Math 4570 Matrix Methods for DA and ML

Section 10. Probability Review

1. Probability functions
2. Random Variables
3. Probability density functions
$\longrightarrow 4$. Expected values and variance
4. Classical distributions

Instructor: He Wang
Department of Mathematics
Northeastern University
> Terminologies:

- Experiment: A repeatable procedure with a set of possible results.
- Sample Space $S=\{$ all possible outcomes of an experiment $\}$
- Event: A subset of S.

Example 1. Experiment: Flipping a Coin once.

Example 2. Experiment: Rolling a 6 -sided die once.

$$
S=\{1,2,3,4,5,6\}
$$

Definition (1930s, Kolmogorov)
Le Soe a finite sample space. A probability function P is a function

$$
P:(S) \rightarrow[0,1]
$$

satisfying the following two axioms:

$$
\left\{\begin{array}{l}
\text { 1.) } P(\underline{\underline{S}})=1 \\
\text { 2.) If } A \cap B=\emptyset, \text { then } P(A \cup B)=P(A)+P(B) \\
==
\end{array}\right.
$$

If S is an infinite set, we need one more axiom:

$$
\text { 3.) } \quad P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right) \quad \text { if } A_{i} \cap A_{j}=\emptyset \text { for any } i \neq j
$$

Classical definition of probability (a special case for probability function)

Suppose the outcomes of an experiment are alkequally likely, and the total number of all possible outcomes is finite. $\#(S)$

$$
\text { Probability of an event }:=\frac{\text { Number of ways it can happen } \#(A)}{A}
$$

That is, $\quad P(A):=\frac{|A|}{|S|}$

Example. Rolling a 6-sided "firl"
Example. Rolling a 6-sided die once.

Example, flip an unfair coin once.

Some properties

1. $\quad P\left(A^{C}\right)=1-P(A)$.

2. If $A \subset B$ then $P(A) \leq P(B)$.
3. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

4. $\quad P(A)=P\left(A \cap B^{C}\right)+P(A \cap B)$.

Conditional Probability

Definition. Probability that event A occurs (given that event B)already occurs, denoted by $\mathbf{P}(\mathbf{A} \mid \mathbf{B})$ is a conditional probability, defined by

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)}
$$

$$
P(A(A)=P(A \mid B) P(1)
$$

$$
\{2,4,6\rangle \frac{\text { Example. Rolling affair 6-sided die once. } S}{=\{1,2,\}, 4,5,6\}} \begin{aligned}
& \text { Given that the result is an even number, what is } \\
& \text { the probability that the result is 6? } \\
& \qquad A=\{6]
\end{aligned}
$$

$$
P\left(A(\eta)=\frac{P(A \cap D)}{P(D)}=\frac{1 / 6}{3 / 6}=\frac{1}{3}\right.
$$

$P(A \cap B)=P(A \mid B) P(B)$

Definition: The events A and B are called independent if

$$
P(A \cap B)=P(A) P(B)
$$

If A and B are not empty set, A and B are independent if and only if

$$
P(A \mid B)=P(A) \text { if and only if } P(B \mid A)=P(B)
$$

Example. Rolling a 6-sided die twice. $\{(a, b)\} \quad \underset{b \in\{ }{ } \quad \begin{aligned} & \text { A: the first face is even number } \\ & \text { B: the second face is } 6\end{aligned}$

$$
P(A \cap D)=P(A) P(D)=\frac{3}{6} \cdot \frac{1}{6}
$$

Theorem 1. Law of Total Probability

$$
\begin{aligned}
& S=A \cup A^{c}
\end{aligned}
$$

Theorem. Law of Total Probability

Let $A_{1}, A_{2}, \ldots, A_{n}$ be a sequence of events such that $S=\bigcup_{i=1}^{n} A_{i}$ and $A_{i} \cap A_{j}=\emptyset$. Then, for any event B,

$$
P(B)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

$$
\begin{aligned}
P(B) & =P\left(B \cap A_{1}\right)+P\left(\underline{\left.B \cap A_{2}\right)}+P\left(B \cap A_{3}\right)+P\left(B \cap A_{4}\right)+P\left(B \cap A_{5}\right)\right. \\
& =\underbrace{P\left(B \mid A_{1}\right) P\left(A_{1}\right)}+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+P\left(B \mid A_{3}\right) P\left(A_{3}\right)+P\left(B \mid A_{4}\right) P\left(A_{4}\right)+P\left(B \mid A_{5}\right) P\left(A_{5}\right)
\end{aligned}
$$

Theorem 2. Bayes' Theorem

Theorem. Bayes' Theorem
Let $A_{1}, A_{2}, \ldots, A_{n}$ be a sequence of events such that $S=\bigcup_{i=1}^{n} A_{i}$ and $A_{i} \cap A_{j}=\emptyset$. Then, for any event B,

$$
P\left(A_{j} \mid B\right)=\frac{P\left(B \mid A_{j}\right) P\left(A_{j}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
$$

for any $j=1, \cdots, n$.

Example: in classification problem.

> Random Variables

Let S be a sample space.

Example 1. Flipping an unfair coin once.

Probability density(mass) function

Definition.

For every discrete random variable X, we define a probability density function (pdf) by

$$
p_{X}(k)=P(X=k):=P(\{s \in S \mid X(s)=k\})
$$

(If $k \notin X(S)$, then $p_{X}(k)=0$.)

Pdf function $\underline{p}_{X}(k)=\phi^{k}(1-\phi)^{1-k} \left\lvert\,=\left(\begin{array}{ll}\left.\begin{array}{ll}\phi & i f \\ 1-\phi & i f\end{array} \right\rvert\, \begin{array}{l}k=1 \\ k=0\end{array}\end{array}\right.\right.$

Example. Rolling an unfair 6-sided die once.

Assume $Y \sim$ Categorical $\left(\phi_{1}, \ldots, \phi_{K}\right)$ such that $\phi_{1}+\cdots+\phi_{K}=1$

$$
\begin{aligned}
& \Perp(\text { the })=1 \\
& 1(\text { false })=0
\end{aligned}
$$

Continuous Random variables:

Definition.

The probability density function (pdf) of a continuous random variable X is a piecewise continuous function $f_{X}(x)$ satisfying

1. $f_{X}(x) \geq 0$
2. $\int_{-\infty}^{\infty} f_{X}(x) d x=1$.

Definition.

The probability that X is in an interval $[a, b]$ is

$$
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x
$$

Example: Uniform Distribution.

The uniform distribution describes an experiment that choose a number randomly from the interval [a, b].

The probability density function of the uniform distribution is

$$
f(x)= \begin{cases}\frac{1}{b-q} & \text { for } a \leq x \leq b, \\ 0 & \text { for } x<a \text { or } x>b\end{cases}
$$

$>$ Expected Value
Expected value is a generalization of the concept "average".

Definition: Expected Value of discrete random variable

If X is a discrete random variable with probability function $p_{X}(k)$, then the expected value (or Mean) of X is

$$
E(X)=\sum_{\text {all } k} k \cdot p_{X}(k) .
$$

Definition: (Expected Value of continuous random variable)

If X is a continuous random variable with probability function $p_{X}(k)$, then the expected value (or Mean) of X is

$$
E(X)=\int_{-\infty}^{\infty} x \cdot p_{X}(x) d x
$$

Property: $E(a X+b)=a E(X)+b$

Definition. (Variance)

The variance of a random variable X is

$$
\operatorname{Var}(X):=E\left((X-\mu)^{2}\right)
$$

Here $\mu=E(X)$ is the mean of X.
The standard deviation is $\sigma:=\sqrt{\operatorname{Var}(X)}$

Variance is expected squared distance from the mean.
It measures the spread of the data.
Calculation formula: $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$

$$
\text { Property: } \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

Standard Normal Distribution

Definition.

The standard normal distribution is a continuous pdf defined by

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}}
$$

for $-\infty<z<\infty$.

The graph is Gaussian curve (bell curve).

Normal distributions $X=\sigma Z+\mu$:

Definition. (Normal Distribution)

The Normal Distribution is a continuous pdf function defined as

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \quad \text { for }-\infty<x<\infty
$$

Red: $\mu=0, \sigma=1$. Green: $\mu=0, \sigma=0.6$. Blue: $\mu=4, \sigma=1$. Black: $\mu=4, \sigma=2$.
> Covariance and independence
Suppose X and Y are any random variables on the same sample space.

- $E(a X+b Y)=a E(X)+b E(Y)$
- Var $(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)$
$\operatorname{Cov}(X, Y)$ is the covariance of X and Y defined as

$$
\operatorname{Cov}(X, Y):=E(X Y)-E(X) E(Y)
$$

If X and Y are independent, then

- $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$
- $\operatorname{Cov}(X, Y)=0$
- $E(X Y)=E(X) E(Y)$

The converse is not true.

Joint distribution (multi random variables):

Definition. Discrete Joint Density

Let S is a discrete sample space. Let X and Y be two random variables on S. The joint probability density function (joint pdf) of X and Y is denoted by $p_{X, Y}(x, y)$ defined as

$$
p_{X, Y}(x, y):=P(X=x, Y=y) .
$$

Here, $P(X=x, Y=y)$ is the probability when $X=x$ and $Y=y$.

Definition.

If X and Y are continuous random variables. the joint pdf $f_{X, Y}(x, y)$ of X and Y is a piecewise continuous multi-variable function satisfying
(1.) $f_{X, Y}(x, y) \geq 0$.
(2.) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$.
$>$ Multivariate normal distribution.
Vector random variable $\vec{X}=\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{d}\end{array}\right] \sim \operatorname{Normal}(\vec{\mu}, \Sigma)$
Here $\vec{\mu} \in \mathbb{R}^{d}$ and Σ is an $d \times d$ symmetric, positive definite matrix.

- The joint probability density function (pdf) for \vec{X} is

$$
f_{\vec{x}}(\vec{x})=\frac{1}{\sqrt{(2 \pi)^{d}|\Sigma|}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})\right)
$$

$$
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{\vec{X}}(\vec{x}) d \vec{x}=1
$$

- The mean vector of \vec{X} is $E(\vec{X})=\vec{\mu}$
- The (co) variance matrix is $\operatorname{Cov}(\vec{X})=\Sigma$

Standard normal

Compressed

Spread-out

> More examples of distributions:

1. Binomial distribution is a generalization of Bernoulli distribution.

Given a series of n independent trials with two outcomes (T or F) with constant probability p and $1-p$.

Let X be the number of T appears in the n trials. Then $\mathrm{X} \backsim \operatorname{Binomial}(n, p)$

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

For example, flip a coin n times.
2. Multinomial is a generalization of Categorical distribution.

Given a series of n independent trials with m outcomes $\left(O_{1}, \ldots O_{m}\right)$ with constant probability $\left(\phi_{1}, \ldots, \phi_{m}\right)$.

Let \vec{X} be the number of O_{i} appears in the n trials.

$$
\begin{aligned}
& \text { Then } \vec{X} \backsim \operatorname{Multinomial}\left(n, \phi_{1}, \ldots, \phi_{m}\right) \\
& \qquad P\left(X_{i}=n_{i}\right)=\frac{n!}{n_{1}!\cdots n_{m}!} \phi_{1}^{n_{1}} \cdots \phi_{m}^{n_{m}} \\
& \text { for each } i=1, \ldots, m \text {, and each } n_{1}+\cdots+n_{m}=n
\end{aligned}
$$

For example, Toss a K-side die n times.
3. Exponential random variable is a continuous random variable with pdf given by

$$
f_{X}(x)=\lambda e^{-\lambda x} \text { for } x \geq 0
$$

where λ is a fixed positive number.

- The mean and variance are given by

$$
\begin{aligned}
& E(X)=\frac{1}{\lambda} \\
& \operatorname{Var}(X)=\frac{1}{\lambda^{2}}
\end{aligned}
$$

- Exponential distribution model the time between occurrences in a time interval.

4. Poisson Distribution

Definition. (Poisson Distribution)

The Poisson Distribution Piosson (λ) is a discrete pdf function defined as

$$
p_{X}(k)=P(X=k):=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

for $k=0,1,2,3, \ldots$ Here, λ is a positive constant.

Theorem.

(1) It is a well defined pdf , i.e., $\sum_{k} p_{X}(k)=1$
(2) The mean is $E(X)=\lambda$.
(3) The variance is $\operatorname{Var}(X)=\lambda$.

Applications:

1. Poisson approximation for binomial distribution
2. Poisson Model. The number of occurrences in a time interval with a given rate.

More references:

1. My lecture notes for Math3081:
https://web.northeastern.edu/he.wang/Teaching/Teaching3081/ Math3081.htm
2. Deep Learning by Goodfellow, Bengio, Courville (Chapter 2)
https://www.deeplearningbook.org/
3. Pattern Recognition and Machine Learning, by Chris Bishop.
(Chapters 1.2 and 2.1-2.3)
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
4. Review of Probability Theory https://cs229.stanford.edu/section/cs229-prob.pdf
