- Instructor: He Wang
Email: he.wang@northeastern.edu

1 Quadratic forms and positive definite

Definition.

A function $p\left(x_{1}, \ldots, x_{n}\right)$ from \mathbb{R}^{n} to \mathbb{R} is call a quadratic form, if it is a linear combination of forms $x_{i} x_{j}$.

So, a quadratic form can be written as

$$
p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j} c_{i j} x_{i} x_{j}=c_{11} x_{1}^{2}+c_{22} x_{2}^{2}+\cdots+c_{n} x_{n}^{2}+\sum_{i<j} \mathbf{2} c_{i j} x_{i} x_{j}
$$

Another way to write quadratic form is using symmetric matrices

$$
p\left(x_{1}, \ldots, x_{n}\right)=\vec{x} \cdot A \vec{x}=\vec{x}^{T} A \vec{x}
$$

The unique symmetric matrix A is called the matrix for the quadratic form.

The matrix A for the above quadratic form is $A=\left[\begin{array}{cccc}c_{11} & c_{12} & \ldots & c_{1 n} \\ c_{21} & c_{22} & \ldots & c_{2 n} \\ \vdots & \vdots & \ldots & \vdots \\ c_{n 1} & c_{n 2} & \ldots & c_{n n}\end{array}\right]$.
Example 1. Consider $p\left(x_{1}, \ldots, x_{3}\right)=3 x_{1}^{2}+4 x_{2}^{2}-5 x_{3}^{2}-2 x_{1} x_{2}+4 x_{1} x_{3}+6 x_{2} x_{3}$
The matrix A for this quadratic form is

$$
A=\left[\begin{array}{ccc}
3 & -1 & 2 \\
-1 & 4 & 3 \\
2 & 3 & -5
\end{array}\right]
$$

You can check that $p\left(x_{1}, \ldots, x_{3}\right)=\vec{x}^{T} A \vec{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]\left[\begin{array}{ccc}3 & -1 & 2 \\ -1 & 4 & 3 \\ 2 & 3 & -5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$

Definition.

An real symmetric matrix A is called positive definite if the quadratic form

$$
\vec{x}^{T} A \vec{x}>0
$$

for all nonzero $\vec{x} \in \mathbb{R}^{n}$.
The matrix A is called positive semidefinite if the quadratic form

$$
\vec{x}^{T} A \vec{x} \geq 0
$$

for all $\vec{x} \in \mathbb{R}^{n}$.

Examples: 1. $p\left(x_{1}, \ldots, x_{3}\right)=2 x_{1}^{2}+3 x_{2}^{2}+4 x_{3}^{2}$ is positive definite.
2. $p\left(x_{1}, \ldots, x_{3}\right)=2 x_{1}^{2}+3 x_{2}^{2}$ is positive semidefinite.
3. $p\left(x_{1}, \ldots, x_{3}\right)=2 x_{1}^{2}+3 x_{2}^{2}-4 x_{3}^{2}$ is NOT positive semidefinite.

Theorem.

(1) An real symmetric matrix A is positive definite if and only if all eigenvalues of A are positive.
(2) An real symmetric matrix A is positive semidefinite if and only if all eigenvalues of A are non-negative.

Proof: A is symmetric if and only if $A=P D P^{-1}=P D P^{T}$ where $D=\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]$ So,

$$
q\left(x_{1}, \ldots, x_{n}\right)=\vec{x}^{T} P D P^{T} \vec{x}=\left(P^{T} \vec{x}\right)^{T} D P^{T} \vec{x}
$$

Let $\vec{y}=P^{T} \vec{x}$, then

$$
\begin{aligned}
q\left(x_{1}, \ldots, x_{n}\right) & =\vec{x}^{T} P D P^{T} \vec{x} \\
& =\left(P^{T} \vec{x}\right)^{T} D P^{T} \vec{x} \\
& =\vec{y}^{T} D \vec{y} \\
& =\lambda_{1} y_{1}^{2}+\cdots \lambda_{n} y_{n}^{2} .
\end{aligned}
$$

Proposition.

Let A be an $m \times n$ real matrix. Then $A^{T} A$ is positive semidefinite. Further more, if $\operatorname{rank}(A)=n$, then $A^{T} A$ is positive definite.

Proof: $p\left(x_{1}, \ldots, x_{n}\right)=\vec{x}^{T} A^{T} A \vec{x}=(T A \vec{x})^{T} A \vec{x}=\|A \vec{x}\|^{2} \geq 0$. So, $A^{T} A$ is positive semidefinite.
The equality hold if and only if $A \vec{x}=\overrightarrow{0}$. If $\operatorname{rank}(A)=n, A \vec{x}=\overrightarrow{0}$ if and only if $\vec{x}=\overrightarrow{0}$. Hence, if $\operatorname{rank}(A)=n$, then $A^{T} A$ is positive definite.

