
MATH 3081 Chapter 2 Probability He Wang

Chapter 2. Probability

He Wang

Contents

§2.2 Sample Spaces and the Algebra of Sets . . . . . . . . . . . . . . . . . . . . . . . . 2

§2.3 The Probability Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

§2.4 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

§2.5 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

§2.6 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1
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§2.2 Sample Spaces and the Algebra of Sets

I Some terminologies:

• Experiment: A repeatable procedure with a set of possible results.

• Sample Outcome:(Sample Point) Only one of the possible results of an experiment.

• Sample Space: All the possible outcomes of an experiment. (Usually denoted by S)

• Event: Null or one or more outcomes of an experiment.

I Classical (naive) definition of probability:

Suppose the outcomes of an experiment are all equally likely, and the total number of all possible
outcomes is finite.

Probability of an event =
Number of ways it can happen

Total number of all possible outcomes

The probability of an event is a real number in the interval [0, 1].

Example 1. Experiment: Flipping a fair Coin once.

Event: Landing head.

Number of ways it can happen = 1. Total number of possible outcomes = 2

Probability of ‘landing head’=
1

2
.

Example 2. Experiment: Rolling a fair 6-sided die once.

Event: Rolling a number larger than 4 with a die.

Number of ways it can happen = 2. Total number of possible outcomes =6

Probability of ‘Rolling a number larger than 4’ =
2

6
=

1

3
.
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Example 3. Randomly draw a card from a standard deck of cards.

A standard deck of playing cards with four suites: Club, Diamond, Spade, and Heart. For each
suit, there are 13 values: A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. There are 4 × 13 = 52 cards. (No
joker cards.)

If you draw a card randomly, the probability of getting a face (J, or Q, or K) is

P (Face) =
4× 3

13× 4
=

3

13
.

If you draw a card randomly, the probability of getting an Ace is

P (Ace) =
4

52
=

1

13
.

We need to use the basic set theory to study probability.

Definition.

• A set S is a well-defined, unordered collections of distinct (possibly infinitely many)
elements.
• If a is an element of a set S, we write a ∈ S. If a is NOT an element of S, then we write
a /∈ S.
• A subset A of S is a set whose elements are in S, denoted as A ⊂ S.

Non-well-defined example, (Russell’s paradox): S = {x | x /∈ x}, i.e., set of all sets that are

3



MATH 3081 §2.2 Sample Spaces and the Algebra of Sets He Wang

not members of themselves. (The teacher that teaches all who don’t teach themselves.)

Every set S has at least 2 subsets, itself and the empty set ∅.

For example, the sample space S of an experiment is the set of all possible outcomes. The event
is a subset of S.

Example 4. Experiment: Flipping (tossing) a coin twice.

The sample space S = {HH,HT, TH, TT}.

The event of ‘landing head only once’ is A = {HT, TH}.

The probability P (A) = 2/4 = 0.5.

For some calculation purpose, we can also define a sample space as S = {0heads, 1heads, 2heads},
but each outcome is not equally-likely.

Example 5. Experiment: Flipping (tossing) a coin n times. The size of the sample space is 2n.

Example 6. Experiment: Rolling a 6-sided die.

The sample space S = {1, 2, 3, 4, 5, 6}.

The event of ‘Rolling a number larger than 4’ is A = {5, 6} which is a subset of S, denoted as
A ⊂ S.

The probability of A is P (A) = 2/6 ≈ 0.333

Example 7. Rolling two 6-sided dice (one red, one blue) once. We can win if we obtain total
number larger than 8. What is the probability we can win?

S =



(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)


;A =


(3, 6)

(4, 5) (4, 6)
(5, 4) (5, 5) (5, 6)

(6, 3) (6, 4) (6, 5) (6, 6)


So, the probability of event A is P (A) =

10

36
=

5

18
≈ 27.78%

What is the event B that the sum of the two faces showing equal 9? What is the event C that
absolute of the difference of the two faces showing equal 3?

B = {(3, 6), (4, 5), (5, 4), (6, 3)}.
C = {(1, 4), (2, 5), (3, 6), (6, 3), (5, 2), (4, 1)}.

More generally, if we roll a dice n times, the size of the sample space is 6n.
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All sample spaces in the above two examples are finite sets, i.e., there are a finite number of
elements in each set. For a finite set S, the number of element in S is called the cardinality
of S.

In general, a set can contain infinitely many elements.

Example 8. (Countable set)

Experiment: Tossing a coin until we get a head.

Sample Space: S = {H, TH, TTH, TTTH, . . . . . . }.

Event: Getting a head with no more than 3 tosses, A = {H, TH, TTH}.

What is the probability of A? (infinite S, not equally-likely.)

A countable infinite set has a one-to-one correspondence to the set of natural numbers N.

Example*: The set of rational numbers Q is countable infinite.

Discrete set means finite or countable set.

Example 9. (Continuous set)

Experiment: Pick a real number randomly from 0 to
√

2.

Sample Space: S = [0,
√

2].

Event A: Getting a number small than 1; A = [0, 1)

Example 10. (Continuous set)

Experiment: Drop a point in a disc of radius 3.

Sample Space: S = {(x, y) | x2 + y2 ≤ 32}

Event A: Get a point (x, y) such that x ≥ 0 and y ≥ 0.
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A = {(x, y) ∈ S | x ≥ 0, y ≥ 0}

I The Venn diagram is a useful visual aid of sets.

The set (or sample space) S is represented as a rectangle and subsets (or events) A, B, C are
circles or ellipses.

A

B

C

S

or

D
E

F

S

I Basic operations on sets (or events).

1. Intersection

Definition.

The intersection of events A and B, (denoted as A∩B), is the event that whose outcomes
belong to both A and B, that is, A ∩B is the event that “both A and B occur”.

A ∩B = {x | x ∈ A and x ∈ B}.
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A B

S

Events A and B are called mutually exclusive (disjoint) if A and B have no common outcome,
i.e., A ∩B = ∅.

A B

S

2. Union

Definition.

The union of A and B, (denoted as A ∪ B), is the event whose outcomes belong to either
A or B (or both).

A ∪B = {x | x ∈ A or x ∈ B}

So, A ∪B means that “A or B occurs”.

A B

S

3. Complement

The complement of an event A, denoted as Ac (or AC), is the event whose outcomes in S not
belong to A.

Ac = {x ∈ S | x /∈ A}

A

S
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Some quick formulas

A ∪ Ac = S, A ∩ Ac = ∅, (Ac)c = A,

A ∪B = B ∪ A, A ∩B = B ∩ A.

Example 11. Rolling a 6-sided die once.

The sample space S = {1, 2, 3, 4, 5, 6}.

The event of ‘Rolling a number larger than 4’ is A = {5, 6}.

The event of ‘Rolling even number’ is B = {2, 4, 6}.

The event of ‘Rolling number which is even and larger than 4’ is the intersection A ∩B = {6}.

The event of ‘Rolling number which is even or larger than 4’ is the union A ∪B = {2, 4, 5, 6}.

The event of ‘Rolling number which is not even’ is the complement AC = {1, 3, 5}.

Theorem. DeMorgan’s Law

1. (A ∪B)c = Ac ∩Bc

2. (A ∩B)c = Ac ∪Bc

DeMorgan’s Law in Venn diagram.

1.

S

A B

2.

S

A B

Example 12. Prove that A = (A ∩B) ∪ (A ∩Bc).

For complicated questions, it is better to label the diagram by disjoint parts I, II, III, IV.
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I IIIII IV

A = II ∪ III and B = III ∪ IV
A ∩B = III
Bc = I ∪ II
A ∩Bc = II
So (A ∩B) ∩ (A ∩Bc) = II ∪ III = A

Here, A ∩Bc means that “A occurs but B does not occur”.

Example 13. Sketch the regions in xy-plane R2 corresponding A ∪B and A ∩B.

A = {(x, y) | x2 + y2 ≤ 4}

B = {(x, y) | 0 ≤ x < 4, − 2 ≤ y ≤ 2}

Do not be confused with the Venn diagram.

Example 14. A dice is tossed 4 times. What outcomes make up the event A that the sum of the
four face results showing equal 5? How many outcomes in the sample space?
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A = {(1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), (2, 1, 1, 1)}

The size of the sample space is |S| = 64.

Example 15. Three events A, B, and C. Find the following events using union, intersection and
complement.

(1) Only B occurs.

(2) exactly one event occurs.

(3) Only A and B occur.

(1) Only B occurs= B occurs and A does not occur and C does not occur.
The answer is B ∩ Ac ∩ Cc or B ∩ (A ∪ C)c

(2) Exactly one event occurs= only A occurs or only B occurs or only C occurs.
So the answer is (A ∩Bc ∩ Cc) ∪ (Ac ∩B ∩ Cc) ∪ (Ac ∩Bc ∩ C)
(3) Only A and B occur= A and B occur and C does not occur.
So the answer is A ∩B ∩ Cc

The Venn diagram is very helpful for understanding this kind of questions.

A

B

C

S

Verify the DeMorgan’s law:

1. (A ∪B ∪ C)c = Ac ∩Bc ∩ Cc which means none of the three events occurs.

2. (A ∩B ∩ C)c = Ac ∪Bc ∪ Cc which means not all three events occur.

For HW 2.2.26, using Venn diagram to check your results. (find the one typo in the solution.)

Example 16. Find Ac ∩ (B ∪ C) in the Venn diagram.
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A

B

C

S
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§2.3 The Probability Function

Recall that we defined sample space and event of an experiment.

• Sample Space S: Set of all the possible outcomes.

• Event A ⊂ S: Subset of the sample space.

Recall the classical definition of probability: Suppose the outcomes of an experiment are all equally
likely, and the sample space is finite.

Probability of an event A = P (A) =
Cardinality of A

Cardinality of S
=

#(A)

#(B)
=
|A|
|B|

Example 1. Rolling two 6-sided dice (one red, one blue) once. Let A be the event that the
difference (absolute value) of the two numbers is 1. What is the probability of A?

S =



(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)


;

So, the probability of event A is P (A) =
10

36
=

5

18
≈ 27.78%

I In 1930s, Kolmogorov gave a modern axiomatic definition of the probability function P .

Definition. Definition of Probability Function

A probability function P assigns a real number to any event of a sample space.
If the sample space S is a finite, the probability function satisfies the following axioms.
• Axiom 1. P (A) ≥ 0 for any event A.
• Axiom 2. P (S) = 1.
• Axiom 3. For any two mutually exclusive (disjoint) events A and B,

P (A ∪B) = P (A) + P (B)

If the sample space S is a finite, a fourth axiom is needed:
• Axiom 4. Let A1, A2, A3, . . . , be events over S.
If any two of them are mutually exclusive, then

P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai)

12



MATH 3081 §2.3 The Probability Function He Wang

Remark: In Kolmogorov’s definition, conditions of equally likely and finite are NOT needed any
more. One can also apply the advanced tools like calculus and real analysis to probability.

Example 2. Flip a biased coin once, with P (Head) = 1/3 and P (Tail) = 2/3.

Example 3. (Countable set)

Experiment: Tossing a fair coin until we get a head.

Sample Space: S = {H, TH, TTH, TTTH, . . . . . . }.

Event: Getting a head with no more than 3 tosses, A = {H, TH, TTH}.

What is the probability of A? (infinite S, not equally-likely.)

Solution: P (H) = 1/2, P (TH) = (1/2)(1/2), P (TTH) = (1/2)3.
So, P (A) = 0.5 + 0.25 + 0.125 = 0.875.

I Some properties can be derived easily from Kolmogorov’s axioms. They are extremely important
in solving problems.

Theorem 1. P (AC) = 1− P (A).

Proof: S = A ∪ Ac, so P (S) = P (A ∪ Ac).
By Axiom 2, P (S) = 1.
By Axiom 3, P (A ∪ Ac) = P (A) + P (Ac) since A ∩ Ac = ∅.
So, 1 = P (A) + P (Ac). Hence P (Ac) = 1− P (A).

Theorem 2. P (∅) = 0.

Proof: Sc = ∅. So, P (∅) = P (Sc) = 1− P (S) = 1− 1 = 0.

Theorem 3. If A ⊂ B then P (A) ≤ P (B).

Proof: B = A ∪ (A ∩ Ac) where A and B ∩ Ac are disjoint.
So, P (B) = P (A ∪ (A ∩ Ac)) = P (A) + P (B ∩ Ac) by Axiom 3.
So, P (B) ≥ P (A) since P (B ∩ Ac) ≥ 0 by Axiom 1.

S
A B

Theorem 4. For every event A, we have P (A) ≤ 1.
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Proof: Since A ⊂ S, by above theorem and axiom 3, we have P (A) ≤ P (S) = 1.

Theorem 5. P (A) = P (A ∩BC) + P (A ∩B).

Proof: A = (A ∩Bc) ∪ (A ∩B) where A ∩Bc and A ∩B are disjoint.
So, by Axiom 3, P (A) = P (A ∩Bc) + P (A ∩B).

Theorem 6. P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof:
By above theorem, P (A) = P (A ∩Bc) + P (A ∩B) and P (B) = P (B ∩ Ac) + P (B ∩ A).
So,

P (A) + P (B) = P (A ∩Bc) + P (A ∩B) + P (B ∩ Ac) + P (B ∩ A)

= P (A ∪B) + P (A ∩B)

Hence, P (A ∪B) = P (A) + P (B)− P (A ∩B).

Example 4. Let A and B be two events on S. Suppose P (A) = 0.5, P (B) = 0.6 and P ((A∩B)c) =
0.8. Answer the following questions:

1. What is the probability that only A occurs?

Solution: Only A occurs = A occurs and B does not occur.
By P (A) = P (A ∩B) + P (A ∩Bc), we have

P (A ∩Bc) = P (A)− P (A ∩B) = 0.5− 0.2 = 0.3.

2. What is the probability that A or B occurs?

Solution:
P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.5 + 0.6− 0.2 = 0.9

3. What is the probability that both A and B occur?

Solution: P (A ∩B) = 0.2
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4. What is the probability that A or B occurs, but not both occurs?

Solution: (Hint: using Venn diagram to rewrite the question.)

P (A∩Bc) +P (B ∩Ac) = P (A)−P (A∩B) +P (B)−P (A∩B) = 0.5 + 0.6− 2× 0.2 = 0.7.

5. What is the probability that neither A nor B occurs?

P ((A ∪B)c) = 1− P (A ∪B) = 1− 0.9 = 0.1

Example 5. Draw 2 cards from a standard deck. What is the probability that the first card is
larger than the second card.

A: the first card is larger
B: the second card is larger
C: the first card is equal to the second card
A, B, C are disjoint(mutually exclusive) and S = A∪B∪C. So, 1 = P (A) +P (B) +P (C).
By symmetry, P (A) = P (B).
First choose a card and count the number, then there are 51 cards left. P (C) = 3/51.
So, P (A) = P (B) = (1− 3/51)1

2
= 24/51.

Example 6. A fair coin is tossed four times. What is the probability that at most three heads
will occur?

A: at most three heads will occur= number of heads ≤ 3.
Ac=number of heads is 4={HHHH}

P (A) = 1− P (Ac) = 1− |A
c|
|S|

= 1− 1

24
=

15

16
.

Example 7. Rolling two 6-sided dice (one red, one blue) once. Find the probability that the first
roll is 1, or the absolute value of the difference is 1.

Event A: first roll is 1
Event B: the difference (absolute value) of the two numbers is 1.

P (A ∪B) = P (A) + P (B)− P (A ∩B) =
1

6
+

5

18
− 1

36
=

15

36
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§2.4 Conditional Probability

Example 1. Tossing a fair 6-sided die once.

Event A =“ 2 appears”

Event B = “ even number appears”

The probability of A is P (A) = 1
6
.

The probability of B is P (B) = 3
6

= 1
2
.

Suppose the die already tossed. Someone told us that the result is an even number, i.e., B is
already occurred. Now, what is the probability that the result is 2?

Probability of event A will occur given that B is already occurred.

Probability of A given B is
1

3
.

A

B

S

A B

S

Definition. Conditional probability

Probability that event A occurs given that event B already occurs, denoted by P (A|B) is
a conditional probability, defined by

P (A|B) =
P (A ∩B)

P (B)

called probability of A given B.

If #S is finite, we can calculate conditional probability as

P (A|B) =
P (A ∩B)

P (B)
=

#(A ∩B)/#(S)

#(B)/#(S)
=

#(A ∩B)

#(B)
.

Example 2. Suppose P (A) = 0.45, P (B) = 0.6, and P (Ac|B) = 0.5. Find P (A ∪B).

P (Ac|B) =
P (Ac ∩B)

P (B)
implies 0.5 =

P (Ac ∩B)

0.6
. So, P (Ac ∩B) = 0.3. Hence,

P (A ∪B) = P (A ∪ (B ∩ Ac)) = P (A) + P (B ∩ Ac) = 0.45 + 0.3 = 0.75
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Example 3. In a town of 5342 residents, there are 3355 voters. The following Venn diagram
corresponds to voter information in a mayor election. A is the set of 725 first-time voters, while
B is the set of 1588 voters who voted for Bob. There are 260 first-time voters who do NOT vote
for Bob.

A B

S

Question: If a random voter is picked, what is the probability that he/she voted for Bob?

Step 1. Rewrite the question in probability language: #(S) = 3355; #(A) = 725; #(B) =
1588; #(A ∩Bc) = 260.
Hence,

#(A ∩B) = #(A)−#(A ∩Bc) = 725− 260 = 465.

Step 2.

P (B) =
|B|
|S|

=
1588

3355
≈ 0.4733.

Question: If a random first-time voter is picked, what is the probability that he/she voted for
Bob?

Solution:

P (B|A) =
|A ∩B|
|A|

=
465

725
≈ 0.6414

Example 4. There are 100 marbles distributed as

Red White Blue
Small 5 15 2

Medium 25 5 3
Large 30 10 5

Suppose you choose one marble at random.

(1) Find P (Blue).

From the table, #(Small) = 22, #(Large) = 45, and #(Blue) = 10.
So, P (Blue) = 10/100 = 0.1.

(2) Find P (Blue ∪ small).
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Let B=Blue, S=Small.

P (B ∪ S) = P (B) + P (S)− P (B ∩ S) =
10

100
+

22

100
− 2

100
= 0.3

(3) Find P (Blue | Large).

P (B|L) =
P (B ∩ L)

P (L)
=

5/100

45/100
= 1/9

(4) Find P (Large | Blue).

P (L|B) =
P (L ∩B)

P (B)
=

5/100

10/100
= 1/2 = 0.5

Example 5. A family has two children.

(1) Given the first child is a boy, what is the probability that the other child is a boy.

(2) Given that at least one child is a boy, what is the probability that the other child is boy.

Sample Space S = {BB,BG,GB,GG}
X: the first child is a boy. X = {BB,BG}
Y: the second child is a boy. Y = {BB,GB}
Z: at least one child is a boy. Z = {BB,BG,GB}
W: both are boys. W = {BB}

(1). P (Y |X) =
P (Y ∩X)

P (X)
=

1/4

2/4
= 1/2.

(2). P (W |Z) =
P (W ∩ Z)

P (Z)
=

1/4

3/4
= 1/3.

Remark: In many real world questions, the conditional probability is easy to calculate, because
we have more information.

Theorem.

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A)

Example 6. There are 100 marbles (small glass balls) in a box (or urn):
50 red marbles labelled from 1 to 50.
30 white marbles labelled from 1 to 30.
20 blue marbles labelled from 1 to 20.

18
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(I) Pick one marble randomly.

Event A: the ball is white. Event B: the ball is labelled number 6.

Calculate: (1) P (A) (2) P (A ∩B) (3) P (A ∪B)

P (A) =
30

100
, P (A ∩B) =

1

100
, P (A ∪B) =

32

100

(4) Suppose we have seen that the color is blue, what is the probability that the ball is labelled
number 6.

Let C be the event that the ball is blue.

P (B|C) =
P (B ∩ C)

P (C)
= 1/20.

(II) Now take out two without replacement.

(1) If the first one was blue, what is the probability that the second one is red?

R2: the 2ed one is red. B1: the 1st one is blue. Because the first one is red, there are 99
balls left with 50 red balls.

P (R2|B1) =
50

99

(2) If the first one was red, what is the probability that the second one is red?

R1: the 1st one is red. Because the first one is red, there are 99 balls left with 49 red balls.

P (R2|R1) =
49

99

(3) What is the probability of two red?

P (R1 ∩R2) = P (R2|R1)P (R1) =
49

99
· 50

100
= 49/198

(4) If we don’t look at the first one, what is the probability that the second one is red?
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R2: the second one is red.

P (R2) =
50

100
= 0.5

Remark: what we don’t know does not matter.

Tree Diagram for conditional probability and intersections:

R1

R2

P (R2|R1)

Rc
2

P (R1)

B1

R2

P (R2|B1)

Rc
2

P (B1)

W1

R2

P (R2|W1)

Rc
2

P (W1)

P (R2 ∩R1) P (R2 ∩B1) P (R2 ∩W1)

= P (R2|R1)P (R1) = P (R2|B1)P (B1) = P (R2|W1)P (W1)

More generally, by induction, we have

P (A ∩B ∩ C) = P (A)P (B|A)P (C|A ∩B)

or
P (A ∩B ∩ C ∩D) = P (A)P (B|A)P (C|A ∩B)P (D|A ∩B ∩ C)

or ...

(III) Now take out four without replacement.

(1) What is the probability all four are red?

Ri : the i-th ball is red.

P (all four are red) = P (R1 ∩R2 ∩R3 ∩R4) =
50

100
· 49

99
· 48

98
· 47

97
.
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R1

R2

R3

R4

P (R4|R1 ∩R2 ∩R3) = 47
97

Rc
4

P (R3|R1 ∩R2) = 48
98

Rc
3

P (R2|R1) = 49
99

Rc
2

P (R1) = 50
100

Rc
1

R2 Rc
2

(2) What is the probability that at least one is blue?

D: at least one is blue. Dc : no blue.

P (D) = 1− P (Dc) = 1− 80

100
· 79

99
· 78

98
· 77

97

Recall our Theorem P (A ∩B) = P (A|B)P (B) = P (B|A)P (A).

Example 7. (A model for contagious diseases)

An urn contains 3 red chips and 6 white chips. A chip is drawn at random. If it is red, itself and
an additional red chip is put back in the urn. If it is white, the chip is simply returned to the urn.
Next a second chip is drawn.

(1) What is the probability that both chips are red?

A: first is red. B: second is red.

P (A ∩B) = P (B|A)P (A) =
4

10
· 3

9
=

2

15

(2) What is the probability that the second chip is red?

A: first is red. B: second is red.

P (B) = P (B ∩ A) + P (B ∩ Ac)

= P (B|A)P (A) + P (B|Ac)P (Ac)

=
4

10
· 3

9
+

3

9
· 6

9

=
16

45
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A

B Bc

Ac

B Bc

P (B) = P (B ∩ A) + P (B ∩ Ac) = P (B|A)P (A) + P (B|Ac)P (Ac)

I Law of Total Probability (Unconditional Probability)

Theorem. Law of Total Probability

Let A1, A2, . . . , An be a sequence of events such that S =
⋃n

i=1Ai and Ai ∩ Aj = ∅. Then,
for any event B,

P (B) =
n∑

i=1

P (B|Ai)P (Ai).

Proof of Law of Total Probability for n = 5,

P (B) = P (B ∩ A1) + P (B ∩ A2) + P (B ∩ A3) + P (B ∩ A4) + P (B ∩ A5)

= P (B|A1)P (A1) + P (B|A2)P (A2) + P (B|A3)P (A3) + P (B|A4)P (A4) + P (B|A5)P (A5)

Venn Diagram explanation for Law of Total Probability when n = 5:

Tree Diagram explanation for law of total probability:

A1

B Bc

A2

B Bc

A3

B Bc

A4

B Bc

A5

B Bc
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Example 8. A computer manufacturer uses chips from three suppliers. Based on past perfor-
mance, it is known that the chips from supplier A will fail with probability 0.01, the chips from
supplier B will fail with probability 0.02, and the chips from supplier C will fail with probability
0.05. The manufacturer buys 50% of chips from supplier A, 40% from supplier B and 10% from
supplier C. What is the probability that a chip chosen randomly from her mixture will fail?

A

F ...

B

F ...

C

F ...

Solution:
A: Chips from supplier A; P (A) = 0.5
B: Chips from supplier B; P (B) = 0.4
C: Chips from supplier C; P (C) = 0.1
F: Chips fail.
So,

P (F |A) = 0.01, P (F |B) = 0.02, P (F |C) = 0.05

Hence,

P (F ) = P (F |A)P (A) + P (F |B)P (B) + P (F |C)P (C)

= (0.01)0.5 + (0.02)0.4 + (0.05)0.1

= 0.018

Example 9. Three friends are playing poker. Each one draw a card without looking the face of
the card. What is the probability that the third card is an Ace?

If we already know the first two cards are club Ace and heart 4, what is the probability that the
third card is an Ace?

The answer for the first question is P (Ace) = 4/52 = 1/13.
The answer for the second question is P (Ace|data) = 3/50.

If you don’t trust the first answer, you can have a detailed calculation.
A1: the first is Ace.
A2: The second is Ace.
A3: The third is Ace.
Find P (A3) using tree diagram for the law of total probability.

I Bayes’ Theorem
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Theorem. Bayes’ Theorem

Let A1, A2, . . . , An be a sequence of events such that S =
⋃n

i=1Ai and Ai ∩ Aj = ∅. Then,
for any event B,

P (Aj|B) =
P (B|Aj)P (Aj)∑n
i=1 P (B|Ai)P (Ai)

for any j = 1, · · · , n.

Proof is easy by the law of total probability:

P (Aj|B) =
P (Aj ∩B)

P (B)
=

P (B|Aj)P (Aj)∑n
i=1 P (B|Ai)P (Ai)

Example 10. Suppose the probability that a person has a disease is 0.02. There is a test that is
95% accurate when given to someone infected, (which says P (test positive | have disease)=0.95)
and 96% accurate when given to someone not infected, P (test negative | do not have disease)=0.96)

Find: (1) Randomly choose a person, what is the probability that the test is positive. Find P (test
positive).

(2) Randomly choose a person, if the test is positive, what is the probability that this person has
disease. Find P ( have disease | test positive).

T: Test positive.
D: Have disease.

D

T T c

Dc

T T c

From the question, P (D) = 0.02, P (T |D) = 0.95, P (T c|Dc) = 0.96.
So, P (T |Dc) = 0.04 and P (Dc) = 0.98.
(1) By law of total probability,

P (T ) = P (T |D)P (D) + P (T |Dc)P (Dc) = (0.95)0.02 + (0.04)0.98 = 0.0582

(2) By Bayes’ theorem,

P (D|T )
P (T |D)P (D)

P (T )
=

(0.95)0.02

0.0582
≈ 0.3265

Example 11. A bowl has 6 marbles, 4 red and 2 blue. Take out marbles until either you have
one blue or 3 marbles.
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(1) Find P (blue).

R1

R2

R3 B3

B2

B1

So,

P (blue) = P (B1) + P (B2) + P (B3) =
2

6
+

4

6
· 2

5
+

4

6
· 3

5
· 2

4
= 0.8

(2) Find P (have 2 marbles | blue)

P (have 2 marbles|blue) =
P (have 2 marbles ∩ blue)

P (blue)
=

(4/6)(2/5)

(4/5)
= 1/3

Example 12. Go back to the computer manufacturer problem. Suppose a customer mailed back
a failed product. What is the probability that the item came from supplier A?

P (A|F ) =
P (A ∩ F )

P (F )

=
P (F |A)P (A)

P (F |A)P (A) + P (F |B)P (B) + P (F |C)P (C)

=
0.01(0.5)

0.018
≈ 27.78%

Example 13. *Prize behind door problem (Monty Hall problem.)

In a game show, there are three doors with is a big prize behind only one door. You choose one
of them, then one of the left is opened and there is no prize behind the opened door. You have a
chance to switch your choice. Will you switch?
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C: 1st choice is correct. P (C) = 1/3
S: win after switch.
T: win without switch.

P (S) = P (S|C)P (C) + P (S|Cc)P (Cc) = 0(
1

3
) + 1(

2

3
) =

2

3

P (T ) = P (T |C)P (C) + P (T |Cc)P (Cc) = 1(
1

3
) + 0(

2

3
) =

1

3

Conclusion: you should switch.

Example 14. * I take a test with 60 multiple choice questions, where each question has 5 possible
answers. I knows some of the answers, and guesses the others. Given that I answers a question
correctly, the probability that I knows the answer is 0.9. What is the probability that I knows the
answer to a question?

A: I know the answer.
B: I answers the question correctly.
So, from the question P (A|B) = 0.9. We want to find P (A).
We also know the following information: P (A|Bc) = 0; and P (B|A) = 1 because I know
the answer; and P (B|Ac) = 1/5 because I guess the answer.
By law of total probability, P (A) = P (A|B)P (B) + P (A|Bc)P (Bc). So P (A) = 0.9P (B).
By law of total probability, P (B) = P (B|A)P (A) + P (B|Ac)P (Ac). So, P (B) = P (A) +
0.2(1− P (A)).
Solve the linear equations, we have P (A) = 9/14 ≈ 64.3%.
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§2.5 Independence

Example 1. Roulette wheel

A Roulette (a wheel gamble) has 18 red, 18 black, and 2 green.
If you spin the wheel 2 times, what is the probability of getting 2
red.

R1 : the first result is red.
R2 : the second result is red.
P (R1 ∩R2) = P (R2 ∩R1) = P (R1)P (R2|R1) = (18/38)2.

Some other roulette does not have the 2 green numbers.(e.g., home-
work 2.5.12)

Definition.

The sets A and B are called independent if

P (A ∩B) = P (A)P (B).

Recall our Theorem P (A ∩B) = P (A|B)P (B) = P (B|A)P (A).

If If A and B are not empty set, we have the following equivalent definition.

Theorem.

The sets A and B are independent iff

P (A|B) = P (A) iff P (B|A) = P (B)

From the theorem, independent means the the probability of A does not depending on the result
of B, vice versa.

Example 2. Draw a card from a standard poker deck.

Event A: the card is a King.

Event B: the card is a Diamond.

Are the sets A and B independent?

P (A) =
4

52
= 1/13, and P (B) =

13

52
= 1/4

P (A ∩B) = P (the card is the Diamond King) = 1/52

So, P (A ∩B) = P (A)P (B). Hence, A and B are independent.
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Remark: It is important not to confuse “mutually exclusive” and “independence”. In the above
example, A and B are not disjoint.

Consider Event C: the card is a Jack. Then A and C are disjoint but not independent.)

Example 3. Let A and B be two independent events on S, and P (A) = 0.3 and P (B) = 0.8.
Find P (A ∪B).

P (A∪B) = P (A)+P (B)−P (A∩B) = P (A)+P (B)−P (A)P (B) = 0.3+0.8−0.3(0.8) = 0.86

Example 4. Roll two fair 6-sides dice.

Consider the sets: A={first roll =3}, B={sum=8}, C={sum=7}, D={first roll =1},

(1) Are the sets A and B independent? Are they disjoint?

P (A) =
1

6
and P (B) =

5

36

P (A ∩B) =
1

36
so P (A)P (B) 6= P (A ∩B).

Hence, A and B are neither independent nor disjoint.

(2) Are the sets A and C independent? Are they disjoint?

P (C) =
6

36
=

1

6

P (A ∩ C) =
1

36
. So, P (A ∩ C) = P (A)P (C).

Hence, A and C are independent, but not disjoint.

(3) Are the sets B and D independent? Are they disjoint?

P (D) =
1

6
P (B ∩D) = 0. Hence, B and D are not independent. B and D are disjoint.

More than Two Sets:

Definition.

The sets A, B, and C are called independent if:
(1) P (A ∩B ∩ C) = P (A)P (B)P (C), and
(2) P (A ∩B) = P (A)P (B),

P (A ∩ C) = P (A)P (C),
P (B ∩ C) = P (B)P (C).
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This means that knowing one event or two events does not affect the other events.

Those 4 equations do not depend each other. See the following example.

Example 5. Homework 11 and 12.

Most of the time, we know independent from the real world questions. (For example, roll a coin
or dice n times.)

Then we can use one side of the property: If A1, A2, ..., An are independent, then

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)P (A2) · · ·P (An)

Example 6. Consider a string of 20 Christmas tree lights connected in series. Suppose the
probability that a light bulb fails is 2%. What is the probability that the string fails?

F : the sting fails.
Fi: the i-th fails. So, P (Fi) = 0.02 and P (F c

i ) = 0.98.

P (F ) = 1− P (the string work)

= 1− P (F c
1 ∩ · · · ∩ F c

20)

= 1−
(
P (F c

1 ) · · ·P (F c
20)
)

= 1− (0.98)20

≈ 0.3324

Why P (F ) = P (F1) + P (F2) + · · ·+ P (F20) is wrong?
F = F1 ∪ F2 ∪ · · · ∪ F20 but Fi are not disjoint.

Example 7. Players A and B toss a fair coin in order. The first player to throw a head wins and
ends the game. What are their respective chances of winning?

P (A throws a head) = P
(
AH ∪ (AT ∩BT ∩ AH) ∪ (AT ∩BT ∩ AT ∩BT ∩ AH) ∪ · · ·

)
= P (AH) + P (AT ∩BT ∩ AH) + P (AT ∩BT ∩ AT ∩BT ∩ AH) + · · ·

=
1

2
+

1

2
(1/4) +

1

2
(1/4)2 + · · ·

=
1

2

(
1

1− 1/4

)
= 2/3

P (B wins) = 1− 2/3 = 1/3.
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Example 8. (Circuit Problem.) Consider the following 3 bulbs circuit. Suppose each bulb fail
independently with probability p. What is the probability of the circuit fail?(String, or circuit fail
means no electricity can pass.)

2

3

1In Out

Fi: component i fail. So, P (Fi) = p for i=1,2,3.
C: the circuit fail.

P (C) = P
(
(F2 ∩ F3) ∪ F1

)
= P (F2 ∩ F3) + P (F1)− P (F2 ∩ F3 ∩ F1)

= P (F2)P (F3) + P (F1)− P (F2)P (F3)P (F1)

= p2 + p− p3

Example 9. Roll a unfair (biased) coin 9 times. (Or, roll 9 coin once.) Suppose the probability
of getting Head is P (H) = p = 1/3.

Find: (1). P (all Heads)

By independent, P (all heads) = p9 = (1/3)9.

(2). P (no Head)

P (no head) = (1− p)9 = (2/3)9

(3). P (Exactly one Head)

Ai: only the i-th is head.

P (Exactly one Head) = P (A1) + · · ·P (A9) = 9P (A1) = 9p(1− p)8 = 9

(
1

3

)(
2

3

)8

=
28

37

(4). P (Exactly three Heads)
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Choose 3 positions from the 9 places. There are
(
9
3

)
ways.

For each choice, the probability is p3(1− p)6.
So,

P (Exactly three Heads) =

(
9

3

)
p3(1− p)6

You can change the example to “Roll a fair die 9 times” and change Head to “6”.

Example 10. (Bayesian Inference ) I tell you that I can toss coin such that it always comes up
Heads. You are 95% certain that I am lying. I tossed a coin 5 times in front of you and comes up
Head every time. How certain are you now that I am lying?

H1: I am lying (the coin if fair).
H2 = Hc

1: I can always toss Heads.
D=Data:= { I tossed 5 times and got 5 heads }
Prior probabilities: P (H1) = 0.95 and P (H2) = 0.05
Posterior probabilities: (after experiments) p1 = P (H1|D) updated probability for H1 given
data D. By Bayes’s Theorem,

P (H1|D) =
P (D|H1)P (H1)

P (D|H1)P (H1) + P (D|H2)P (H2)
==

(0.5)50.95

(0.5)50.95 + 1(0.05)
= 0.37

Summary: based on the data D, your new degree of certainty that I am lying is 37%.
We used independence to calculate P (D|H1) = P (HHHHH) = P (H)5 = 0.55.

Further Reading materials about Bayesian Inference:

1. Naive Bayes spam filtering https://en.wikipedia.org/wiki/Naive Bayes spam filtering

2. Bayesian poisoning https://en.wikipedia.org/wiki/Bayesian poisoning
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§2.6 Combinatorics

I Counting and Probability

For a finite sample space with all equally likely outcomes, it is still very important to use the
classical definition of probability to compute classical examples.

A very basic principle of counting is the multiplication rule:

Theorem. Multiplication rule

If operation A can be performed in m different ways and operation B in n different ways,
the sequence (operation A, operation B) can be performed in m · n different ways.

Example 1. When we buy a cup of smoothie, we can choose Large, Medium, or Small for the
cup, then choose Banana, Chocolate, Strawberry, Vanilla for the flavor.

How many ways we can buy a cup of smoothie?

Solution: 3× 4 = 12.

Example 2. Suppose that two cards are drawn-in order- from a standard 52-card poker deck. In
how many ways can the first card be a heart and the second card be a King?

If the first card is Heart-King, then there are 1× 3 ways.
If the first card is Heart-not-King, then there are 12×4 ways. The total is then 1×3+12×4 =
51 ways.

More generally,

Theorem. Multiplication rule of more operations

If each operation Ai can be performed in ni different ways, the ordered sequence
A1, A2, · · · , Ak ) can be performed in n1n2 · · ·nk different ways.

Example 3. Suppose you choose a password of length 6. You choose 4 numbers first, then 1
small letter and then 1 capital letter. How many different ways to choose the password.

10 · 10 · 10 · 10 · 26 · 26 = 6, 760, 000
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I Permutations (all distinct)

Theorem.

The number of ways to arrange k objects of a set of n distinct elements (permutations),
repetitions not allowed, is denoted by the symbol nPk, or P n

k , or P (n, k),

P n
k = n(n− 1)(n− 2) · · · (n− k + 1) =

n!

(n− k)!

In particular, the number of ways to arrange n distinct objects is P n
n = n!.

Example 4. What is the probability that we get the word NBA if we arrange the letters A, B,
N randomly?

Solution: All possible ways to arrange A, B, N :

ABN,ANB,BAN,BNA,NAB,NBA

In fact, there are P 3
3 = 3× 2× 1 = 6 ways. So, the probability P (A) = 1/6.

Example 5. What is the probability that we get the word NBA if we arrange 3 of letters ran-
domly?

The number of possible ways to arrange 3 letter from 26 letters are P 26
3 = 26·25·24 = 15600.

So the probability is 1/15600

Example 6. What is the probability that at least two students in a class (50 students) share the
same birthday?

Solution:

P (A) = 1− P (all have different birthdays)

= 1− P 365
50

36550

≈ 97%

I Permutations (Not all distinct)

Theorem.

The number of ways to arrange n objects, n1 of the same kind, n2 of the same kind, ..., nk

of the same kind, (n = n1 + n2 + · · ·+ nk), is given by

n!

n1! · n2! · · ·nk!
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Example 7. How many different ways to permute letters in word ARRANGE.

7!

2!2!
= 1260

Example 8. A point is currently at O = (0, 0) and moving to A = (7, 2). Each move must be a
positive 1 unit along x or y. How many different routes can it take.?

It can only x or y positive direction. So one of the result will looks like xxyxxxyxx or
xyxxxxxxy with 2 y and 7 x. So the number of routes will be

9!

7!2!
= 36

Example 9. What is the coefficient of a2b3c5 in the expansion of (a + b + c)10?

The coefficient is
10!

2!3!5!
= 2520.

I Combinations

Theorem.

The number of ways to choose a subset of k objects from n distinct objects (combinations),
denoted by Cn

k or
(
n
k

)
, or C(n, k), (

n

k

)
=

n!

(n− k)!k!

Example 10. Five cards are drawn from a standard deck. What is the probability of getting a
“royal flush”(10, J, Q, K, A of the same suit)?

4(
52
5

) =
4

2598960
≈ 0.00000154

Example 11. Five cards are drawn from a standard deck. What is the probability of getting a
“straight flush”(5 cards in order of the same suit, e.g., A,2,3,4,5 from club or 10, J, Q, K, A from
heart)?
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40(
52
5

) =
40

2598960
≈ 0.0000154

Example 12. Five cards are drawn from a standard deck. What is the probability that there are
exactly 3 diamonds?

Solution: In a standard deck, there are 13 diamonds and 39 non-diamonds. Let A be the
event that exactly 3 diamonds in 5 random cards.

P (A) =

(
13
3

)(
39
2

)(
52
5

) =
286× 741

2598960
≈ 8.15%

Example 13. Recall the binomial formulas:

(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

...

More generally,

(x + y)n = xn +

(
n

n− 1

)
xn−1y + · · ·+

(
n

k

)
xkyn−k + · · ·+

(
n

1

)
xyn−1 + yn

In particular, when x = y = 1, we get an interesting equality

2n =

(
n

n

)
+

(
n

n− 1

)
+ · · ·+

(
n

k

)
+ · · ·+

(
n

1

)
+

(
n

0

)
Example 14. Suppose you need to finish reading a assignment with 20 pages in 5 week days.
You intend to read the first x1 pages Monday, the next x2 pages Tuesday, and the next x3

pages Wednesday, the next x4 pages on Thursday and the final x5 pages on Friday, such that
x1 + x2 + x3 + x4 + x5 = 20, and each xi ≥ 1. how many ways can you complete the assignment?
That is, how many different sets of values can be chosen for x1, x2, x3, x4, x5?

Number the spaces between the twenty pages from 1 to 19. Choosing any four of these
spaces partitions the reading assignment into five non-zero numbers.
So the number of ways is

(
19
4

)
= 3876
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