§5.3 Interval Estimation

For a parameter θ in the $\mathbf{p d f}$ of a random variable, we have an estimate θ_{e} based on a sample. We consider θ_{e} as a point estimation.

We want to find an interval $\left[\theta_{e}-d, \theta_{e}+d\right]$ with confidence $(1-\alpha) 100 \%$.

1. (Normal) Suppose $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ with known σ. From §5.4, Example 4, we know that the maximum likelihood estimator for μ based on a sample $X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}$ is

$$
\widehat{\mu}=\frac{X_{1}+\cdots+X_{n}}{n}=\bar{X}
$$

By CLT, we know that $\bar{X} \sim \operatorname{Normal}\left(\mu, \sigma^{2} / n\right)$. Then,

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \operatorname{Normal}(0,1)
$$

For example, if we want 95% confidence interval, $\alpha=0.05$.

By calculator, $-z_{\alpha / 2}=\operatorname{invNorm}(0.025,0,1) \approx-1.96$, or $z_{\alpha / 2}=\operatorname{invNorm}(0.975,0,1) \approx 1.96$. (We only need one of them)

Then,

$$
P\left(-z_{\alpha / 2} \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}\right)=1-\alpha=95 \%
$$

We solve $\mu, \mu=\bar{x} \pm z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)$ Hence,

$$
P\left(\bar{x}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) \leq \mu \leq \bar{x}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)\right)=1-\alpha=95 \%
$$

The 100(1- α)\% confidence interval for μ

$$
\bar{x}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) \leq \mu \leq \bar{x}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)
$$

Here, \bar{x} is called basis estimate and

$$
d=\frac{\left(z_{\alpha / 2}\right) \sigma}{\sqrt{n}}
$$

is called margin of error.

The probability that μ is in the confidence interval is $100(1-\alpha) \%$.
Choosing Sample Size:

In order for \bar{x} to have $100(1-\alpha) \%$ confidence interval of width at most $2 d$, the sample size n should be no smaller than

$$
n=\frac{z_{\alpha / 2}^{2} \sigma^{2}}{d^{2}}
$$

Example 1. Suppose $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ with known $\sigma=2$. Suppose a sample of size 6 is $\{10.1,15,11.7,14.2,10,11\}$ with a sample mean (average) of $\bar{x}=12$.
(1) Find the 95% confidence interval for μ.

$$
\bar{x}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) \leq \mu \leq \bar{x}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) .
$$

Here, $z_{\alpha / 2}=\operatorname{invNorm}(0.975,0,1) \approx 1.96$. So, the 95% confidence interval is
[10.4, 13.6]
(2) In order for \bar{x} to have 95% confidence interval of width at most 3 , how large is the sample size have to be?

The sample size n should be no smaller than

$$
n=\frac{z_{\alpha / 2}^{2} \sigma^{2}}{d^{2}}
$$

Here, $d=3 / 2$. So, $\frac{1.96^{2}\left(2^{2}\right)}{1.5^{2}} \approx 6.8$. So $n=7$.
(3) Find the 99% confidence interval for μ.
(Solution: $\alpha=0.1, z_{\alpha / 2}=2.576$, the 99% confidence interval for μ is $[9.9,14.1]$)
Example 2. An institute wants to estimate the household income in a country. The incomes are normally distributed with standard deviation $\$ 26,000$. The institute take a survey of 2416 households randomly. The average household income in the survey is $\$ 56,000$.
(1) Find a 95% confidence interval for the average household income in the country.

The 95% confidence interval is

$$
\bar{x}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) \leq \mu \leq \bar{x}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) .
$$

Here, $\bar{x}=56000, z_{\alpha / 2}=\operatorname{invNorm}(0.975,0,1) \approx 1.96, \sigma=26000$ and $n=2416$
So, the 95% confidence interval is
[54963, 57037]
(2) How large does the sample size have to be to guarantee that the length of the 95% confidence interval for μ will be less than $\$ 1000$.

The sample size n should be no smaller than

$$
n=\frac{z_{\alpha / 2}^{2} \sigma^{2}}{d^{2}}
$$

Here, $d=1000 / 2$. So, $\frac{1.96^{2}\left(26000^{2}\right)}{500^{2}} \approx 10387.7$. So $n=10388$.

Do the same practice for 99% confidence interval.

To summarize, we need to know three concepts in this section:

1. Confidence Interval; 2. Margin of error; 3. Sample size.
2. (Bernoulli/Proportion/Binomial) Binomial random variable is a sum of IID Bernoulli random variables. Suppose $X \sim \operatorname{Bernoulli}(p)$ with unknown p. From §5.2, Example 3, based on a sample of size $n: X_{1}=k_{1}, X_{2}=k_{2}, \ldots, X_{n}=k_{n},\left(k_{i} \in\{0,1\}\right)$ we calculated the maximum likelihood estimate(MLE)

$$
p_{e}=\frac{k_{1}+\cdots+k_{n}}{n}=\frac{\# \text { of success }}{n}=\bar{k}
$$

and the estimator for p

$$
\widehat{p}=\frac{X_{1}+\cdots+X_{n}}{n}=\bar{X}
$$

Recall that each $X_{i} \sim \operatorname{Bernoulli}(p)$ with $\mu=E\left(X_{i}\right)=p$ and variance $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}=p(1-p)$.
By CLT, we know that $\bar{X} \sim \operatorname{Normal}\left(p, \frac{\bar{k}(1-\bar{k})}{n}\right)$. Then,

$$
Z=\frac{\bar{X}-p}{\sqrt{\frac{\bar{k}(1-\bar{k})}{n}}} \sim \operatorname{Normal}(0,1)
$$

Then,

$$
P\left(-z_{\alpha / 2} \leq \frac{\bar{X}-p}{\sqrt{\frac{\bar{k}(1-\bar{k})}{n}}} \leq z_{\alpha / 2}\right)=1-\alpha
$$

Solve p we have

$$
p=\bar{k} \pm z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}}
$$

Hence,

$$
P\left(\bar{k}-z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}} \leq p \leq \bar{k}+z_{\alpha / 2} \sqrt{\left.\frac{\bar{k}(1-\bar{k})}{n}\right)}=1-\alpha\right.
$$

The $100(1-\alpha) \%$ confidence interval can be computed by

$$
\bar{k}-z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}} \leq p \leq \bar{k}+z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}}
$$

Theorem.

- The margin of error associated to \bar{k} is $100 d \%$ with $d=\frac{z_{\alpha / 2}}{2 \sqrt{n}}$.
- In order for \bar{k} to have $100(1-\alpha) \%$ confidence interval of width at most $2 d$, the sample size should be no smaller than

$$
n=\frac{z_{\alpha / 2}^{2}}{4 d^{2}}
$$

Proof of the theorem: The margin of error associated to \bar{k} is $100 d \%$ with

$$
d=\frac{z_{\alpha / 2} \sigma}{\sqrt{n}}=\frac{z_{\alpha / 2} \sqrt{p(1-p)}}{\sqrt{n}}
$$

In order for \bar{k} to have $100(1-\alpha) \%$ confidence interval of width at most d, the sample size should be no smaller than

$$
n=\frac{z_{\alpha / 2}^{2} \sigma^{2}}{d^{2}}=\frac{z_{\alpha / 2}^{2} p(1-p)}{d^{2}}
$$

We are not satisfied with the above two formulas, because we don't know p in the formula. But we know that $0 \leq p \leq 1$. By optimization in Calculus 1 , we have $p(1-p) \leq(1 / 4)$.

Example 3. In the example of flipping a coin 10 times with 6 faces, $n=10$ and $\bar{k}=6 / 10$.
(1) Find the 90% confidence interval for p.

The 90% confidence interval for p is calculated by

$$
\bar{k}-z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}} \leq p \leq \bar{k}+z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}}
$$

Here, $z_{\alpha / 2}=\operatorname{invNorm}(0.95,0,1) \approx 1.64$,

$$
0.6-1.64 \sqrt{0.6(0.4) / 10} \leq p \leq 0.6+1.64 \sqrt{0.6(0.4) / 10}
$$

which is $[0.346,0.854]$.
(2) The margin of error is associated to \bar{k} is

The margin of error is associated to \bar{k} is $d=\frac{z_{\alpha / 2}}{2 \sqrt{n}}=\frac{1.64}{2 \sqrt{10}}=0.26$
(3) In order for \bar{k} to have 90% confidence interval of width at most 0.2 , how large does the sample size have to be?

$$
n=\frac{z_{\alpha / 2}^{2}}{4 d^{2}}=\frac{1.64^{2}}{4(0.1)^{2}} \approx 67.2
$$

The sample size should be no smaller than 68 .

Example 4. A poll was conducted to find out the percentage of people who will vote A or B for mayor of a city. Out of 500 people polled, 263 said A and the rest said B.
(1) The MLE for p.

The MLE for p is

$$
\bar{k}=\frac{263}{500}=0.526=52.6 \%
$$

"Can we conclude that A is 5 percent head?" No, because this is only for the sample. We want to find the information for the population.
(2) The 95% confidence interval for p.

The 95% confidence interval for p is calculated by

$$
\bar{k}-z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}} \leq p \leq \bar{k}+z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}}
$$

Here, $z_{\alpha / 2}=\operatorname{invNorm}(0.975,0,1) \approx 1.96$,

$$
0.526-1.96 \sqrt{0.526(0.474) / 500} \leq p \leq 0.526+1.96 \sqrt{0.526(0.474) / 500}
$$

which is $[0.482,0.57]$.
(3) The margin of error at the 95% confidence interval for p.

The margin of error is associated to \bar{k} is

$$
d=\frac{z_{\alpha / 2}}{2 \sqrt{n}}=\frac{1.96}{2 \sqrt{500}}=0.04
$$

(4) Find the minimal number of people to be polled for error $\leq 2.6 \%$.

$$
n=\frac{z_{\alpha / 2}^{2}}{4 d^{2}}=\frac{1.96^{2}}{4(0.026)^{2}}=1420.7
$$

The sample size should be no smaller than 1421 .

Any question about polling background are the same.

More interesting examples

Example 5. People use electronic devices every day. Some people even have smartphone addiction.
(1) A health research institute claims that in a survey, 57% college students use smartphone more than 4 hours per day. How many college students must be surveyed in order to be 95% confident that the sample percentage is in error $\leq 2 \%$?

To satisfy the conditions, the smallest number of surveyed students is

$$
n=\frac{z_{\alpha / 2}^{2}}{4 d^{2}}=1.96^{2} /\left(4\left(0.02^{2}\right)\right) \approx 2401
$$

(2) A smart phone company want to know the percentage of people who will update their phones to a new version. In a survey of 350 users, 189 said that they plan to update their phones.
(i) Find a 95% confidence interval for the population proportion.

The 95% confidence interval for p is calculated by

$$
\bar{k}-z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}} \leq p \leq \bar{k}+z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}}
$$

Here, $z_{\alpha / 2}=\operatorname{invNorm}(0.975,0,1) \approx 1.96, n=350, \bar{k}=189 / 350$.
So, the 95% confidence interval for p is

$$
[0.4878,0.5922]
$$

(ii) Find the margin of error corresponding to a 95% confidence interval.

The margin of error is associated to \bar{k} is

$$
d=\frac{z_{\alpha / 2}}{2 \sqrt{n}}=\frac{1.96}{2 \sqrt{350}} \approx 0.0524
$$

Example 6. According to stats.nba.com, in NBA 2019-2020 season, Boston Celtics win 42 games in the first 61 games. Find a 95% confidence interval for Boston Celtics's winning population proportion.

The 95% confidence interval for p is calculated by

$$
\bar{k}-z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}} \leq p \leq \bar{k}+z_{\alpha / 2} \sqrt{\frac{\bar{k}(1-\bar{k})}{n}}
$$

Here, $z_{\alpha / 2}=\operatorname{invNorm}(0.975,0,1) \approx 1.96, \bar{k}=42 / 61$, and $n=61$.
So, the 95% confidence interval for p is

$$
[0.5723,0.805]
$$

Example 7. According to stats.nba.com, in NBA 2019-2020 season, Boston Celtics got an average 113.4 points in the first 61 games. Suppose the number of points is normally distributed with population standard deviation $\sigma=10.5$. Find a 95% confidence interval for the average number of points for Boston Celtics.

The 95% confidence interval is

$$
\bar{x}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) \leq \mu \leq \bar{x}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) .
$$

Here, $\bar{x}=113.4, z_{\alpha / 2}=\operatorname{invNorm}(0.975,0,1) \approx 1.96, \sigma=10.5$ and $n=61$.
The 95% confidence interval is
[110.8077, 116.0776]

The R computation from the raw data is in the Celtics- R lab.
Example 8. According to www.bostonglobe.com, Massachusetts average commute time increases to fifth longest in US in 2019. US Census make a survey of 1220 people to estimate the commute time in MA. They found a mean of 29.5 minutes with a standard deviation of $\sigma=16.3$ minutes. Find a 95% confidence interval for the average commuting time in MA.

The 95% confidence interval is

$$
\bar{x}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) \leq \mu \leq \bar{x}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) .
$$

Here, $\bar{x}=29.5, z_{\alpha / 2}=\operatorname{invNorm}(0.975,0,1) \approx 1.96, \sigma=16.3$ and $n=1220$.
The 95% confidence interval is

