LMath 4570 Matrix Methods for ML and DA— He Wang ‘

Section 13 Neural Network

* Perceptron
* Neural Network
* Backpropagation

Human Neural Networks was introduced in
1943 by neurophysiologist Warren McCulloch
and mathematician Walter Pitts to model
neurons in the braj)—%‘{sing electricgl circuits.

2 NN

-Artificial Neural networks are a series of algorithms that
mimic the operations of a human brain to recognize
relationships between vast amounts of data. It's a very broad
term that encompasses any form of Deep Learning model.

Impulses carried toward cell body A biological Neuron

dendrite

presynaptic
terminal

Impulses carried away An artificial Neuron

from cell body

@:L

synapse
axon from a neuron
&)=

—";Kl
k %

function

Activation function example: Heaviside step function

0 ifz<0
f(a:)ﬂ,_eg(g)={l 55 0 .

0

1N
J
5 os Ol 5 ’
> Other activation 39
2
~ N (2 :(L
Sigmoid Tanh [[\ReLV Leaky ReLU
1 e* —e % { z -
1) =1= | 9= | 9@ =max(02) | g(z) =max(ez2) || (T {6
with e < 1
; e

l'r— ' T 1 (=0 |

In 1957 Frank Rosenblatt
designed and invented the
perceptron which is a type of
neural network. A neural

» Perceptron

The perceptron is based around network acts like your brain; the
Ji th hold it (LTU ‘ brain contains billions of cells
a linear thresnola uni () L 2, i s called neurons that are

connected together in a
network. The perceptron
connects a web of points where
simple decisions are made,
which come together in the
larger program to solve more
complex problems.

The New Yorker, December 6, 1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been
built, but which has been successfully simulated on the I.B.M. 704. Talk
with Dr. Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is
one of the two men who developed the prodigy; the other man is Dr.
Marshall C. Yovits, of the Office of Naval Research, in Washington. Dr.
Rosenblatt defined the perceptron as the first non-biological object which
will achieve an organization o its external environment in a meaningful
way. It interacts with its environment, forming concepts that have not
been made ready for it by a human agent. If a triangle is held up, the
perceptron's eye picks up the image & conveys it along a random
succession of lines to the response units, where the image is registered. It
can tell the difference betw. a cat and a dog, although it wouldn't be able
to tell whether the dog was to theleft or right of the cat. Right now it is of
no practical use, Dr. Rosenblatt conceded, but he said that one day it

—_———
might be useful to send one into outer space to take in impressions for us.

—

https://www.newyorker.com/magazine @12/06/rival—2

https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

https://www.newyorker.com/magazine/1958/12/06/rival-2
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

» Perceptron

Training Data: D = (J'C’(i),y(i)) fori=1..n

Assumptions:

* Binary classification (i.e
« Datais linearly separable, i.e., there exists a hyperplane/that separates all the

sample points in class A from classes B.

#[E]
Classifier: -
h(x) = ‘(‘) = 51gn(w + b)

J 20
§1‘5v\ (2-)‘:{ Lf ‘

\| F{, B(o

WA X+ Atz

w 19~ -l —F—@—
d
[

907(\ '+ G(/<('1‘ &,7(,' =0
o S
y(i)(gT ,‘g(i)) > 0 = KOclassified correctly
—— _ -

Gal: P BT+)=0

AW]):o

» Training the Perceptron

D= (f(i),y(i)) fori=1..n.

. — T v ty (i)
o Uy =We =4 7 T (4)
Start with initial 6 = 0 >T i)

(426 ? >o

< W, = v
Fori=1,..,n th ML(+DL/YQ) '7(Ny P”eﬂa‘h‘ -

Repeat gnext .— g 4 o (y(i) — hg ()—C’(i))) 2@

The perceptron updates its weights only on misclassified points.

def perceptron sgd(X, Y):
w = np.zeros(len(X[0])) #Initialize the weight vector for the perceptron with zeros
eta =1 #Set the learning rate to 1
epochs = 20 #Set the number of epochs

for t in range(epochs):
for i, x in enumerate(X):
if (np.dot(X[i], w)*Y[1i]) <= O0:
w=w+ eta*X[1]*Y[1]

return w

w = perceptron sgd(X,y)
print(w)

The perceptron is a form of stochastic gradient decent on the loss function

J(6) = -

NgE

(y(u — hy (,z(i))) GT®)

i=1

—ﬂ
20 X +b=0
' H
° ° o \k)’
%) o]
@ © (o)
(o] O. o
o]
(@] (@]
o o]
¢ (o]
A)

When the data is separable, there are many solutions and which one is

found depends on the starting value.

The finite number of steps can be large, practically, if the gap is small the

time to find it is large.

When the data are not separable, the algorithm does not converge, and

instead falls into a cycle.

Video illustration for perceptron:

https://www.youtube.com/watch?v=xpJ @WFM 19

), >

E)Tf%jg)w)

https://www.youtube.com/watch?v=xpJHhHwR4DQ

Famous example of a simple non-linearly separable data set, the XOR problem
(Minsky 1969):

4 X, 090 4 Although now unsurprising (no ling sier can solve xor)
& X o © the exceptions for the pe high and when this
’; 2 problem was uncovered in 1969, it leads most researchers to
& - abandon neural networks in favor of functional and logical

":f
0

3)

Z
. | Lo
N (f\ \‘
. '
\\)
T(‘”) | .

\‘W@&

I ey > ® O
ey e 3 R—R
. Ex- b _ _
= eu): [—o&‘l |] (ﬂ: @(I)L;:;} Fl‘7: ‘f 0 o
~LS 2y X 0 JC 0
D o M

(z)[Y '~lj

/ Q) u)
i =6 -E g

}L@):{’ t‘[O\YCKI"'XL /5“
0 e

A visual proof that neural nets can compute any function: http://neuralnetworksanddeeplearning.com/chap4.htmi

http://neuralnetworksanddeeplearning.com/chap4.html

» House price example

03, LF
B /
%Cz)t)?dm@t { ’
0

o8 B k5 E B B B 2B

%o ()

7r h
bedrooms @/7 al ko

Zip Code @ \
Ave income @ /7

Scha|

/

» Fully-connected neural networks

—_—

J;“‘:F ijﬁg] ey 7

Mﬂ: l:(2)0 @(Z»)D p(\)o 9(‘)ﬁ)

» Multi-layers Neural Networks.

/ i ')(lw\"‘“X\wx 'H()V'I fWXY

\,//,A\\\s :r \‘\\%'«l/

\'A”l I/. ‘\\\\ ’; (//

#Tmmdeo = (o) F
" % (1) +
M X () +
V’\,X (Mq,ﬂ)

\\"/,m"o"\ 4
' ’ \ / $ \ "

//‘ A\

Layar 2

Input
Layer

| —

C @) X.d

a/'i“\‘:';/A’
X
AW,

Hidden Hidden
Layer2

Layer 1

Z N\

P
(I
%

N

Hidden

X
0%

NI
v 10\\\'//"“

o
S

&
2

624%@ L--f@gv

® Vet -
o - ()= P 0 F

3

.6

B))
L0

_—

In 1986, (Learning representations by back-propagating errors, Nature, 323(9): 533-
536) D. E. Rumelhart popularized the idea of back propagation to compute
gradients. It is not a learning method, but a computational trick. It is actually a
simple implementation of chain rule of derivatives.

» Back-propagation (Reverse autodifferention)

BP algorithms as stochastic gradient descent algorithms (Robbins—Monro
1950; Kiefer- Wolfowitz 1951) with Chain rules of Gradient maps

Goal: Minimize the loss function j= |-} {Hy “(H[; é“fu{H,)))

Need to calculate the gradient.

» The Chain Rule:

» Computation Graphs

Function Q

Forward mode:

U
U

o
—
o
o
O

J 0

=
©
o
m Q Q
2
©
S
=
8]
©
o

Neural Network by Pyhton:

TensorFlow2: https://www.tensorflow.org/
N

Keras on TensorFlow: https://keras.io/examples/

. Ez}w‘n&\

~—— Hidden

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([

layers.Dense(units=4, activation="relu’, input_shape=[2]),
layers.Dense(units=3, activation="relu’),

layers.Dense(units=1),

1)

https://www.tensorflow.org/
https://keras.io/examples/

» Dropout and Batch Normalization

1. Dropout layer can help correct overfitting. We randomly drop out some

fraction of a layer's input units every step of training. The weight patterns
tend to be more robust.

2. Batch Normalization is something like scikit-learn's StandardScaler or MinMaxScaler.

Batch normalization layer looks at each batch as it comes in, first normalizing
the batch with its own mean and standard deviation, and then also putting the
data on a new scale with two trainable rescaling parameters. Batch
normalization, in effect, performs a kind of coordinated rescaling of its inputs.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([

layers.Dense(units=4, activation="relu’, input_shape=[2]),
layers.Dropout(0.3),

layers.BatchNormalization(),

layers.Dense(units=3, activation="relu’),
layers.Dropout(0.3),

layers.BatchNormalization(),

layers.Dense(units=1),

1)

Hidden

Hidden

Inputs

x0

» Early Stopping

from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import layers, callbacks

early _stopping = EarlyStopping(
min_delta=0.001,
patience=20,

ng
restore_best_weights=True,

These parameters say: "If there hasn't been at least an improvement of 0.001 in the validation loss over the
previous 20 epochs, then stop the training and keep the best model you found.”

It can sometimes be hard to tell if the validation loss is rising due to overfitting or just due to random batch
variation. The parameters allow us to set some allowances around when to stop.

model.compile(loss="sparse_categorical_crossentropy",
optimizer="sgd",
metrics=["accuracy"])

history = model.fit(X_train, y_train, epochs=30,
validation_data=(X_valid, y_valid))

import pandas as pd

pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1)

plt.show()
1.0
. /ir——/—v";\”/\/ww‘———‘
0.6 1 —— loss
~—— sparse_categorical_accuracy
— val_loss
0.4 - val_sparse_categorical_accuracy
0.2 1
0.0 T T T T T T

A visual proof that neural nets can compute any function

http://neuralnetworksanddeeplearning.com/chap4.html

Play with neural network:

http://playground.tensorflow.org/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Online book about neural network:

http://neuralnetworksanddeeplearning.com/chap3.html

MIT Introduction to Deep Learning | 6.5191
https://www.youtube.com/watch?v=5tvmMX8r OM

http://playground.tensorflow.org/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://neuralnetworksanddeeplearning.com/chap3.html
https://www.youtube.com/watch?v=5tvmMX8r_OM
http://neuralnetworksanddeeplearning.com/chap4.html

