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Section 11 Estimate Prediction Errors

Cross Validations
2.1 Cross validation
2.2 Leave-One-Out Cross validation

2.3 K-Cross validation

Adjusted Training Errors



» U-shaped bias—variance trade-off curve (Geman et al., 1992).
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The training error can be easily calculated by applying the statistical
learning method to the observations used in its training.

The is the average error that results from using a statistical
learning method to predict the response on a new observation, one that was
not used in training the method.

But the training error rate often is quite different from the test error rate, and
in particular the former can dramatically underestimate the latter.

Prediction Error
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» Modern point of view of bias-variance trade-off: (Optional)
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Prediction-error estimates

Our ultimate goal is to produce the best model with best prediction accuracy.

1. We consider a class of validation methods that estimate the test error, by
holding out a subset of the training observations from the fitting process, and
then applying the statistical learning method to those held out observations.
The resulting validation-set error provides an estimate of the test error.

2. Some methods (adjusted R?, the C, statistic, AIC and BIC) make a
mathematical adjustment to the training error rate in order to estimate the
test error rate.



» Cross validation

Training error is easily computable with training data. However, the possibility of
overfit makes it cannot be used to properly assess test error.

When we have enough data, we can randomly split the data into three parts:

“Toxt .

to train various models.
d to assess the models a

Training data: used
* Validation data: us
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Fit various regression models on the training sample. Thevalidation set error
rates result from evaluating their performance on the validation sampleTV
a measure of validation set error.
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Right: The validation method was repeated ten times, each
time using a different random split of the observations into a
training set and a validation set. This illustrates the variability
in the estimated test MSE that results from this approach
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First, pick data point 1 as validation set, the [h5 n
rest as training set. Fit the model on the ‘
training set, evaluate the test error, on the 1
validation set, denoted as MSEj. 15 Train n
123 Train n
Second, pick data point 2 as validation BN Train n
set, the rest as training set. Fit the model
on the training set, evaluate the test error = T' : v
raimn n
on the validation set, denoted as say Validati
alidation
MSE,.

Repeat the procedure for all data point.

Obtain an estimate of the test error by combining the MSE; fori = 1,2, ...n.
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> é(-fold cross véli%a ion (widely used approach for estimating test error) |
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Divide the data (randomly) into K &b\ [i23
subsets, usually of equal or similar 1
. n
sizes +- Validation
11765 Train 47
b lidati h 11765 Train Validation Train 47
Treat one su set-a_s validation set, therest . T Validation m— =
together as a training set. Run the model _ o :
o o 11765 Train Validation ~ Train 47
fitting on training set. Calculate the test :
11765 Train Validatiord?

error estimate on the validation set,
denoted as MSE;.

ng _ | )L ~
Repeat the procedures over every subset. T Vyk (X,) - };

Average over the above K estimates of the test errors, and obtain

CVxy {9
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Left: The LOOCV error curve.
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10-fold CV
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Right: 10-fold CV was run nine separate times, each

with a different random split of the data

into ten parts.
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» Cross validation for classification ////// IR /\L{ D(’fg

For classification with qualitative response, a natural choice is: 1 forinc %ect classification

and O for correct classification. _g_i 18 e m.e,(d );y D

We divide the data (randomly) into K equal-
sized subsets.

1
CVigy = X z Mean Error;
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A simulated data set consisting of 100 observations in each of two groups, indicated in blue
and in orange. The purple dashed line represents the Bayes decision boundary. The
orange background grid indicates the region in which a test observation will be assigned to
the orange class, and the blue background grid indicates the region in which a test
observation will be assigned to the blue class. \ |
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'I[hg TBgyes decision boundary is
represented using a purple dashed

line.

Estimated decision boundaries from

linear, quadratic,

cubic and quartic

(degrees 1 to 4) logistic regressions
are displayed in black.

The (true) test error rates
for the four logistic regression fits
are respectively 0.201, 0.197, 0.160,

and 0.162, while
rate is 0.133.

the Bayes error

In practice the true population
distribution is unknown. Thus, the
true test error cannot be computed.
We use cross validation to solve the

problem.
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More error prediction methods.
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MThere is human readable scoring statistic is R-sg
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Mean Square Error MSE = %
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So R? = 1 is perfect correlation.
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The MSE and R-squared reflects the training error. However, a model with
larger R-squared/ or smaller MSE error is not necessarily better than another

model with smaller R-squared when we consider test error!
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1. Adjusted R-squared. Suppose we check k features

The adjusted R-squared, taking into account of the degrees of freedom

RSS/(n—k —1

n (O — )2 /@

With more inputs, the R? always increase, but the adjusted R? could decrease since
more irrelevant inputs are penalized. The adjusted R-squared is preferred over the R-

squared in evaluating models.
Oe j@m\% Ao~ Xy

b
The statistic of Mallow's C, is defined as —#‘(‘Q 3 'P:‘ o>

1
Mallows’ Cp,: = — (
L’l

Here, si = Q and RSS(k) is the RSS with k features

adjusted R%: =1 —

2. Mallows’ C,,. @

The model with the smallest C, is preferred.



. Akaike information criterion (AIC)

= L(RS\0) + penley

. Schwarz's Bayesian information\criterion(BIC)

The model with the smallest AIC or BIC is preferred.
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