§6.3 Testing Binomial Data (for unknown proportion)

Suppose a sample of size n from $X \sim \operatorname{Bernoulli}(p)$ with unknown $p: X_{1}=k_{1}, X_{2}=k_{2}, \ldots$, $X_{n}=k_{n},\left(k_{i} \in\{0,1\}\right)$.

$$
\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

Each X_{i} is Bernoulli with mean $E\left(X_{i}\right)=p$ and variance $\sigma^{2}=p(1-p)$
By CLT, we know that $\bar{X} \sim \operatorname{Normal}\left(p, \frac{p(1-p)}{n}\right)$ for large n. Then,

$$
Z=\frac{\bar{X}-p}{\sqrt{\frac{p(1-p)}{n}}} \sim \operatorname{Normal}(0,1)
$$

To Test the Null Hypothesis $H_{0}: p=p_{0}$ at the level of significance α, we define the test statistic:

$$
z=\frac{\bar{k}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}
$$

1.(Right-sided) $H_{0}: p=p_{0}$ versus $H_{1}: p>p_{0}$.

Decision Rule: Reject H_{0} if $z>z_{\alpha}$.
2. (Left-sided) $H_{0}: p=p_{0}$ versus $H_{1}: p<p_{0}$.

Decision Rule: Reject H_{0} if $z<-z_{\alpha}$.
3. (Two-sided) $H_{0}: p=p_{0}$ versus $H_{1}: p \neq p_{0}$.

Decision Rule: Reject H_{0} if $z<-z_{\alpha / 2}$ or $z>z_{\alpha / 2}$.

Example 1. (Example 4 in §5.3) A poll was conducted to find out the percentage of people who will vote A or B for mayor of a city. Out of 500 people polled, 263 said A and the rest said B.
(1) Can we conclude that A, B are even with level of significance 0.05 ?

Let p be the probability that a person will vote A .
$H_{0}: p=0.5$ versus $H_{1}: p \neq 0.5$.
Since $\alpha=0.05$, then $z_{\alpha / 2}=\operatorname{invNorm}(0.975,0,1) \approx 1.96$.
The average $\bar{k}=263 / 500=0.526$. The test statistic is

$$
z=\frac{\bar{k}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{0.526-0.5}{\sqrt{\frac{0.5(1-0.5)}{500}}}=1.16<z_{\alpha / 2}
$$

So, we fail to reject H_{0}.
(2) Can we conclude that B is 2% ahead with level of significance 0.05 ?

Let p be the probability that a person will vote B .
$H_{0}: p=0.51$ versus $H_{1}: p<0.51$.
Since $\alpha=0.05$, then $z_{\alpha}=\operatorname{invNorm}(0.95,0,1) \approx 1.65$.
The average is $\bar{k}=0.474$. The test statistic is

$$
z=\frac{\bar{k}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{0.474-0.51}{\sqrt{\frac{0.51(1-0.51)}{500}}}=-1.61>-z_{\alpha}
$$

So, we fail to reject H_{0}.
(3) Can we conclude that A is 2% ahead with level of significance 0.05 ?

Let p be the probability that a person will vote A .
$H_{0}: p=0.51$ versus $H_{1}: p<0.51$.
$z=0.71>-z_{\alpha}$ implies that we fail to reject H_{0}.

We can also use the P-value to solve the problem.
If $H_{1}: p>p_{0}$, then P-value $=P\left(\bar{X} \geq \bar{k} \mid H_{0}\right.$ is true $)$
If $H_{1}: p<p_{0}$, then P-value $=P\left(\bar{X} \leq \bar{k} \mid H_{0}\right.$ is true $)$
If $H_{1}: p \neq p_{0}$, then P-value $=2 P\left(\bar{X} \geq \bar{k} \mid H_{0}\right.$ is true $)$ or P-value $=2 P\left(\bar{X} \leq \bar{k} \mid H_{0}\right.$ is true $)$
Decision Rule: Reject H_{0} if P-value $<\alpha$.
Example 2. Suppose 4 years ago in a voting campaign 40% of people supported a certain program. A recent poll of 420 people found that 151 people supported the program. Test at 5% significance level to see if the support for the program has changed.

Let p be the probability that a person will support the program.
$H_{0}: p=0.4$ versus $H_{1}: p \neq 0.4$.
Since $\alpha=0.05$, then $z_{\alpha / 2}=\operatorname{invNorm}(0.975,0,1) \approx 1.96$.
The average $\bar{k}=151 / 420$. The test statistic is

$$
z=\frac{\bar{k}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{151 / 420-0.4}{\sqrt{\frac{0.4(1-0.4)}{420}}}=-1.693>-z_{\alpha / 2}
$$

So, we fail to reject H_{0}.

Solution by P-Value: Suppose H_{0} is true. By CLT,

$$
\bar{X} \sim \operatorname{Normal}\left(p_{0}, p_{0}\left(1-p_{0}\right) / n\right)
$$

Since $\bar{k}<\mu_{0}$, the P-value is

$$
P \text {-value }=(2) \text { normalcdf }\left(-\infty, 151 / 420,0.4, \sqrt{\frac{0.4(1-0.4)}{420}}\right) \approx 0.0904>\alpha
$$

So, we fail to reject H_{0}.

Remark: If we use $\bar{k}=151 / 420 \approx 0.36$, the error is big.
We can also use the calculator to find the test statistic and P-value:

STAT \rightarrow TESTS \rightarrow 1-PropZTest
More calculator functions are summarized on the summary file on Blackboard/Course Materials.

Compare $\S 5.3$ with $\S 6.2-6.3$

Next, we compare the Confidence Interval and the Hypothesis Test.
We use Normal Distribution $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ with known standard deviation σ as an example. Similar for the proportion.

Example 3. The 98% confidence interval for the mean is [76.5, 83.5] with data from a normal distribution with known σ. Now a hypothesis test is run at the $\alpha=0.02$ level of significance using $H_{0}: \mu=77$ against $H_{1}: \mu \neq 77$.
(1) Find the sample mean \bar{x}.

$$
\bar{x}=\frac{76.5+83.5}{2}=80
$$

(2) Find the test statistic value z for the test.
$z_{\alpha / 2} \approx 2.326$. By margin of error, $z_{\alpha / 2}(\sigma / \sqrt{n})=\frac{83.5-76.5}{2}=3.5$. So $\sigma / \sqrt{n}=\frac{3.5}{z_{\alpha / 2}} \approx 1.505$.
The test statistic value $z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}=\frac{80-77}{1.505} \approx 1.99$.
(3) Would the null hypothesis be rejected at the $\alpha=0.02$ level of significance?
(A) Reject H_{0}.
(B) Fail to reject H_{0}.
(C) Information is not enough.
(4) Would the null hypothesis be rejected at the $\alpha=0.01$ level of significance?
(A) Reject H_{0}.
(B) Fail to reject H_{0}.
(C) Information is not enough.

