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1. Dynamical Systems and Eigenvectors.

Google’s PageRank Algorithm (Larry Page and Sergey Brm 1996)

Consider a mini-web with only three pages , Initially, there is an
equal number of surfers on each page. The 1n1t1al probablht distribution vector is
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After, some people will move onto different pages with a probability distribution

vector 7, as in the following diagram
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Remark: Let A be a 2 x 2 matrix The endpoints of state vectors Z(0), (1), - -, Z(t),

..., form the discrete trajectory of the system. A phase portrait of the dynamical
system shows trajectories for various initial states.
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2. Markov Chains

X\
oY

Let us start with some terminologies: /

yd

Equilibria for regular transition matricTs:

s

P
Definition 5. 97°e A vector ¥ € R" is said to be a distribution vector if its
entries are and the sum is 1. oﬁ+\ﬁh-+&,=]
_—

e A square matrix A is said to be a transition matrix (or column stochastic
matrix) if all its columns are distributions vectors.

——

Definition 6.
e A matrix A is said to be fn—on-negative if each entry of matrix A is not

negative. .
g 0'37/0

e A matrix A is said to be if each entry of matrix A is positive.
S~ ﬂ\‘\)\ S0

o A matrix A is said to be\\regulaly (or primitive, or eventually
e —_

positive) if the matrix @is positive for some integer m > 0.
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Theorem 7 (P¢rron-Frobenius Theorem (special case for transition matrix)). I f@
18 a column stochastic matriz, then: ]

=
p
)\t@is an eigenvalue of multiplicity one. p LJ
e [ is the largest eigenvalue: all the other eigenvalue v

solute value

entries or only negative entries. In particular, fort there exists

smaller than 1.
e the eigenvectors corresponding to the eigenvalue 1 h E either only positive
\'—'\-’-\M !

,

a unique etgenvector with the sum of its entriggZequal to 1. pf: 5# /—[7
)
I

7 - LN\ : Z
Theorem 8. Le@be reqular @ansz’tio& X n_matrix. 1(74/ |
1. There exists exactly one distribution véctor & € R™ such that (é’ I )

which 1s called equilibrium distribution for A denoted as
2. [ 15 any distribution vector in R", then S

lim (A™7) = (0

M—00 <

\\

.
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Markov Chains (1906) can be used to study real word questions like PageRank of a web-
page as used by Google, automatic speech recognition systems, probabilistic forecasting,
cruise control systems in motor vehicles, queues or lines of customers arriving at an
airport /train station/..., currency exchange rates, animal population dynamics, music,
etc.

Convention in Probability: all vectors are transposed if you read some probability books
about Markov chains. A stochastic matrix P comes from a stochastic process { X, ..., X, }
with values in {1, ...,n}. —

:P(Xt+1:i|Xt:j) P

(g
< [} 2 | 3. Perron-Frobenius Theorem A:[O | A- [/ 0
B A 27 9
3 Y
)z
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Theorem 9 (Perron-Frobenius Theorem). Let(A)be an irreducible non-negative
matri. - T

e A has a_positipe (real) eigenvalue @\ such that all other eigenvalues of A
satisfy> :
y has a gebraic multzplzczty 1 with a gosztwe eigenvector .

108 then all other ezgenvalues ofA satisfy @

This theorem was first proved for positive matrices by Oskar Perron in 1907 and extended
by Ferdinand Georg Frobenius to non-negative irreducible matrices in 1912. .

Example 10. (Ranking of Players) The results of a round tournament be represented
by the following matrix.
V\ P\. Ps ’Rf @— ;76

n@5 1 0 1 b T
@ o5 T T 2/,
A0 T 05 T 0 1 I,
l1 0 0 05 0 0 ,
kKlo o 1 1 05 1

Lo 1 0 1 0 05 AT l

Here a; ; = 1 represents player ¢ win v.s. player j; and a;; = 0 represents player i loss
v.s. player j.

Question: How to rank those 6 players from the results?
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Suppose before the game, all ranked 1, represented by ranking vector rj = After
> |
.5000
2.5000+
. 3.5000-
the tournament, the ranking is 15000 )
—
3.5000+
| 2.5000
The rank is P, > Ps = Py > P, = Fs > P,.
[14.2500 ]
6.2500
: 8.2500
Consider the strength of the opponents, we calculate = | 59500 | * 2"
9.2500
| 5.2500

AFQ '

AN

| 14.1250 |

The eigenvalues of A are

Nk

: : : : 0.1689
is the largest eigenvalue with eigenvectpr 0.1922 |

divided by the sum of the entries.

the same ap

136.1250] |) |
[17.6250( | ¢
20.8750 | | 3

16.8750 }

23.3750d=—

6

we can see the rank: P > P5s > P3 > P, > Py > B,

:0.0028;0.1303 £ 1.375030.0052 £ 1.0451%.

This vector is almost




4. More Applications

4.1. Powers of a‘primitive matrix. glg

Let A be . By the Perron-Frobenius theote be its maximal
eigenvalue.

Le@e a (right-handed) positive eigenvector of A with eigenvalue Ay, SO
)d_obeo —
Let@be the left-handed eigenvector vector such tha w.o@

2 |

Theorem 11. Suppose A is primiitive, with maximal eigenvalue \m.yx, left ergenvec-
tor w and right eigenvector-0 such that v-u =1, then

fim (@) -
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4.2. Graphs and Non-negative matrices.
4.3. Population model (The Leslie Model).

4.4. Economic growth.

Further reading about the PageRank:

Other lectures:
http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html
A little more professional:
https://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf
https://www.math.purdue.edu/~ttm/google.pdf
http://www.ams.org/publicoutreach/feature-column/fcarc-pagerank

Original paper:

Sergey Brin and Lawrence Page http://infolab.stanford.edu/~backrub/google.html
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