1. The t-distribution

Review of $\S 5.3$. Suppose $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ with known σ and unknown μ. The maximum likelihood estimator for μ is the sample mean $\widehat{\mu}=\bar{X}$.

By CLT, we know that the sample mean $\bar{X} \sim \operatorname{Normal}\left(\mu, \sigma^{2} / n\right)$. Then,

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \operatorname{Normal}(0,1)
$$

Then,

$$
-z_{\alpha / 2} \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}
$$

We solve μ,

$$
\mu=\bar{x} \pm z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)
$$

The $100(1-\alpha) \%$ confidence interval for μ

$$
\bar{x}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) \leq \mu \leq \bar{x}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)
$$

Suppose $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ with unknown σ and unknown μ.
In $\S 5.4$, we calculated an unbiased estimate and estimator for the population variance σ^{2}, called sample variance:

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \text { and } S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

However, the distribution

$$
T_{n-1}=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

is NOT the standard normal distribution. This distribution T_{n-1} is called the (Student's) t-distribution with $n-1$ degrees of freedom (df).

As n increases, T_{n-1} approaches the standard normal distribution Z.

2. The confidence interval.

By t-distribution with degree of freedom $\mathbf{d f}=n-1$, the $100(1-\alpha) \%$ confidence interval for μ is

$$
\bar{x}-t_{\alpha / 2, n-1}\left(\frac{s}{\sqrt{n}}\right) \leq \mu \leq \bar{x}+t_{\alpha / 2, n-1}\left(\frac{s}{\sqrt{n}}\right)
$$

Similarly as $z_{\alpha / 2}=\operatorname{invNorm}(1-\alpha / 2,0,1)$, we can use calculator to compute $t_{\alpha / 2, n-1}$ as

$$
t_{\alpha / 2, n-1}=\operatorname{invT}(1-\alpha / 2, n-1)
$$

Example 1. The grades in a test are known to follow a normal distribution, but the mean and variance are unknown. A random sample of 6 students produced the following scores: $68,93,82,72,65,70$. Use the t-distribution to find a 90% two-sided confidence interval for the mean score.

The Sample size $n=6$. The value $t_{\alpha / 2, n-1}=t_{0.05,5}=\operatorname{invT}(0.95,5) \approx 2.015$.
The sample mean $\bar{x}=\frac{68+93+82+72+65+70}{6}=75$.
The sample variance $s^{2}=\frac{7^{2}+18^{2}+7^{2}+3^{2}+10^{2}+5^{2}}{5}=111.2$. So $s \approx 10.55$
So, the 90% two-sided confidence interval for the mean score is $\mu=75 \pm 2.015\left(\frac{10.55}{\sqrt{6}}\right)$.
$66.321 \leq \mu \leq 83.679$.

Another way to calculate the confidence interval is by

STAT \rightarrow TESTS \rightarrow TInterval

If we have data, use Data, which are put in L1:

STAT \rightarrow Edit

If we have the sample average, use Stats.
Example 2. The grades in a test are known to follow a normal distribution, but the mean and variance are unknown. A random sample of 6 students produced the scores with mean 75 and standard deviation 10.55. Use the t-distribution to find a 90% two-sided confidence interval for the mean score.

3. One Sample t-Test

In $\S 6.2$, we learned hypothesis testing on the unknown mean of a normal distribution with known variance.

Now, suppose the variance is unknown, we use the sample variance S^{2} and the t-distribution

$$
T_{n-1}=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

To Test the Null Hypothesis $H_{0}: \mu=\mu_{0}$ at the level of significance α, we define the test statistic:

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}
$$

1. (Right-sided) $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu>\mu_{0}$.

Decision Rule: Reject H_{0} if $t>t_{\alpha, n-1}$.
2. (Left-sided) $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu<\mu_{0}$.

Decision Rule: Reject H_{0} if $t<-t_{\alpha, n-1}$.
3. (Two-sided) $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$.

Decision Rule: Reject H_{0} if $t<-t_{\alpha / 2, n-1}$ or $t>t_{\alpha / 2, n-1}$.

Recall that $t_{\alpha, n-1}$ is calculated by

$$
t_{\alpha, n-1}=\mathbf{i n v} \mathbf{T}(1-\alpha, n-1)
$$

Example 3. Suppose you want to test $H_{0}: \mu=12$ versus $H_{1}: \mu>12$ at the level of significance 0.05 . The data is $\bar{y}=13.2$ and $s=2.5$ from a sample of 25 .

Degree of freedom $d f=n-1=24$
$t_{\alpha, n-1}=\operatorname{invT}(0.95,24) \approx 1.71$
The test statistics $t=\frac{13.2-12}{2.5 / \sqrt{25}}=2.4>t_{\alpha, n-1}$. So, reject H_{0}.

We can also do this by Calculator: STAT \rightarrow TESTS \rightarrow T-Test

Example 4. The grades in a test are known to follow a normal distribution, but the mean and variance are unknown. A random sample of 6 students produced the following scores: 68, 93, 82, 72, 65, 70. Suppose we want to test $H_{0}: \mu=67$ versus $H_{1}: \mu>67$ at the level of significance 0.05 .

We can also do this by Calculator:

STAT \rightarrow TESTS \rightarrow T-Test

For this question, we need to use Data.
$t_{\alpha, n-1}=\operatorname{invT}(0.95,5) \approx 2.02$

