§5.2 Estimating Parameters (Maximum Likelihood)

Statistics Question: Suppose a random variable X has a **pdf** with unknown parameters. We need to estimate the unknown parameter using a random sample of n observations.

Example 1. Suppose we have a biased coin with unknown probability $\theta = P(\text{head})$. We know that it satisfies the Bernoulli distribution $Bernoulli(\theta)$.

We toss it 10 times, and get HTHHTHTHT (6 head, 4 tails).

It is natural to estimate $\theta = 6/10$.

What is the theory behind the estimation? The method is called **Maximum likelihood.** The best estimation for θ from the sample data(observations), is to make maximize the "likelihood" of getting the sample.

Definition.

Let x_1, x_2, \ldots, x_n be a random sample of size n from a discrete **pdf** $p_X(x;\theta)$, or a continuous **pdf** $f_X(x;\theta)$. The **likelihood function** $L(\theta)$ is

$$L(\theta) = \prod_{i=1}^{n} p_X(x_i; \theta)$$
 for discrete case

or

$$L(\theta) = \prod_{i=1}^{n} f_X(x_i; \theta)$$
 for continuous case

The likelihood function $L(\theta)$ is a function with variable θ . The purpose is to find a value $\theta = \theta_e$ maximizing the function $L(\theta)$.

Example 1 (Continue).

 $L(\theta) = P(H)P(T)P(H)P(H)P(T)\cdots P(T) = \theta^{6}(1-\theta)^{4}$

We want to maximize $L(\theta)$. (By Calculus 1, use derivative to find critical points)

$$\frac{dL(\theta)}{d\theta} = 6\theta^5 (1-\theta)^4 - 4\theta^6 (1-\theta)^3 = \theta^5 (1-\theta)^3 (6-10\theta) = 0$$

So, $\theta_e = 6/10 = 0.6$ maximize the likelihood function $L(\theta)$.

Remark: $\ln(L(\theta))$ and $L(\theta)$ have the same critical points. Sometimes, it is easy to use $\ln(L(\theta))$ to find critical points.

As in Example 1,

$$\ln(L(\theta)) = \ln(\theta^{6}(1-\theta)^{4}) = 6\ln(\theta) + 4\ln(1-\theta).$$

So, $\frac{\ln(L(\theta))}{d\theta} = \frac{6}{\theta} - \frac{4}{1-\theta} = 0$. Hence, the critical point is $\theta_e = 6/10$.

Example 2. (Practice) Suppose we have a biased die with unknown probability of resulting "6", $\theta = P("6")$.

We toss it 8 times, and get *6 * * *6 * * (where * means not 6). It is natural to estimate $\theta = 2/8$.

Use the method of maximum likelihood to verify your answer.

Example 3. Let X be the number of incoming calls in an hour. Recall that X fits a Poisson distribution

$$p_X(k;\lambda) = \frac{e^{-\lambda}\lambda^k}{k!}, \text{ for } k = 0, 1, 2, \dots$$

Here, λ is the unknown parameter.

Use the method of maximum likelihood to estimate λ based on n = 4 observations $X_1 = k_1, X_2 = k_2, X_3 = k_3, X_4 = k_4$.

3

Example 4. Suppose we have a biased (unfair) coin with P(head) = p. Let X be the number of tosses until we get a head. So, the **pdf** of X is the geometric distribution:

$$p_X(k) = (1-p)^{k-1}p.$$

Suppose we do the experiments n times and get $X_1 = k_1, X_2 = k_2, ..., X_n = k_n$. Use the method of maximum likelihood to estimate p.

Example 5. Suppose we have a distribution

$$f_X(x) = \theta e^{-\theta(x+1)}$$
 for $x \ge -1$.

Find the maximum likelihood estimator for θ based on a sample $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.

Example 6. The **pdf** of a uniform distribution on $[0, \theta]$ is given by

$$f_X(x) = \frac{1}{\theta}$$
 for $x \in [0, \theta]$.

Take a sample $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$. Use the method of maximum likelihood to estimate θ .

$$L(\theta) = \prod_{i=1}^{n} f_X(x_i; \theta) = \frac{1}{\theta^n}$$

This is a decreasing function, so it does not have a maximum.

We know that $x_i \leq \theta$ for all i = 1, 2, ..., n. Hence $\theta \geq \max(x_1, x_2, \cdots, x_n)$. So, if we want to maximize $L(\theta)$, we need to choose $\theta_e = \max(x_1, x_2, \cdots, x_n)$