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Section  19.  Principal Components Analysis

• Dimension Reduction
• Singular value decomposition
• Principal Components
• PCA regression
• PCA classification 
• Non-linear PCA

 



Ø Dimensional Reduction 

Dimensional Reduction is the process of combining high dimensional information 
into low dimensional representations. Low dimensional representations can be 
computationally easier to work with, while hopefully throwing away only 
extraneous information. 

Low dimensional projections are meaningful. In fact, all of data visualization can be 
said to be the result careful low dimensional projections. One goal is to discover the 
small set of variables that controls the larger phenomena.
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Constructed features play an important role in terms of subset selection. Using our 
naive subset selection for a linear model, we would quickly throw away some features. 
However, when we pick the right combination of the features suddenly we're given 
one our best predictors.

The process of constructing meaningful features is called feature engineering. Feature 
engineering is useful both in terms of constructing better models, and communicating 
results in a human readable format. One of the project of statistics, and by extension 
machine learning, is to construct a minimal set of mean rich features that explain all of 
the variance in the data.

To this end, feature engineering often uses the techniques of dimensional reduction, 
and visa versa.

Ø Feature engineering



Suppose we do not know what are the 
real x, y and z axes, so we choose three 
camera positions A, B, C at some 
arbitrary angles with respect to the 
system. The angles between our 
measurements might not even be 90". 
Now, we record with the cameras for 
several minutes. Each camera produces 
a two-dimensional representation of the 
data.  

Another motivation example (mass–spring system) 



Ø Principal Components Analysis

There are two main techniques in dimensional reduction: projection onto linear 
subspaces and manifold learning. In projection onto linear subspaces, we try to 
discover the linear combination of features the provide the clearest coordinate 
system for the dataset, i.e., the component factors. 

4 1. GEOMETRY OF PCA AND MDS

Figure 1. Principal Component Analysis as the best a�ne sub-
space approximation of data.
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In an alternative view, factor analysis tries to fit a linear subspace to a data set 
in such a way as to maximize the projected variance, that is maximize the 
amount of data variance captured in orthogonal project to the new space.



• Linearly combine the variables to create the new variables, called principal 

components.

• The first few explain most of the variation. 

• Achieve data reduction, without much loss of information. 

• It's important to note though that PCA doesn't know anything about the 
labels $. This can be an advantage. Unlabeled data can import the PCA (an 
unlabeled data is often cheap).



PCA is a greedy algorithm with a beautiful mathematical interpretation.

The idea is to proceed iteratively:

• Find principal component (direction) that accounts for the largest 

possible variance.

• Project onto the subspace orthogonal to that vector.

• Repeat, collecting the orthogonal vectors into the rows of U until U is a 

)×) orthogonal matrix.





Ø Singular Value Decomposition









Ø Principal Components







It is often desired to reduce the number of variables, especially when the 
number of variables in concern are too many. But the reduction must be done 
without much loss of information. 

Principal components provide an ideal way of such reduction. One may retain 
the first + principal components , which altogether explains of the total 
variation. 



Ø Principal Components Regression

1. perform principal components analysis (PCA) on the original data, 
2. perform dimension reduction by selecting the number of principal components (,) 

using cross-validation or test set error, 
3. Conduct regression using the first , dimension reduced principal components.

Principal components regression forms the derived input columns -# = /0# and then 
regresses on -$, -%, ⋯ , -# for some , ≤ ).

Principal components regression discards the ) − , smallest eigenvalue components.



PCA v.s. least square regression



Sepal Length Sepal Width Petal Length Petal Width Species
5.1 3.5 1.4 0.2 Setosa
7.0 3.2 4.7 1.4 Versicolor

Take as an example projection onto the first two principal components in
the Iris data set.

Ø Principal Components for classification



There are four variables, with correlations given above.



Using PCA to project onto the first two principal components yields a projection onto

We see the species are separable knowing only their features, and furthermore we 
have concrete measurement ratios to determine species. 

4(1) = (0.36, −0.08, 0.86, 0.36) ; 4(2) = (0.66, 0.73, −0.18, −0.07)



Compare for a moment with the LDA projection. LDA requires knowing the labels 
and requires significantly more computational time for a similar fit.



PCA MNIST

The MNIST data set may provide one of the most startling examples. A simple PCA can be 
computed quite quickly and yields a wealth of information about the structure of the data 
set. Projecting onto the first two components shows a lot of structure on the MNIST 
dataset.



For example, performing PCA on the fashion MNIST data set doesn't yield as strong of 
forms as on the digits MNIST. 

Key assumption: a small number of principal components suffice to explain most 
of the variability in the data, as well as the relationship with the response.

Choose -$, … , -& as the first M principal components.

This assumption may not hold!



In the context of regression, PCA can perform subset selection for us. In the graph 
above, we used PCA to project the features of the dataset onto the first two 
principal components. 

Example.



Ø Nonlinear PCA

Of course, linear methods may be almost useless if the underlying structure 
isn't linear. For truly unknown structure we must construct smoothing maps 
using splines, random graphs, or other high complexity techniques. For 
example, in the following distribution, linear PCA will do nothing to reduce the 
complexity of the data set.



However, whenever we have linear methods there is the hope that we can apply 

the linear methods to generated features and get a a better fit. For nonlinear 

PCA, this means that we generate a high dimensional feature space, say 

(1, "⃗, "⃗%), and then project down onto a low dimensional subspace of this 

feature set, that is a normalized polynomial feature.



Applying the radial basis function (rbf) kernel PCA to the concentric circle data 
set results in a dramatic clustering.



Ø Manifold learning 

In manifold learning, we try to fit a more complicated manifold to the underlying
data. Manifold learning is of course much more complicated than simple linear 
dimensional reduction, but there do exist good algorithms. 



https://scikit-learn.org/stable/modules/manifold.html

https://scikit-learn.org/stable/modules/decomposition.html#pca

Scikit-Learn: 

https://scikit-learn.org/stable/modules/manifold.html
https://scikit-learn.org/stable/modules/decomposition.html

