
Instructor: He Wang
Department of Mathema6cs
Northeastern University

Math 4570 Matrix Methods for DA and ML

Dynamical System Examples

Ø Markov decision processes

Theoretical foundation of Reinforcement Learning, Google Search’s
Page Rank algorithm, population models, economic models, etc.

Simplest model of the weather in some city, we can observe the current
day as sunny or rainy, which is our state space.

A sequence of observations over time forms a chain of states, such as
[sunny, sunny, rainy, sunny, …]. For example, suppose we know

Example 1:

• If we have a sunny day, then there is an 80% chance that the next
day will be sunny and a 20% chance that the next day will be rainy.

• If we have a rainy day, then there is a 10% probability that the weather
will be sunny and a 90% probability of the next day being rainy.

Our Markov model to represent only the cases when a sunny day can be
followed by a rainy one, with the same probability, regardless of the amount of
sunny days we've seen in the past. It's not a very realisRc model, as from
common sense we know that the chance of rain tomorrow depends not only on
the current condiRon, but on a large number of other factors, such as the
season, our laRtude, and the presence of mountains and sea nearby. It was
recently proven that even solar acRvity has a major influence on weather. So, our
example is really naïve, but it's important to understand the limitaRons and make
conscious decisions about them.

Of course, if we want to make our model more complex, we can always do
this by extending our state space, which will allow us to capture more
dependencies in the model at the cost of a larger state space. For example, if
you want to capture separately the probability of rainy days during summer
and winter, then you can include the season in your state. In this case, your
state space will be
[sunny+summer, sunny+winter, rainy+summer, rainy+winter] and so on.

Example 2: Office Worker

Home: He's not at the office
Computer: He's working on his computer at the office
Coffee: He's drinking coffee at the office
Chatting: He's discussing something with colleagues at the office

State Space:

We expect that his work day usually starts from the Home state and that
he always starts his work day with Coffee, without exception
(no Home → Computer edge and no Home → Chatting edge).
The preceding diagram also shows that work days always end (that is,
the going to the Home state) from the Computer state. The transition
matrix for the preceding diagram is as follows:

The transition probabilities could be placed directly on the state transition graph,
as shown here:

In practice, we rarely have the luxury of knowing the exact transition matrix.
A much more real-world situation is when we have only observations of our
systems' states, which are also called episodes:

• home → coffee → coffee → chat → chat → coffee → computer → computer → home
• computer → computer → chat → chat → coffee → computer → computer → computer
• home → home → coffee → chat → computer → coffee → coffee

It's not complicated to estimate the transition matrix by our observation; we just
count all the transitions from every state and normalize them to a sum of 1. The
more observation data we have, the closer our estimation will be to the true
underlying model.

Deep Reinforcement Learning Hands-On published by Packt.

References:

https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On

https://www.packtpub.com/big-data-and-business-intelligence/deep-reinforcement-learning-hands?utm_source=github&utm_medium=repository&utm_campaign=9781788834247
https://www.packtpub.com/?utm_source=github
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On

