• Instructor: He Wang Email: he.wang@northeastern.edu

1 Quadratic forms and positive definite

Definition.

A function $p(x_1, ..., x_n)$ from \mathbb{R}^n to \mathbb{R} is call a **quadratic form**, if it is a linear combination of forms $x_i x_j$.

So, a quadratic form can be written as

$$p(x_1, \dots, x_n) = \sum_{i,j} c_{ij} x_i x_j = c_{11} x_1^2 + c_{22} x_2^2 + \dots + c_n x_n^2 + \sum_{i < j} \mathbf{2} c_{ij} x_i x_j$$

Another way to write quadratic form is using symmetric matrices

$$p(x_1, \dots, x_n) = \vec{x} \cdot A\vec{x} = \vec{x}^T A\vec{x}$$

The unique symmetric matrix A is called the **matrix for the quadratic** form.

The matrix A for the above quadratic form is $A =$	c_{11}	c_{12}		c_{1n}	
	c_{21}	c_{22}	•••	c_{2n}	
	÷	÷		÷	.
	c_{n1}	c_{n2}		c_{nn}	

Example 1. Consider $p(x_1, ..., x_3) = 3x_1^2 + 4x_2^2 - 5x_3^2 - 2x_1x_2 + 4x_1x_3 + 6x_2x_3$

The matrix A for this quadratic form is

$$A = \begin{bmatrix} 3 & -1 & 2 \\ -1 & 4 & 3 \\ 2 & 3 & -5 \end{bmatrix}$$

You can check that
$$p(x_1, ..., x_3) = \vec{x}^T A \vec{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 3 & -1 & 2 \\ -1 & 4 & 3 \\ 2 & 3 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Definition.

An real symmetric matrix A is called **positive definite** if the quadratic form

$$\vec{x}^T A \vec{x} > 0$$

for all nonzero $\vec{x} \in \mathbb{R}^n$.

The matrix A is called **positive semidefinite** if the quadratic form

$$\vec{x}^T A \vec{x} \ge 0$$

for all $\vec{x} \in \mathbb{R}^n$.

Examples: 1. $p(x_1, ..., x_3) = 2x_1^2 + 3x_2^2 + 4x_3^2$ is positive definite.

2. $p(x_1, ..., x_3) = 2x_1^2 + 3x_2^2$ is positive semidefinite.

3. $p(x_1, ..., x_3) = 2x_1^2 + 3x_2^2 - 4x_3^2$ is NOT positive semidefinite.

Theorem.

(1) An real symmetric matrix A is positive definite if and only if all eigenvalues of A are positive.

(2) An real symmetric matrix A is positive semidefinite if and only if all eigenvalues of A are non-negative.

Proof: A is symmetric if and only if $A = PDP^{-1} = PDP^{T}$ where $D = \begin{bmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{bmatrix}$

So,

$$q(x_1, \dots, x_n) = \vec{x}^T P D P^T \vec{x} = (P^T \vec{x})^T D P^T \vec{x}$$

Let $\vec{y} = P^T \vec{x}$, then

$$q(x_1, ..., x_n) = \vec{x}^T P D P^T \vec{x}$$
$$= (P^T \vec{x})^T D P^T \vec{x}$$
$$= \vec{y}^T D \vec{y}$$
$$= \lambda_1 y_1^2 + \dots + \lambda_n y_n^2$$

Proposition.

Let A be an $m \times n$ real matrix. Then $A^T A$ is positive semidefinite. Further more, if rank(A) = n, then $A^T A$ is positive definite.

Proof: $p(x_1, ..., x_n) = \vec{x}^T A^T A \vec{x} = (TA\vec{x})^T A \vec{x} = ||A\vec{x}||^2 \ge 0$. So, $A^T A$ is positive semidefinite.

The equality hold if and only if $A\vec{x} = \vec{0}$. If $\operatorname{rank}(A) = n$, $A\vec{x} = \vec{0}$ if and only if $\vec{x} = \vec{0}$. Hence, if $\operatorname{rank}(A) = n$, then $A^T A$ is positive definite.