Math 4570 Matrix Methods for DA and ML

Section 11. Logistic Regression

1. Logistic Regression (binary)
2. Softmax Regression (multiclass)

Instructor: He Wang
Department of Mathematics
Northeastern University

- Example: Data of students sleep time, study time, and pass/fai).

If we know the eest scores, we can use linear regression to predict the test scores.

passed $Y=1$, failed $Y=0$		
	Y	
7.40	1	
3.93	0	
0.72	0	
3.89	1	
8.19	1	
\ldots	\ldots	

$P(Y=1 \mid x)=?$

> Logistic regression

Logistic regression is a classification algorithm, used to predict probabilities based on given set of independent variables.

Data:

$$
D=\left\{\left(\vec{x}^{(i)}, y^{(i)}\right), i=1, \ldots n\right\} \quad y^{(i)} \in\{0,1\}
$$

Goal: Find conditional (posterior) probability

$$
P(Y=\underset{z}{k} \mid(\vec{X})=\overrightarrow{=} \text { for } k=0,1
$$

> Bayes Decision Boundary

logistic regression prediction function returns a probability between 0 and 1 , in order to predict which class this data belongs we need to set a threshold.

$$
\begin{array}{cl}
\text { Bayes Boundary } & P(Y=0 \mid \vec{x})=P(Y=1 \mid \vec{x}) \\
& \text { Or } P(Y=1 \mid \vec{x})=0.5
\end{array}
$$

$-\infty \leqslant \vec{\theta}^{\top} \vec{x}=\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{2} x_{d}$

> Logistics regression.

The sigmoid function maps any real value into a value in $[0,1]$.
$0 \leqslant$

$$
S(z)=\frac{1}{1+e^{-z}}
$$

- Logistics regression assumption.

$$
P(Y=1 \mid \vec{x}):=h_{\vec{\theta}}(\vec{x}):=S\left(\vec{\theta}^{T} \vec{x}\right)=\frac{1}{1+e^{-\left(\vec{\theta}^{T} \vec{x}\right.}}
$$

- Prediction:

$$
C(\vec{x})= \begin{cases}1, & \text { if } h(\vec{x}) \geq 0.5 \\ 0, & \text { if } h(\vec{x})<0.5\end{cases}
$$

- Bayes Decision Boundary $h(\vec{x})=0,5 \Leftrightarrow \vec{\theta}^{\top} \vec{x}=0$

$$
\vec{\theta}^{T} \vec{x}=0
$$

$>$ Other activation functions

Step
$f(x)=\left\{\begin{array}{l}0 \text { if } 0>x \\ 1 \text { if } x \geq 0\end{array}\right.$

(a)

(c)

(b)

(d)
Rectified Linear Unit (ReLU)

$$
\text { - } P(y=1 \mid \vec{x})=h_{\vec{\theta}}(\vec{x})=
$$

> Maximize Likelihood method:

Logistics regression Assumption (with label space $\mathcal{C}=\{0,1\}$.).

$$
\begin{cases}P(Y=1 \mid \vec{x} ; \vec{\theta})=h_{\vec{\theta}}(\vec{x}) & \text { if } Y=1 \\ P(Y=0 \mid \vec{x} ; \vec{\theta})=1-h_{\vec{\theta}}(\vec{x}) & \text { if } Y=0\end{cases}
$$

Equivalently,

$$
P(Y=y \mid \vec{x} ; \vec{\theta})=h_{\vec{\theta}}(\vec{x})^{y}\left(1-h_{\vec{\theta}}(\vec{x})\right)^{1-y} \quad y=0, \text { or },
$$

The above random variable Y is the Bernoulli Distribution with probability $p=h_{\vec{\theta}}$ depending on \vec{x} and parameter $\vec{\theta}$.
(1). $\operatorname{Data}\left(\vec{x}^{(i)}, y^{(i)}\right)$)

(D. Noolel $h_{\theta}(\vec{x}) \quad(0) \frac{\cos t}{J(\theta)}$ of $\left.h_{\theta}(\vec{x})\right]$
(4) $\arg \underset{\vec{\theta}}{\stackrel{m i n}{\vec{\theta}}}(J(\vec{\theta}))$

Given labeled data: (X, \vec{y})
$y^{(i)} \in\{0,1\}$
Maximize
Likelihood function:

$$
L(\vec{\theta}):=P(\vec{y} \mid X ; \vec{\theta})
$$

$$
y=\left[\begin{array}{c}
y^{\prime \prime \prime} \\
\vdots \\
y^{m}
\end{array}\right] \quad x=\left[\begin{array}{c}
x^{n \prime \prime} T \\
\vdots \\
\bar{x}^{(n) T}
\end{array}\right]
$$

indepander:

$$
=\prod_{i=1}^{n} P\left(y^{(i)} \mid \vec{x}^{(i)} ; \vec{\theta}\right)
$$

$$
\left.=\prod_{i=1}^{n} h_{\vec{\theta}} \vec{x}^{(i)}\right)^{y^{(i)}}\left(1-h_{\vec{\theta}}\left(\vec{x}^{(i)}\right)\right)^{1-y^{(i)}}
$$

Log Likelihood function:

$$
l(\vec{\theta})=\log L(\vec{\theta})
$$

$$
\begin{aligned}
& (f \cdot g)^{\prime}=f^{\prime} \delta+f \delta^{\prime} \\
& (f+\delta)^{\prime}=f^{\prime}+\delta^{\prime}
\end{aligned}
$$

(1) Dete $\left(\vec{X}^{(i)}, y^{(i)}\right)$ or (X, \vec{y})
(1) Model : $h_{\theta}(\vec{x}): \mathbb{R}^{d} \longrightarrow \mathbb{R}$
(3) Cost: $J(\vec{\theta}) \rightarrow \frac{1}{n}\|h(x)-\vec{y}\|^{2} \frac{\text { leat-spure }}{P(\vec{y} \mid}$
(4) $\vec{\theta}^{\text {pt. }}=\underset{\arg \min (J(\vec{\theta}))}{\text { ? }}$

Slutte: : (i) Solve $\nabla J(\vec{\theta})=0$
\rightarrow thareis a solu.

Optimization: (Maximize Likelihood)

$$
J\left(\vec{\theta} ; \vec{x}^{(i)}\right)= \begin{cases}-\ln h_{\vec{\theta}}\left(\vec{x}^{(i)}\right) & \text { if } y^{(i)}=1 \\ -\ln \left(1-h_{\vec{\theta}}\left(\vec{x}^{(i)}\right)\right) & \text { if } y^{(i)}=0\end{cases}
$$

$>$ Gradient descent for Cross-entropy Loss

$$
\nabla J(\vec{\theta})=\left[\begin{array}{c}
\frac{\partial J(\vec{\theta})}{\partial \theta_{0}} \\
\vdots \\
\frac{\partial J(\vec{\theta})}{\partial \theta_{d}}
\end{array}\right] \quad \frac{\partial J(\vec{\theta})}{\partial \theta_{i}}=?
$$

$$
\left(\frac{\partial J(\vec{\theta})}{\partial \theta_{i}}\right)=-\frac{1}{n} \sum_{i=1}^{n}\left(y^{(i)} \frac{1}{S(z)} S(z)(1-S(z)) x_{j}^{(i)}-\left(1-y^{(i)}\right) \frac{1}{1-S(z)} S(z)(1-S(z)) x_{j}^{(i)}\right.
$$

$$
\begin{aligned}
& =\frac{1}{n} \sum_{i=1}^{n}\left(S\left(\vec{\theta}^{T} \vec{x}\right)-y^{(i)}\right) x_{j}^{(i)} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(h\left(\vec{x}^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

$$
\nabla=\left[\begin{array}{c}
\frac{\partial J}{\partial \theta_{0}} \\
\frac{\partial J}{\partial \theta_{1}} \\
\vdots \\
\frac{\partial j}{\partial \theta_{d}}
\end{array}\right]
$$

$\chi \vec{\theta}$
lineer regresing

$$
\nabla_{\vec{\theta}} J=\frac{1}{n} X^{T}\left(h_{\vec{\theta}}(X)-\vec{y}\right)
$$

$$
\nabla J_{\bar{z}}=2 X^{\top}(\|(X) \cdot \vec{y})
$$

$$
h(x)=\vec{\theta} \vec{x}
$$

> Gradient Descent and Newton's method for Logistics Regression

- Gradient Descent:

$$
\vec{\theta}_{k+1}=\vec{\theta}_{k}-\alpha \nabla_{\vec{\theta}_{k}} J=\vec{\theta}_{k}-\alpha \frac{1}{n} X^{T}\left(h_{\vec{\theta}_{k}}(X)-\vec{y}\right)
$$

- Newton's method:

$$
\vec{\theta}_{k+1}=\vec{\theta}_{k}-H^{-1} \nabla J\left(\vec{\theta}_{k}\right)
$$

Here H is the Hessian matrix $H=\left[\begin{array}{ccc}\frac{\partial^{2} J}{\partial \theta_{1}{ }^{2}} & \cdots & \frac{\partial^{2} J}{\partial \theta_{1} \partial \theta_{d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} J}{\partial \theta_{d} \partial \theta_{1}} & \cdots & \frac{\partial^{2} J}{\partial \theta_{d}{ }^{2}}\end{array}\right]$

$$
\text { with } \quad H_{j k}=\frac{\partial^{2} J}{\partial \theta_{j} \partial \theta_{k}}=\frac{1}{n} \sum_{i=1}^{n} h\left(\vec{x}^{(i)}\right)\left(1-h\left(\vec{x}^{(i)}\right)\right) x_{j}^{(i)} x_{k}^{(i)}
$$

Matrix Notation for $H=\frac{1}{n} X^{T} A X$, where A=diag $\left[h\left(\vec{x}^{(i)}\right)\left(1-h\left(\vec{x}^{(i)}\right)\right)\right]$

Question: If $y \in\{-1,1\}$,

$$
\begin{aligned}
& P(Y=1 \mid \vec{x} ; \vec{\theta})=h_{\vec{\theta}}(\vec{x}) \\
& P(Y=-1 \mid \vec{x} ; \vec{\theta})=1-h_{\vec{\theta}}(\vec{x})
\end{aligned}
$$

Equivalently,

$$
P(Y=y \mid \vec{x} ; \vec{\theta})=h_{\vec{\theta}}(y \vec{x})
$$

1. Find $J(\vec{\theta})$.
2. Calculate gradient $\nabla_{\vec{\theta}} J$
3. Calculate Hessian matrix.
$\left\{\right.$ Odds Ratio: A ratio of two probabilities. $\begin{array}{l}P(K \mid \vec{x}) \\ \text { O }\end{array}=h(\vec{x})=$?
Log Odd Ratio: logarithm of an odds ratio.

Logistic Regression assumption $h_{\vec{\theta}}(\vec{x}):=\frac{1}{1+e^{-\vec{\theta}^{T} \vec{x}}}$

$>$ Softmax Regression (Multinomial oogistic Regression)binary $\{0,1\}$

$>$ Flowers of three iris plant species:
The famous Iris database, first used by Sir R.A. Fisher(1936), is best known database to be found in the pattern recognition literature. It contains the sepal and petal length and width of 150 iris flowers of three different species: Iris-Setosa, Iris-Versicolor, and Iris-Virginica.

Data features:

Classes: 0-Iris-Setosa, 1-Iris-Versicolour, 2-Iris-Virginica

Data: $D=\underset{=}{\left\{\left(\vec{x}^{(i)}, y^{(i)}\right), i=1, \ldots n\right\} \quad y^{(i)} \in(0,1,2\}} \underset{1,2,3}{(0,2)}$

x_{1}	x_{2}	x_{3}	x_{y}
$[15.1,3.5,1.4,0.2]$	y		
$[4.9,3 ., 1.4,0.2]$	0		
$[4.7,3.2,1.3,0.2]$	1		
$[4.6,3.1,1.5,0.2]$	0		
$[5 ., 3.6,1.4,0.2]$	1		
$[5.4,3.9,1.7,0.4]$	2		
$[4.6,3.4,1.4,0.3]$	0		
$[5 ., 3.4,1.5,0.2]$	1		
$[4.4,2.9,1.4,0.2]$	2		
\ldots			

one v.s. rest

Softmax:

Softmax Regression

Assumption:

$$
\begin{aligned}
& \frac{P(Y=0 \mid \vec{x} ; \vec{\theta})}{|P(Y=1 \mid \vec{x} ; \vec{\theta})|} \left\lvert\,=\frac{1}{\sum_{j=0}^{K} \exp \vec{\theta}_{j}^{T} \vec{x}}\left[\begin{array}{l}
\exp \vec{\theta}_{0}^{T} \vec{x} \\
\exp \vec{\theta}_{1}^{T} \vec{x} \\
\exp \vec{\theta}_{2}^{T} \vec{x}
\end{array}\right]=: h_{\vec{\theta}}(\vec{x})=\left[\begin{array}{l}
h_{0} \vec{\theta}(\vec{x}) \\
h_{1} \vec{\theta}(\vec{x}) \\
h_{2} \vec{\theta} \mid(\vec{x})
\end{array}\right]\right. \\
& \text { Here } \vec{\theta}_{j}=\left[\begin{array}{c}
\theta_{j, 0} \\
\theta_{j, 1} \\
\vdots \\
\theta_{j, d}
\end{array}\right] \quad \quad \bar{\jmath}=1,1,2 .
\end{aligned}
$$

So, we ha $\left(\left(e^{e}(\vec{B})(d+1)\right.\right.$ parameters $\Theta=\left[\begin{array}{lll}\vec{\theta}_{1} & \ldots & \vec{\theta}_{K}\end{array}\right]$.

Cross-entropy (log-cost) Loss

$$
J(\vec{\theta})=-\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{K} \mathbb{I}\left(y^{(i)}=j\right) \underline{\ln } P\left(y^{(i)}=j \mid \vec{x}^{(i)} ; \vec{\theta}\right)
$$

$$
=-\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{K} \mathbb{I}\left(y^{(i)}=j\right) \ln \frac{\exp \vec{\theta}_{j}^{T} \vec{x}^{(i)}}{\sum_{l=0}^{K} \exp \vec{\theta}_{l}^{T} \vec{x}^{(i)}}
$$

$\mathbb{I}()$ is the indicator function:

$$
\begin{aligned}
& \mathbb{I}(\text { True })=1 \\
& \mathbb{I}(\text { False })=0
\end{aligned}
$$

$>$ Gradient Descent:

The gradient of Cross-entropy Loss is

$$
\nabla_{\vec{\theta}_{j}} J(\vec{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(h_{\vec{\theta}}\left(\vec{x}^{(i)}\right)-\mathbb{I}\left(y^{(i)}=j\right)\right) \vec{x}^{(i)}
$$

Gradient Descent:

$$
\vec{\theta}^{\text {next }}=\vec{\theta}-\alpha \nabla_{\vec{\theta}} J
$$

Hessian is non-invertible in this case, so we can not use Newton's method directly.

- Logistics regression with non-linear boundaries:

Similarly, as linear regression, we can introduce new features

$$
\left.\begin{array}{l}
z_{1}=x_{1}, z_{2}=x_{2}, z_{3}=x_{1}^{2}, z_{4}=x_{2}^{2}, z_{5}=x_{1} x_{2}, z_{6}=x_{1}^{3},\left[\begin{array}{llll}
x_{1} & x_{2} & x_{1}^{2} & x_{1} x_{2} \\
1 & 1 & 1 & 1 \\
1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]=x_{1}^{2} x_{2}, z_{9}=x_{1} x_{2}^{2}, \ldots \\
1 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
x_{1} & x_{2} \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & -
\end{array}\right]\left[\begin{array}{l}
y \\
\vdots \\
1 \\
\vdots
\end{array}\right]
$$

Apply logistics regression to the new features, get the boundary and replace back to $x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, x_{1}^{3}, x_{2}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2} \ldots$

Then we get the אon-linear boundary.

$$
\theta_{0}+\theta_{1} x_{1}+\theta x_{2}+\theta_{3} x_{1}^{2}
$$

- Logistic regression with (ridge/lasso) regularization
Regularization Cost = Cross-entropy Loss +Penalty

$$
\begin{aligned}
& \text { Jridge }(\vec{\theta})=J(\vec{\theta})-\lambda \sum_{j=1}^{a} \theta_{j}^{2}
\end{aligned}
$$

Convert Categorical Data to Numerical Data

We used Integer Encoding for the classification, which means using 0,1,..., K for classes.

Note that in a K-class classification the individual classes can sometimes be usefully represented as K-length binary variables. (One-Hot Encoding)

This means we denote class j to be

$$
\vec{e}_{j}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \in \mathbb{R}^{K}
$$

The binary variables are often called "dummy variables" in statistics.
> Applications:

1. Email spam detector
2. Diagnose a person with a set of syndromes as virus carrier or non-carrier.
3. Identify which gene, out of a million genes, is disease-causing or not.
4. Judge if a trading activity is a fraud or not.
5. ...
