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Section 11    Estimate Prediction Errors

Cross Validations

2.1 Cross validation

2.2 Leave-One-Out Cross validation

2.3 K-Cross validation

Adjusted Training Errors

 



Ø U-shaped bias–variance trade-off curve (Geman et al., 1992).  



The training error can be easily calculated by applying the statistical 
learning method to the observations used in its training.

The test error is the average error that results from using a statistical 
learning method to predict the response on a new observation, one that was 
not used in training the method.

But the training error rate often is quite different from the test error rate, and 
in particular the former can dramatically underestimate the latter.

Test error V.S. Training error



1. Reconciling modern machine-learning practice and the classical bias–variance trade-off
Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal
PNAS August 6, 2019 116 (32) 15849-15854; https://doi.org/10.1073/pnas.1903070116

Ø Modern point of view of bias-variance trade-off: (Optional)

2. Rethinking Bias-Variance Trade-off for Generalization of Neural Networks
Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, Yi Ma
Proceedings of the 37 th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020. 
https://arxiv.org/pdf/2002.11328.pdf

3. A Modern Take on the Bias-Variance Tradeoff in Neural Networks
Neal, Mittal, Baratin,  et.al.   https://arxiv.org/pdf/1810.08591.pdf

https://doi.org/10.1073/pnas.1903070116
https://arxiv.org/pdf/2002.11328.pdf
https://arxiv.org/pdf/1810.08591.pdf


2. Some methods (adjusted !2, the #" statistic, AIC and BIC) make a 
mathematical adjustment to the training error rate in order to estimate the 
test error rate.

Prediction-error estimates

1. We consider a class of validation methods that estimate the test error, by 
holding out a subset of the training observations from the fitting process, and 
then applying the statistical learning method to those held out observations. 
The resulting validation-set error provides an estimate of the test error.

Our ultimate goal is to produce the best model with best prediction accuracy. 



Training error is easily computable with training data. However,  the possibility of 
overfit makes it cannot be used to properly assess test error.

• Training data: used to train various models.
• Validation data: used to assess the models and identify the best.
• Test data: test the results of the best model. (Optional) 

When we have enough data, we can randomly split the data into three parts:

Fit various regression models on the training sample. The validation set error 
rates result from evaluating their performance on the validation sample. MSE as 
a measure of validation set error.

Ø Cross validation

Validation



Right: The validation method was repeated ten times, each 
time using a different random split of the observations into a 
training set and a validation set. This illustrates the variability 
in the estimated test MSE that results from this approach

Left: Validation error estimates for a single 
split into training and validation data sets. 



Ø The leave-one-out cross-validation (LOOCV)

Obtain an estimate of the test error by combining the  $%&# for ' = 1,2, …,.

First, pick data point 1 as validation set, the 
rest as training set. Fit the model on the 
training set, evaluate the test error, on the
validation set, denoted as $%&$.

Second, pick data point 2 as validation 
set, the rest as training set. Fit the model 
on the training set, evaluate the test error 
on the validation set, denoted as say 
$%&%.

Repeat the procedure for all data point.
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Ø K-fold cross validation (widely used approach for estimating test error)

Average over the above K estimates of the test errors, and obtain

Divide the data (randomly) into K 
subsets, usually of equal or similar 
sizes  '* .

Treat one subset as validation set, the rest 
together as a training set. Run the model 
fitting on training set. Calculate the test 
error estimate on the validation set, 
denoted as $%&# .

Repeat the procedures over every subset.
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Left: The LOOCV error curve. Right: 10-fold CV was run nine separate times, each 
with a different random split of the data
into ten parts.  



Ø Cross validation for classification

For classification with qualitative response, a natural choice is: 1 for incorrect classification 
and 0 for correct classification.

A simulated data set consisting of 100 observations in each of two groups, indicated in blue 
and in orange. The purple dashed line represents the Bayes decision boundary. The 
orange background grid indicates the region in which a test observation will be assigned to 
the orange class, and the blue background grid indicates the region in which a test 
observation will be assigned to the blue class.

We divide the data (randomly) into K equal-
sized subsets.
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The Bayes decision boundary is 
represented using a purple dashed 
line. 

Estimated decision boundaries from 
linear, quadratic, cubic and quartic 
(degrees 1 to 4) logistic regressions 
are displayed in black.  

The (true) test error rates
for the four logistic regression fits 
are respectively 0.201, 0.197, 0.160,
and 0.162, while the Bayes error 
rate is 0.133.

In practice the true population 
distribution is unknown. Thus, the 
true test error cannot be computed. 
We use cross validation to solve the 
problem.



There is human readable scoring statistic is R-squared calculated by

!% = 1 − !%%
%%+,+-.

= 1 − !%%
∑#)$' 7 # − 87 %

So !% = 1 is perfect correlation.

0. R-squared

More error prediction methods. Mean Square Error $%& = /00
'



The MSE and R-squared reflects the training error. However, a model with 
larger R-squared/ or smaller MSE error is not necessarily better than another 
model with smaller R-squared when we consider test error! 



1. Adjusted R-squared.

The adjusted R-squared, taking into account of the degrees of freedom

With more inputs, the !% always increase, but the adjusted !% could decrease since 
more irrelevant inputs are penalized. The adjusted R-squared is preferred over the R-
squared in evaluating models.

adjusted !%: = 1 − !%%/(, − < − 1)
∑#)$' 7 # − 87 % /(, − 1)

2. Mallows’ >1.

The statistic of Mallow's #2 is defined as

Mallows’ >1: =
1
, (!%% < + 2<A3%)

Here, s4% = /00
'535$ and !%% < is the RSS with k features. 

The model with the smallest #2 is preferred.

Suppose we check k features



3. Akaike information criterion (AIC)

4. Schwarz's Bayesian information criterion(BIC) 

The model with the smallest AIC or BIC is preferred.  




