§6.3 Testing Binomial Data (for unknown proportion)

Suppose a sample of size n from $X \sim Bernoulli(p)$ with unknown p: $X_1 = k_1, X_2 = k_2, \dots, X_n = k_n, (k_i \in \{0, 1\}).$

$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$

Each X_i is Bernoulli with mean $E(X_i) = p$ and variance $\sigma^2 = p(1-p)$

By CLT, we know that $\overline{X} \sim \text{Normal}\left(p, \frac{p(1-p)}{n}\right)$ for large *n*. Then, $Z = \frac{\overline{X} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim \text{Normal}(0, 1)$

To Test the Null Hypothesis $H_0: p = p_0$ at the level of significance α , we define the **test** statistic:

$$z = \frac{k - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

1.(Right-sided) $H_0: p = p_0$ versus $H_1: p > p_0$. Decision Rule: Reject H_0 if $z > z_{\alpha}$.

2. (Left-sided) $H_0: p = p_0$ versus $H_1: p < p_0$.

Decision Rule: Reject H_0 if $z < -z_{\alpha}$.

3. (Two-sided) $H_0: p = p_0$ versus $H_1: p \neq p_0$.

Decision Rule: Reject H_0 if $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$.

Example 1. (Example 4 in §5.3) A poll was conducted to find out the percentage of people who will vote A or B for mayor of a city. Out of 500 people polled, 263 said A and the rest said B.

(1) Can we conclude that A, B are even with level of significance 0.05?

Let p be the probability that a person will vote A. $H_0: p = 0.5$ versus $H_1: p \neq 0.5$. Since $\alpha = 0.05$, then $z_{\alpha/2} = \mathbf{invNorm}(0.975, 0, 1) \approx 1.96$. The average $\overline{k} = 263/500 = 0.526$. The **test statistic** is

$$z = \frac{\overline{k} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.526 - 0.5}{\sqrt{\frac{0.5(1 - 0.5)}{500}}} = 1.16 < z_{\alpha/2}$$

So, we fail to reject H_0 .

(2) Can we conclude that B is 2% ahead with level of significance 0.05?

Let p be the probability that a person will vote B. $H_0: p = 0.51$ versus $H_1: p < 0.51$. Since $\alpha = 0.05$, then $z_{\alpha} = \mathbf{invNorm}(0.95, 0, 1) \approx 1.65$. The average is $\overline{k} = 0.474$. The **test statistic** is $z = \frac{\overline{k} - p_0}{2} = \frac{0.474 - 0.51}{2} = 1.65$.

$$z = \frac{\kappa - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.474 - 0.51}{\sqrt{\frac{0.51(1 - 0.51)}{500}}} = -1.61 > -z_{\alpha}$$

So, we fail to reject H_0 .

(3) Can we conclude that A is 2% ahead with level of significance 0.05?

Let p be the probability that a person will vote A. $H_0: p = 0.51$ versus $H_1: p < 0.51$. $z = 0.71 > -z_{\alpha}$ implies that we fail to reject H_0 . We can also use the *P*-value to solve the problem.

If $H_1: p > p_0$, then *P*-value= $P(\overline{X} \ge \overline{k} | H_0 \text{ is true})$

If $H_1: p < p_0$, then *P*-value= $P(\overline{X} \leq \overline{k} | H_0 \text{ is true})$

If $H_1: p \neq p_0$, then P-value= $2P(\overline{X} \geq \overline{k}|H_0 \text{ is true})$ or P-value= $2P(\overline{X} \leq \overline{k}|H_0 \text{ is true})$

Decision Rule: Reject H_0 if P-value $< \alpha$.

Example 2. Suppose 4 years ago in a voting campaign 40% of people supported a certain program. A recent poll of 420 people found that 151 people supported the program. Test at 5% significance level to see if the support for the program has changed.

Let p be the probability that a person will support the program. $H_0: p = 0.4$ versus $H_1: p \neq 0.4$. Since $\alpha = 0.05$, then $z_{\alpha/2} = \mathbf{invNorm}(0.975, 0, 1) \approx 1.96$. The average $\overline{k} = 151/420$. The **test statistic** is $\overline{k} = 151/420$. The **test statistic** is

$$z = \frac{k - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{\frac{151/420 - 0.4}{\sqrt{\frac{0.4(1 - 0.4)}{420}}} = -1.693 > -z_{\alpha/2}$$

So, we fail to reject H_0 .

Solution by *P*-Value: Suppose H_0 is true. By CLT,

$$\overline{X} \sim \operatorname{Normal}(p_0, p_0(1-p_0)/n)$$

Since $\overline{k} < \mu_0$, the *P*-value is

P-value = (2)**normalcdf**
$$(-\infty, 151/420, 0.4, \sqrt{\frac{0.4(1-0.4)}{420}}) \approx 0.0904 > \alpha$$

So, we fail to reject H_0 .

Remark: If we use $\overline{k} = 151/420 \approx 0.36$, the error is big.

We can also use the calculator to find the test statistic and *P*-value:

 $\text{STAT} \rightarrow \text{TESTS} \rightarrow 1\text{-}\text{PropZTest}$

More calculator functions are summarized on the **summary file** on Blackboard/Course Materials.

Compare §5.3 with §6.2-6.3

Next, we compare the Confidence Interval and the Hypothesis Test.

We use Normal Distribution $X \sim \text{Normal}(\mu, \sigma^2)$ with known standard deviation σ as an example. Similar for the proportion.

Example 3. The 98% confidence interval for the mean is [76.5, 83.5] with data from a normal distribution with known σ . Now a hypothesis test is run at the $\alpha = 0.02$ level of significance using $H_0: \mu = 77$ against $H_1: \mu \neq 77$.

(1) Find the sample mean \bar{x} .

$$\bar{x} = \frac{76.5 + 83.5}{2} = 80$$

(2) Find the test statistic value z for the test.

 $z_{\alpha/2} \approx 2.326$. By margin of error, $z_{\alpha/2}(\sigma/\sqrt{n}) = \frac{83.5 - 76.5}{2} = 3.5$. So $\sigma/\sqrt{n} = \frac{3.5}{z_{\alpha/2}} \approx 1.505$. The test statistic value $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{80 - 77}{1.505} \approx 1.99$.

- (3) Would the null hypothesis be rejected at the $\alpha = 0.02$ level of significance?
- (A) Reject H_0 . (B) Fail to reject H_0 . (C) Information is not enough.
- (4) Would the null hypothesis be rejected at the $\alpha = 0.01$ level of significance?
- (A) Reject H_0 . (B) Fail to reject H_0 . (C) Information is not enough.