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Section 11. Logistic Regression

Math 4570 Matrix Methods for DA and ML

1. Logistic Regression (binary )
2. Softmax Regression (multiclass)

 



studied Y

7.40 1

3.93 0

0.72 0

3.89 1

8.19 1

... ...

passed Y=1, failed Y=0

Ø Example: Data of students sleep time, study time, and pass/fail.

If we know the test scores, we can use linear regression to predict 
the test scores.



slept studied Y

7.63 7.40 1

2.03 3.93 0

3.82 0.72 0

7.15 3.89 1

6.47 8.19 1

... ... ...

passed Y=1, failed Y=0



Logistic regression is a classification algorithm, used to predict probabilities 
based on given set of independent variables.

Ø Logistic regression 

Goal: Find conditional (posterior) probability 

! " = $ &⃗ = '⃗) for $ = 0, 1

logistic regression prediction function returns a probability between 0 and 1, in 
order to predict which class this data belongs we need to set a threshold.

Ø Bayes Decision Boundary

Bayes Boundary ! " = 0 &⃗) = ! " = 1 &⃗)

Or ! " = 1 &⃗) = 0.5

+ = &⃗ ! , - ! , . = 1, …0Data: - ! ∈ 0, 1 ,



ℎ" &⃗ = ! " = 1 &⃗)

ℎ" &⃗ = 0.5



Ø Logistics regression. 
The sigmoid  function maps any real value into a 
value in [0,1].

• Logistics regression assumption:

• Prediction:

• Bayes Decision Boundary

3 &⃗ = 41, .5 ℎ &⃗ ≥ 0.5
0, .5 ℎ &⃗ < 0.5

8⃗#&⃗ = 0

9 : = 1
1 + <$%

)! " = 1 &⃗ ≔ ℎ" &⃗ : = 9 8⃗#&⃗ = 1
1 + <$"!'⃗



Rectified Linear Unit (ReLU)

Step

Ø Other activation functions



Logistics regression Assumption (with label space ? = {0, 1}):

Equivalently, 

The above random variable " is the Bernoulli Distribution with probability B = ℎ"
depending on &⃗ and parameter 8⃗.

Ø Maximize Likelihood method: 

K! " = 1 &⃗; 8⃗ = ℎ" &⃗

K! " = 0 &⃗; 8⃗ = 1 − ℎ" &⃗

K! " = - &⃗; 8⃗ = ℎ" &⃗ ( 1 − ℎ" &⃗
)$(



Likelihood function: 

Given labeled data:  (O, P)

=Q
!*)

+
! - ! | &⃗ ! ; 8⃗

KS 8⃗ = ! -⃗ T; 8⃗

= Q
!*)

+
ℎ" &⃗ ! ( "

1 − ℎ" &⃗ ! )$( "

Log Likelihood function: 

U 8⃗ = log S 8⃗

=Y
!*)

+
- ! ln ℎ" &⃗ ! + (1 − - ! ) ln 1 − ℎ" &⃗ !

- ! ∈ 0, 1





= argmax U 8⃗

= arg[\] − ^] Y
!*)

+
- ! ln ℎ" &⃗ ! + (1 − - ! ) ln 1 − ℎ" &⃗ !

Cross-entropy Loss _ 8⃗

argmax S 8⃗

Optimization: (Maximize Likelihood ) 

Or log-cost function

Cost for each individual point &⃗ ! , - ! : 

_ 8⃗; &⃗ ! = 4
− ln ℎ" &⃗ ! .5 - ! = 1
− ln 1 − ℎ" &⃗ ! .5 - ! = 0



Ø Gradient descent for Cross-entropy Loss 

∇_ 8⃗ =

a_(8⃗)
a8,
⋮

a_(8⃗)
a8-

a_(8⃗)
a8!

= ?

Recall: ℎ" &⃗ : = 9 8⃗#&⃗ = 1
1 + <$"!'⃗

d 9(:)
d : = 9 : 1 − 9 :

aℎ" &⃗(!)
a80

= 9 : 1 − 9 : &0
(!) : = 8⃗#&⃗



= −10Y!*)

+
- ! 1

9 : 9 : 1 − 9 : &0 ! − 1 − - ! 1
1 − 9 : 9 : 1 − 9 : &0 !

= 1
0Y!*)

+
9 8⃗#&⃗ − - ! &0 !

= 1
0Y
!*)

+
ℎ &⃗ ! − - ! &0 !

e" _ =
1
0 T

# ℎ" T − -⃗

Vector notation of the gradient:

a_ 8⃗
a8!



• Gradient Descent: 

8⃗12) = 8⃗1 − fe"# _ = 8⃗1 − f
)
+T

# ℎ"# T − -⃗

• Newton’s method: 

8⃗12) = 8⃗1 − g$)∇ _(8⃗1 )

Here g is the Hessian matrix g= 

3$4
3"%$

⋯ 3$4
3"%3"&

⋮ ⋱ ⋮
3$4

3"&3"%
⋯ 3$4

3"&$

with g01 =
a5_

a80a81
= 1
0Y!*)

+
ℎ &⃗ ! 1 − ℎ &⃗ ! &0 ! &1!

Matrix Notation for g = )
+ T

#jT, where A=diag ℎ &⃗ ! 1 − ℎ &⃗ !

Ø Gradient Descent and Newton’s method for Logistics Regression



Question: If - ∈ −1, 1 ,

Equivalently, 

K! " = 1 &⃗; 8⃗ = ℎ" &⃗

K! " = −1 &⃗; 8⃗ = 1 − ℎ" &⃗

K! " = - &⃗; 8⃗ = ℎ" -&⃗

1. Find _(8⃗).
2. Calculate gradient e" _
3. Calculate Hessian matrix.

(why?)



Odds Ratio: A ratio of two probabilities.

Log Odd Ratio: logarithm of an odds ratio.

log !(" = 1|&⃗)
!(" = 0|&⃗) = log ℎ(&⃗)

1 − ℎ(&⃗) : = 8⃗#&⃗

ℎ" &⃗ : = 1
1 + <$"!'⃗

Logistic Regression assumption



Ø Softmax Regression (Multinomial Logistic Regression)

Ø Flowers of three iris plant species:
The famous Iris database, first used by Sir 
R.A. Fisher(1936), is best known database to 
be found in the pattern recognition 
literature. It contains the sepal and petal
length and width of 150 iris flowers of three 
different species: Iris-Setosa, Iris-Versicolor, 
and Iris-Virginica.

[5.1, 3.5, 1.4, 0.2] 
[4.9, 3. , 1.4, 0.2] 
[4.7, 3.2, 1.3, 0.2]
[4.6, 3.1, 1.5, 0.2]
[5. , 3.6, 1.4, 0.2]
[5.4, 3.9, 1.7, 0.4] 
[4.6, 3.4, 1.4, 0.3] 
[5. , 3.4, 1.5, 0.2] 
[4.4, 2.9, 1.4, 0.2]
...

Data features: 
Sepal length
Sepal width 
Petal length 
Petal width

Classes: 0-Iris-Setosa, 1-Iris-Versicolour, 2-Iris-Virginica

+ = &⃗ ! , - ! , . = 1, …0Data: - ! ∈ 0, 1, 2



one v.s. rest

Softmax:



Goal: 
! " = l T = &⃗) =? for l = 0, 1, … , m

Softmax Regression

! " = 0 &⃗; 8⃗)
! " = 1 &⃗; 8⃗)
! " = 2 &⃗; 8⃗)

: = 1
∑0*,6 exp 8⃗0#&⃗

exp 8⃗,#&⃗
exp 8⃗)#&⃗
exp 8⃗5#&⃗

=: ℎ" &⃗

Assumption: 

8⃗0 =
80,,
80,)
⋮
80,-

Here

So, we have m(d + 1) parameters Θ = [8⃗) … 8⃗6] .



Cross-entropy (log-cost) Loss 

_ 8⃗ = − 10 Y
!*)

+
Y
0*)

6
r - ! = s ln! - ! = s &⃗ ! ; 8⃗

r True = 1

r( ) is the indicator function:

r False = 0

= −10 Y!*)

+
Y
0*)

6
r - ! = s ln exp 8⃗0#&⃗(!)

∑8*,6 exp 8⃗8#&⃗(!)



Ø Gradient Descent:

The gradient of Cross-entropy Loss is 

∇"'_ θ = 1
0 Y

!*)

+
ℎ" &⃗ ! − r - ! = s &⃗ !

Hessian is non-invertible in this case, so we can not use Newton’s method directly.

8⃗+9': = 8⃗ − fe" _

Gradient Descent:



• Logistics regression with non-linear boundaries:  

:) = &), :5 = &5, :;= &)5, :< = &55, := = &)&5, :> = &);,
Similarly, as linear regression, we can introduce new features 

Apply logistics regression to the new features, get the boundary and 
replace back to &), &5, &)5 , &55, &)&5, &);, &5;, &)5&5, &)&55… 

:? = &5;, :@ = &)5&5, :A= &)&55 , …

Then we get the non-linear boundary. 

Ø Some Remarks:



• Logistic regression with (ridge/lasso) regularization

Regularization Cost = Cross-entropy Loss +Penalty

_8BCCD 8⃗ = _ 8⃗ + λY
0*)

-
|80|

_E!-F9 8⃗ = _ 8⃗ + λY
0*)

-
805



Note that in a K-class classification the individual classes can sometimes be
usefully represented as K-length binary variables. (One-Hot Encoding)

This means we denote class j to be

<⃗0 =

0
⋮
0
1
0
⋮
0

∈ ℝ6

Convert Categorical Data to Numerical Data

We used Integer Encoding for the classification, which means using 0,1,…, K 
for classes.

The binary variables are often called “dummy variables” in statistics.



1. Email spam detector
2. Diagnose a person with a set of syndromes as virus carrier or non-carrier.
3. Identify which gene, out of a million genes, is disease-causing or not.
4. Judge if a trading activity is a fraud or not.
5.  …

Ø Applications: 


