
Math 4570 Matrix Methods for ML and DA– He Wang

Section 13 Neural Network

• Perceptron
• Neural Network
• Backpropagation

Human Neural Networks was introduced in
1943 by neurophysiologist Warren McCulloch
and mathematician Walter Pitts to model
neurons in the brain using electrical circuits.

Artificial Neural networks are a series of algorithms that
mimic the operations of a human brain to recognize
relationships between vast amounts of data. It's a very broad
term that encompasses any form of Deep Learning model.

A biological Neuron

An artificial Neuron

Ø Other activation functions:

Activation function example: Heaviside step function

Ø Perceptron

The perceptron is based around
a linear threshold unit (LTU).

https://www.newyorker.com/magazine/1958/12/06/rival-2

https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

https://www.newyorker.com/magazine/1958/12/06/rival-2
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

Ø Perceptron

• Binary classification (i.e. !(") ∈ {−1,+1})
• Data is linearly separable, i.e., there exists a hyperplane that separates all the

sample points in class A from classes B.

Assumptions:

ℎ +⃗ = sign 1⃗$+⃗ = sign(3 ⋅ +⃗ + 5)

Training Data: 7 = +⃗ " , ! " for 8 = 1… :.

Classifier:

! " (1⃗$ +⃗(")) > 0 ⟺ +⃗(")classified correctly

Ø Training the Perceptron

Start with initial 1⃗ = 0

For 8 = 1, … , :

Repeat 1⃗%&'(∶= 1⃗ + @ ! " − ℎ) +⃗ " +⃗(")

7 = +⃗ " , ! " for 8 = 1… :.

The perceptron updates its weights only on misclassified points.

The perceptron is a form of stochastic gradient decent on the loss function

A 1⃗ = −B
"*+

%
! " − ℎ) +⃗ " (1⃗$+⃗("))

• When the data is separable, there are many solutions and which one is
found depends on the starting value.

• The finite number of steps can be large, practically, if the gap is small the
time to find it is large.

• When the data are not separable, the algorithm does not converge, and
instead falls into a cycle.

https://www.youtube.com/watch?v=xpJHhHwR4DQ
Video illustration for perceptron:

https://www.youtube.com/watch?v=xpJHhHwR4DQ

Famous example of a simple non-linearly separable data set, the XOR problem
(Minsky 1969):

Although now unsurprising (no linear classier can solve xor)
the exceptions for the perceptron were high and when this
problem was uncovered in 1969, it leads most researchers to
abandon neural networks in favor of functional and logical
methods.

http://neuralnetworksanddeeplearning.com/chap4.htmlA visual proof that neural nets can compute any function:

http://neuralnetworksanddeeplearning.com/chap4.html

Ø House price example
size

bedrooms

Zip Code

Ave income

Price

Ø Fully-connected neural networks

Ø Multi-layers Neural Networks.

Ø Back-propagation (Reverse autodifferention)

In 1986, (Learning representations by back-propagating errors, Nature, 323(9): 533-
536) D. E. Rumelhart popularized the idea of back propagation to compute
gradients. It is not a learning method, but a computational trick. It is actually a
simple implementation of chain rule of derivatives.

Goal: Minimize the loss function A

Need to calculate the gradient.

BP algorithms as stochastic gradient descent algorithms (Robbins–Monro
1950; Kiefer- Wolfowitz 1951) with Chain rules of Gradient maps

Ø The Chain Rule:

Ø Computation Graphs

Function

Forward mode:

Backward mode:

https://www.tensorflow.org/

Neural Network by Pyhton:

TensorFlow2:

Keras on TensorFlow: https://keras.io/examples/

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([
the hidden ReLU layers
layers.Dense(units=4, activation='relu', input_shape=[2]),
layers.Dense(units=3, activation='relu’),
the linear output layer
layers.Dense(units=1),

])

https://www.tensorflow.org/
https://keras.io/examples/

Ø Dropout and Batch Normalization

1. Dropout layer can help correct overfitting. We randomly drop out some
fraction of a layer's input units every step of training. The weight patterns
tend to be more robust.

2. Batch Normalization is something like scikit-learn's StandardScaler or MinMaxScaler.

Batch normalization layer looks at each batch as it comes in, first normalizing
the batch with its own mean and standard deviation, and then also putting the
data on a new scale with two trainable rescaling parameters. Batch
normalization, in effect, performs a kind of coordinated rescaling of its inputs.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([
the hidden ReLU layers
layers.Dense(units=4, activation='relu', input_shape=[2]),
layers.Dropout(0.3), # apply 30% dropout to the next layer
layers.BatchNormalization(),
layers.Dense(units=3, activation='relu’),
layers.Dropout(0.3), # apply 30% dropout to the next layer
layers.BatchNormalization(),
the linear output layer
layers.Dense(units=1),

])

Ø Early Stopping

from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import layers, callbacks

early_stopping = EarlyStopping(
min_delta=0.001, # minimium amount of change to count as an improvement
patience=20, # how many epochs to wait before stopping
restore_best_weights=True,

)

These parameters say: "If there hasn't been at least an improvement of 0.001 in the validation loss over the
previous 20 epochs, then stop the training and keep the best model you found.”
It can sometimes be hard to tell if the validation loss is rising due to overfitting or just due to random batch
variation. The parameters allow us to set some allowances around when to stop.

model.compile(loss="sparse_categorical_crossentropy",
optimizer="sgd",
metrics=["accuracy"])

history = model.fit(X_train, y_train, epochs=30,
validation_data=(X_valid, y_valid))

import pandas as pd

pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1)

plt.show()

http://playground.tensorflow.org/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

http://neuralnetworksanddeeplearning.com/chap3.html

https://www.youtube.com/watch?v=5tvmMX8r_OM

http://neuralnetworksanddeeplearning.com/chap4.html

A visual proof that neural nets can compute any function

Play with neural network:

Online book about neural network:

MIT Introduction to Deep Learning | 6.S191

http://playground.tensorflow.org/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://neuralnetworksanddeeplearning.com/chap3.html
https://www.youtube.com/watch?v=5tvmMX8r_OM
http://neuralnetworksanddeeplearning.com/chap4.html

