1}{0})$; inverse of $a$ as $-a$.
Definition 19. A ring (with unit/identity) is a set $R$ with two binary operations + an (1.)s.t.
(1) $(R,+)$ is an "abelian group."

$$
\begin{cases}(2)(\text { multiplicative identity) } & e^{\prime} \cdot a=a \cdot e^{\prime}=a \\ (3) \text { (multiplicative associative) } & (a \cdot b) \cdot c=c \cdot(b \cdot c)\end{cases}
$$

(4) (Distributivity)

$$
\begin{aligned}
& a \cdot(b+c)=a \cdot b+a \cdot c \\
& (b+c) \cdot a=b \cdot a+c \cdot a
\end{aligned}
$$

Definition 20. A ring $R$ is called a commutative if

$$
a b=b \cdot a
$$

(Denote $e^{\wedge}$ as 1 1 n commutative ring.)

Example 21. Integers $\mathbb{Z}$ is a commutative ring.

$$
\begin{array}{llll}
+ & 0 & a+(-a)=0 \\
x & 1 & ? & \text { (2) } \cdot \frac{1}{2}=1
\end{array}
$$

Example 22. Set of all polynomials $\mathbb{R}[t]$ with sum and product is a commutative ring.

$$
a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}
$$

$$
a_{\nu} \ldots a_{n} \in \mathbb{R}
$$

Example 23. Set of all polynomials $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a commutative ring.

$$
=\{0, \pm 2, \pm 4, \pm 6, \cdots\}
$$

Example 24. (2Z) is a ring without identity.

$$
\left.\begin{array}{lll} 
& \left.\mathbb{Z}_{2}=\{[0], 11]\right\} \\
\mathbb{Z} & =\{1,-5-4-3-2-0 \mid 2 & 4
\end{array}\right)
$$

Definition 25. A field $\mathbb{F}$ is a commutative ring $(\mathbb{F},+, \cdot)$ such that
(5) any non-zerd element has a multiplicative inverse.

Remark: $(\underline{\underline{F}}-\{0\}, \odot)$ are abelian groups.
Ex:
$n=4$

$$
\begin{aligned}
& (2) \mid=\{2,2 \pm 4,2 \pm 8, \ldots .\} \\
& \text { ( } 3 \text { ): }:=\{3,3 \pm 4,358, \ldots \ldots)
\end{aligned}
$$

$$
\text { Two opections: } \begin{aligned}
& [a]+b]:=[a+b] \\
& {[a] \times(b):=[a \times b]}
\end{aligned}
$$

- identities for sum: [0] $\sin c(0)+10)=(0)$
$\qquad$

$$
\sin (\varphi(1) \times(a]=[a\rangle
$$

- sum invense of [a]
- product theose of $[a) \quad \xlongequal{\frac{1}{(a)}=[a]^{-1}}=$

$$
\frac{1}{(a)}=[a]^{-1}=
$$

( $c \neq 0$ )

$$
\frac{-[a]}{L}=
$$

l.g. $\quad\left[\begin{array}{l}{[3]} \\ -[2] \\ \end{array}\right.$

$$
[2]+[(2]=(0)
$$



$$
[3 x]=[1]
$$

For $n>0 \in \mathbb{Z}$, let $\mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}=$ the set of congruence classes modulo $n$.

Proposition 26. $\left(\mathbb{Z}_{n},+, \times\right)$ is a commutative ring.
Example 27. $\mathbb{Z}_{2}$ is a field.

## $\mathbb{Z}_{4}$

Example 28. $\mathbb{Z}_{6}$ is not a field. (Reason: [2] has no multiplicative inverse.)

Proposition 29 $\left(\mathbb{Z}_{n}\right)$ is a field if and only if $n=p$ is a prime number.
$\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
Remark: $\mathbb{Q}$ is the smallest field containing $\mathbb{Z}$.
In our class, we will focus on field $\mathbb{R}, \stackrel{\mathbb{C}}{=}$, (and $\left.\mathbb{Z}_{p}\right)$. $\mathbb{Z}_{2}$
The idea of group and field was created by Évariste Galois (1811-1832).

https://en.wikipedia.org/wiki/\�\�variste_Galois


## M少. Functions between algebraic objects:

Definition 30. A homomorphism $f: A \rightarrow B$ between any two algebraic objects is a function preserving all operations, i.e.,

$$
f(x * y)=f(x) * f(y) \text { for any } x, y \in A
$$

For ring with identity, we also need the homomorphism sends identity to identity.

Definition 31. (Terminology first by Nicolas Bourbaki) (1934)
(1) An injective homomorphism is called monomorpilism.
(2) A surjective homomorphism is called an epimorphism.
(3) A function $f: A \rightarrow B$ is called isomorphism, if it is monomorphism and epimorphism. In this case, we consider A and B are the "same".

https://en.wikipedia.org/wiki/Nicolas Bourbaki
Further extended reading:

1. Classification finite fields.

2. Classification of finite'abelian groups.
3. "Classification of finite groups
