





































































































































Northeastern University, Department of Mathematics

MATH 4570 Matrix Methods for DA and ML

• Instructor: He Wang Email: he.wang@northeastern.edu
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1. Dynamical Systems and Eigenvectors.

Google’s PageRank Algorithm (Larry Page and Sergey Brin, 1996)

Consider a mini-web with only three pages: Page1, Page2, Page3. Initially, there is an
equal number of surfers on each page. The initial probability distribution vector is

~x0 =

2

4
1/3
1/3
1/3

3

5

After 1 minute, some people will move onto di↵erent pages with a probability distribution
vector ~x1, as in the following diagram
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Remark: Let A be a 2⇥ 2 matrix The endpoints of state vectors ~x(0), ~x(1), · · · , ~x(t),
. . . , form the discrete trajectory of the system. A phase portrait of the dynamical
system shows trajectories for various initial states.

PageRank Example:

A =

2

4
0.7 0.1 0.2
0.2 0.4 0.2
0.1 0.5 0.6

3

5 and ~x0 =

2

4
1/3
1/3
1/3

3

5

Example 1. Find explicit formulas for At.

Example 2. Find explicit formulas for At~x0

Example 3. Find lim
t!1

At

Example 4. Find lim
t!1

At~x0
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2. Markov Chains

Equilibria for regular transition matrices:

Let us start with some terminologies:

Definition 5. • A vector ~x 2 Rn is said to be a distribution vector if its
entries are non-negative and the sum is 1.

• A square matrix A is said to be a transition matrix (or column stochastic
matrix) if all its columns are distributions vectors.

Definition 6.

• A matrix A is said to be non-negative if each entry of matrix A is not
negative.

• A matrix A is said to be positive if each entry of matrix A is positive.

• A non-negative matrix A is said to be regular (or primitive, or eventually
positive) if the matrix Am is positive for some integer m > 0.
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Theorem 7 (Perron-Frobenius Theorem (special case for transition matrix)). If A
is a positive, column stochastic matrix, then:

• 1 is an eigenvalue of multiplicity one.
• 1 is the largest eigenvalue: all the other eigenvalues have absolute value
smaller than 1.

• the eigenvectors corresponding to the eigenvalue 1 have either only positive
entries or only negative entries. In particular, for the eigenvalue 1 there exists
a unique eigenvector with the sum of its entries equal to 1.

Theorem 8. Let A be a regular, transition n⇥ n matrix.
1. There exists exactly one distribution vector ~x 2 Rn such that

A~x = ~x

which is called equilibrium distribution for A denoted as ~xequ.
2. If ~x0 is any distribution vector in Rn, then

lim
m!1

(Am~x0) = ~xequ

3. The columns of limn!1(An) are all ~xequ, that is

lim
m!1

(Am) = [~xequ ~xequ . . . ~xequ]
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Markov Chains (1906) can be used to study real word questions like PageRank of a web-
page as used by Google, automatic speech recognition systems, probabilistic forecasting,
cruise control systems in motor vehicles, queues or lines of customers arriving at an
airport/train station/..., currency exchange rates, animal population dynamics, music,
etc.

Convention in Probability: all vectors are transposed if you read some probability books
about Markov chains. A stochastic matrix P comes from a stochastic process {X0, ..., Xn}
with values in {1, ..., n}.

pij = P (Xt+1 = i | Xt = j)

3. Perron-Frobenius Theorem

Theorem 9 (Perron-Frobenius Theorem). Let A be an irreducible non-negative
matrix.

• A has a positive (real) eigenvalue �max such that all other eigenvalues of A
satisfy |�|  �max

• �max has algebraic multiplicity 1 with a positive eigenvector ~x.
• Any non-negative eigenvector is a multiple of ~x.
• If A is primitive, then all other eigenvalues of A satisfy |�| < �max

This theorem was first proved for positive matrices by Oskar Perron in 1907 and extended
by Ferdinand Georg Frobenius to non-negative irreducible matrices in 1912. .

Example 10. (Ranking of Players) The results of a round tournament be represented
by the following matrix.

A =

2

6666664

0.5 1 1 0 1 1
0 0.5 0 1 1 0
0 1 0.5 1 0 1
1 0 0 0.5 0 0
0 0 1 1 0.5 1
0 1 0 1 0 0.5

3

7777775

Here ai,j = 1 represents player i win v.s. player j; and ai,j = 0 represents player i loss
v.s. player j.

Question: How to rank those 6 players from the results?
Page 6



Suppose before the game, all ranked 1, represented by ranking vector ~r0 =

2

6666664

1
1
1
1
1
1

3

7777775
After

the tournament, the ranking is ~r1 = A~r0 =

2

6666664

4.5000
2.5000
3.5000
1.5000
3.5000
2.5000

3

7777775
.

The rank is P1 > P5 = P3 > P2 = P6 > P4.

Consider the strength of the opponents, we calculate ~r2 = A~r1 =

2

6666664

14.2500
6.2500
8.2500
5.2500
9.2500
5.2500

3

7777775
, and ~r3 =

A~r2 =

2

6666664

36.1250
17.6250
20.8750
16.8750
23.3750
14.1250

3

7777775
. Now we can see the rank: P1 > P5 > P3 > P2 > P4 > P6.

The eigenvalues of A are 2.7261; 0.0028; 0.1303± 1.3750i; 0.0052± 1.0451i.

� = 2.7261 is the largest eigenvalue with eigenvector

2

6666664

0.2721
0.1372
0.1689
0.1222
0.1831
0.1165

3

7777775
. This vector is almost

the same as ~r�10 divided by the sum of the entries.
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4. More Applications

4.1. Powers of a primitive matrix.

Let A be a primitive matrix. By the Perron-Frobenius theorem, let �max be its maximal
eigenvalue.

Let ~u be a (right-handed) positive eigenvector of A with eigenvalue �max, so A~u = �max~u.

Let ~v be the left-handed eigenvector vector such that ~vTA = �max~v and ~v · ~u = 1.

Theorem 11. Suppose A is primitive, with maximal eigenvalue �max, left eigenvec-
tor ~u and right eigenvector ~v such that ~v · ~u = 1, then

lim
k!1

✓
1

�max
A

◆k

= ~u~vT
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4.2. Graphs and Non-negative matrices.

4.3. Population model (The Leslie Model).

4.4. Economic growth.

Further reading about the PageRank:

Other lectures:

http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

A little more professional:

https://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf

https://www.math.purdue.edu/~ttm/google.pdf

http://www.ams.org/publicoutreach/feature-column/fcarc-pagerank

Original paper:

Sergey Brin and Lawrence Page http://infolab.stanford.edu/~backrub/google.html
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