

Northeastern University, Department of Mathematics

MATH 4570 Matrix Methods for DA and ML

- Instructor: He Wang

$\S 17$ Dynamical Systems

Email: he.wang@northeastern.edu

3. eerron-Frobenius Theorem
4. More Applications

1. Dynamical Systems and Eigenvectors.

Google's PageRank Algorithm (Larry Page and Sergey Bring, 1996)
Consider a mini-web with only three pages: Page, age. page. Initially, there is an equal number of surfers on each page. The initial probability distribution vector is

$$
\left.\begin{array}{ll}
100 & \vec{x}_{0}=\left[\begin{array}{l}
1 / 3 \\
100 \\
100
\end{array}\right]=\left[\begin{array}{l}
P_{1} \\
R \\
1 / 3
\end{array}\right] \\
B_{3}
\end{array}\right]
$$

After 1 minute, some people will move onto different pages with a probability distribution vector \vec{x}_{1}, as in the following diagram

- $\vec{x}_{2}=A \vec{x}_{1}=A^{2} \vec{x}_{0}$

$$
\text { - } \vec{x}_{1}=A \vec{x}_{2}^{\prime}=A^{3} \vec{x}_{0}
$$

眼: $x_{i} \in \mathbb{R}^{2}$
Remark: Let A be a 2×2 matrix The endpoints of state vectors $\vec{x}(0), \vec{x}(1), \cdots, \vec{x}(t)$, \ldots. form the discrete trajectory of the system. A phase portrait of the dynamical system shows trajectories for various initial states.

PageRank Example:

Example 1. Find explicit formulas for A^{t}. Example 2. Find explicit formulas for $A^{t} \vec{x}_{0}$ Example 3. Find $\lim _{t \rightarrow \infty} A^{t}$
Example 4. Find $\lim _{\rightarrow \rightarrow \infty} A^{t} \vec{x}_{0}$

1. Find all eigenvalues by $\operatorname{dot}(A-\lambda I)=0$

$$
\lambda_{1}=1,
$$

$\lambda_{2}=0.5$,
$x_{3}=0.2$
2. Find an ergenbsais/for A.

A basis for eigenspace $E_{\lambda_{1}}$ is $\left\{\left[\begin{array}{l}7 \\ 5 \\ 8\end{array}\right]\right\}$
A basis for egenspace $E_{\lambda_{2}}$ is $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$

3. $A=P D P^{-1}$ where $P=\left[\begin{array}{ccc}7 & 1 & -1 \\ 5 & 0 & -3 \\ 8 & -1 & 4\end{array}\right] \quad D=\left[\begin{array}{lll}1 & \\ 0.5 & \\ \text { 4. } A^{t} A^{t}=P D^{t} P^{-1}=\left[\begin{array}{ccc}7 & 1 & -1 \\ 5 & 0 & -3 \\ 8 & -1 & 4\end{array}\right]\left[\begin{array}{lll}1 & & \\ & 0.5 & \\ & & 0.2^{t}\end{array}\right]\left[\begin{array}{ccc}\frac{1}{3} & 3 & 3 \\ 44 & -36 & -16 \\ 5 & -15 & 5\end{array}\right]\end{array}\right.$

$$
\lim _{t \rightarrow \infty} A^{t}=\left[\begin{array}{lll}
\overrightarrow{b_{1}} & \overrightarrow{0} & \overrightarrow{0}
\end{array}\right] P^{-1}=\left[\begin{array}{ccc}
7 & 0 & 0 \\
5 & 0 & 0 \\
8 & 0 & 0
\end{array}\right] \frac{1}{60}\left[\begin{array}{ccc}
3 & 3 & 3 \\
44 & -36 & -16 \\
5 & -15 & 5
\end{array}\right]
$$

$$
\lim _{t \rightarrow \infty}\left(A^{t} \overrightarrow{x_{0}}=\frac{1}{20} \overrightarrow{b_{1}}=\frac{1}{20}\left[\begin{array}{l}
7 \\
5 \\
8
\end{array}\right]=\left[\begin{array}{l}
7 / 20 \\
5 / 20 \\
7 / 2
\end{array}\right]\right.
$$

Page 3
2. Markov Chains

Equilibria for regular transition matrices:
Let us start with some terminologies:
Definition 5. $\mathcal{K}_{i} 7_{0} \bullet A$ vector $\vec{x} \in \mathbb{R}^{n}$ is said to be a distribution vector if its entries are non-negative and the sum is 1. $x_{1}+x_{2}+\cdots+x_{n}=1$

- A square matrix A is said to be a transition matrix (or column stochastic matrix) if all its columns are distributions vectors.

Definition 6.

- A matrix A is said to be non-negative if each entry of matrix A is not negative. $a_{i j} \geqslant 0$
- A matrix A is said to be positive if each entry of matrix A is positive.

$$
a_{i j}>0
$$

- A nonnegative matrix A is said to be "regular" (or primitive, or eventually positive) if the matrix 40 is positive for some integer $m>0$.

Ex| $\quad A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$
ki $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right] \quad A^{2}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ renter.
Ex: $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \quad A^{n}=\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]$
E xi: $A=\left[\begin{array}{cc}0 & \frac{1}{2} \\ 1 & 0\end{array}\right]$
$A^{2}=\left[\begin{array}{ll}1 & 0 \\ - & 0 \\ 0 & 1\end{array}\right] \quad A^{3}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad A^{4}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
NOT reguls. (irreducible)

Suppre \vec{k}_{3} is a dintibutiten vector.

$$
\begin{gathered}
\vec{V}_{0} \xrightarrow{A} \vec{v}_{1} A \vec{v}_{2} \rightarrow \cdots \rightarrow \vec{V}_{n} \\
v_{1} A \vec{v}_{0} \\
\vec{v}_{h}=A^{n} \vec{v}_{0}
\end{gathered}
$$

Goal: $\lim _{n \rightarrow \infty} A^{n} \vec{v}_{0}$
If A^{m} is positine for sonne m, then $k=1$ is the layest eigenvalne of A.
s.le. $(A-I) \vec{x}=\overrightarrow{0}$ and fet $\vec{x}=\overrightarrow{v_{2}}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{a}\end{array}\right]$ $v_{i}>0$
then define $\left[\overrightarrow{\vec{v}_{q_{u}}}=\frac{1}{v_{1}+\cdots v_{d}}\left[\begin{array}{l}v_{1} \\ v_{1} \\ v_{a_{2}}\end{array}\right]\right.$
then $\lim _{n \rightarrow \infty} A^{n} \vec{v}_{0}=\vec{V}_{\text {equ }}$.

Theorem 7 (P¢rron-Frobenius Theorem (special case for transition matrix)). If (A) is a positive column stochastic matrix, then:
λ (1) is an eigenvalue of multiplicity one.

- 1 is the largest eigenvalue: all the other eigenvalue hue absolute value smaller than 1.
- the eigenvectors corresponding to the eigenvalue 1 hay either emily positive entries or only negative entries. In particular, for the e ely there exists a unique eigenvector with the sum of its entries equal to $1 . \quad \vec{\lambda}_{0}=\frac{1}{6}\left[\begin{array}{l}1 \\ 1 \\ j\end{array}\right]$

1. There exists exactly one distribution vector $\vec{x} \in \mathbb{R}^{n}$ such that $\operatorname{lor}(A) I$

$$
A \vec{A}=\vec{x}
$$

which is called equilibrium distribution for A denoted as $\vec{x}_{\text {qu }}$.
2. If $\left(\vec{x}_{0}\right)$ is any distribution vector in \mathbb{R}^{n}, then

$$
\left.\lim _{m \rightarrow \infty}\left(\underline{A^{m} \vec{x}_{0}}\right)=\widehat{x}_{\text {equ }}\right)
$$

3. The columns of $\lim _{n \rightarrow \infty}\left(A^{n}\right)$ gre all $\vec{x}_{\text {equ }}$, that is

$$
\lim _{m \rightarrow \infty}\left(A^{m}\right)=\left[\vec { x } _ { \text { eq y } } \left[\left(\widehat{x}_{\text {eq pu }} \ldots \widehat{\vec{x}}_{\text {equal }}\right] \quad \text { rank }=1\right.\right.
$$

$$
\begin{aligned}
& \frac{F X:}{} \frac{\operatorname{step} 1:}{} \begin{array}{l}
\operatorname{sep} 2:
\end{array}
\end{aligned}
$$

Slue

$$
(A-I) \vec{x}=\overrightarrow{0}
$$

$$
\Rightarrow \quad \vec{x}=\left[\begin{array}{l}
7 \\
5 \\
8
\end{array}\right]
$$

Sep: $\vec{X}_{\text {eq }}=\frac{1}{7+5+8}\left[\begin{array}{l}7 \\ 5 \\ 8\end{array}\right]$

Markov Chains (1906) can be used to study real word questions like PageRank of a webpage as used by Google, automatic speech recognition systems, probabilistic forecasting, cruise control systems in motor vehicles, queues or lines of customers arriving at an airport/train station/..., currency exchange rates, animal population dynamics, music, etc.

Convention in Probability: all vectors are transposed if you read some probability books about Markov chains. A stochastic matrix P comes from a stochastic process $\left\{X_{0}, \ldots, X_{n}\right\}$ with values in $\{1, \ldots, n\}$.

$$
\widehat{p}_{i j}=P\left(X_{t+1}=i \mid X_{t}=j\right)
$$

I. $\left.\begin{array}{ll}1 & 2\end{array}\right]$ 3. Perron-Frobenius Theorem

Theorem 9 (Perron-Frobenius Theorem). Let (A) be an irreducible non-negative matrix.

- A has a positive (real) eigenvalue such that all other eigenvalues of A satisfy $\left.|\lambda| \leq \lambda_{\text {max }}\right)$
- $\lambda_{\text {max }} h$ as aigebraic multiplicity 1 with a positive eigenvector \vec{x}.
- Any non-negative cigenvector is a multiple of \vec{x}.
- If A is $\frac{\text { rrimitive }}{\text { regnlar }}$ then all other eigenvalues of A satisfy $\lambda<\lambda_{\max }$

This theorem was first proved for positive matrices by Oskar Perron in 1907 and extended by Ferdinand Georg Frobenius to non-negative irreducible matrices in 1912. .

Example 10. (Ranking of Players) The results of a round tournament be represented by the following matrix.

Here $a_{i, j}=1$ represents player i win v.s. player j; and $a_{i, j}=0$ represents player i loss v.s. player j.

Question: How to rank those 6 players from the results?

Suppose before the game, all ranked 1, represented by ranking vector $\overrightarrow{r_{0}}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$ After
The rank is $P_{1}>P_{5}=P_{3}>P_{2}=P_{6}>P_{4}$.
Consider the strength of the opponents, we calculate $\left(\vec{r}_{2}=A \vec{r}_{1}=\right.$

w we can see the rank: $P_{1}>P_{5}>P_{3}>P_{2}>P_{4}>P_{6}$.

The eigenvalues of A are $2.7261 ; 0.0028 ; 0.1303 \pm 1.3750 \imath, 0.0052 \pm 1.0451 i$.

$\lambda=2.7261$ is the largest eigenvalue with eigenvector
the same as $\vec{r}_{\geq 10}$ divided by the sum of the entries.

4. More Applications
4.1. Powers of a primitive matrix.

Let A be a primitive matrix By the Perron-Frobenius theorem, let $\lambda_{\text {max }}$ be its maximal eigenvalue.
Let $\xrightarrow[\vec{u}]{ }$ ne a (right-handed) positive eigenvector of A with eigenvalue $\lambda_{\max }$, so $A \vec{u}=\lambda_{\max } \vec{u}$.
Let \hat{v} be the left-handed eigenvector vector such that $A=\lambda_{\text {max }} \vec{v}$ and $\vec{v} \cdot \vec{u}=1$.
Theorem 11. Suppose A is printive, with maximal eigenvalue $\lambda_{\max }$, left eigenvector \vec{u} and right eigenvector \vec{v} such that $\vec{v} \cdot \vec{u}=1$, then

step : Find \vec{u} by swing $\left(A-\lambda_{m x} I\right) \vec{x}=\overrightarrow{0}$
2. Solve $(A-47) \vec{x}=\overrightarrow{0} \Rightarrow \vec{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
seep 3: Fired \vec{V} by sing $\left(A^{\top}-\lambda_{\text {max }} \lambda\right) \vec{x}=\overrightarrow{0}$
3. Solve $\left(A^{\top}-47\right) \vec{x}=0 \vec{V}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$

(saps) Estimate $\left(\frac{1}{\lambda_{m}} A\right)^{S S^{1000}}$

$$
P=\left[\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right] \quad P=\left[\begin{array}{ll}
1 & 1 \\
1 & r
\end{array}\right]
$$

4.2. Graphs and Non-negative matrices.

4.3. Population model (The Leslie Model).

4.4. Economic growth.

Further reading about the PageRank:
Other lectures:
http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html
A little more professional:
https://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf
https://www.math.purdue.edu/~ttm/google.pdf
http://www.ams.org/publicoutreach/feature-column/fcarc-pagerank
Original paper:
Sergey Drin and Lawrence Page http://infolab.stanford.edu/~backrub/google.html

