
Math 2331 §8.1 Symmetric Matrices He Wang

• Instructor: He Wang Email: he.wang@northeastern.edu

Definition. [Symmetric Matrices ]

An n× n matrix A is called symmetric if AT = A.
If we write A = [aij], then A is symmetric if and only if

aij = aji for all i, j ∈ {1, 2, ..., n}

Example 1 (Diagonalizing a Symmetric Matrix). A =

[
10 6
6 1

]
.

Example 2 (Diagonalizing a Symmetric Matrix). A =

1 1 1
1 1 1
1 1 1

.
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Example 3 (Diagonalizing a Symmetric Matrix). A =

1 1 7
1 7 1
7 1 1

.

Theorem.

Let A be a symmetric matrix and let λ, µ be two distinct eigenvalues of A with asso-
ciated eigenvectors ~v, ~w. Then

~v · ~w = 0.

Definition. [Orthogonal Diagonalization]

An n×n matrix is orthogonally diagonalizable if there exist n×n matrices D and
U , with D diagonal and U orthogonal (ie. UTU = In), and with

A = UDU−1 = UDUT .
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Theorem. [On Orthogonal Diagonalizability]

An n × n matrix A is orthogonally diagnonalizable if and only if A is a symmetric
matrix.

Theorem. [Spectral Theorem for Symmetric Matrices]

Evey n× n symmetric matrix A has the following properties.

1. All eigenvalues of A are real, and there are exactly n of them if counted with
their multiplicities.

2. The dimension of the eigenspace Eλ associated to the eigenvalue λ, equals pre-
cisely the algebraic multiplicity of λ.

3. Eλ is orthogonal to Eµ for distinct eigenvalues λ, µ (in that ~v · ~w = 0 for all
~v ∈ Eλ and ~w ∈ Eµ).

4. A is orthogonally diagonalizable.

Example 4 (Orthogonal Diagonalization). A =

1 1 1
1 1 1
1 1 1

.

Example 5. (True or False)

1. If A and B are diagonalizable, then A+B is diagonalizable.

False. For example, A =

[
1 1
0 2

]
and B =

[
0 0
0 −1

]
are diagonalizable. But A + B =[

1 1
0 1

]
is not diagonalizable.
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2. If A and B are orthogonally diagonalizable, then A+B is orthogonally diagonalizable.

True. Reason?

Example 6 (Orthogonal Diagonalization). A =

1 1 7
1 7 1
7 1 1

.

3. The Spectral Decomposition

Let A be an n × n matrix and let D and U be a diagonal and orthogonal matrix with
A = UDU−1. Let λ1, . . . , λn be the diagonal entries of D, and let ~u1, . . . , ~un be the column
vectors of U . Note that ~ui · ~uj = 0 for i 6= j.

A new decomposition of A in terms of λ1, . . . , λn and ~u1, . . . , ~un can be found by starting
with the relation A = UDU−1.

A = UDU−1 = UDUT

= [~u1 ... ~u2]


λ1 0 ... 0
0 λ2 ... 0
...

... ...
...

0 0 ... λn


(~u1)

T

...
(~un)

T



= [λ1~u1 ... λn~un]

(~u1)
T

...
(~un)

T


= λ1~u1 · (~u1)T + · · ·+ λn~un · (~un)T
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Theorem. [Spectral Decomposition for Symmetric Matrices]

Using above notations

A = λ1

(
~u1 · (~u1)T

)
+ · · ·+ λn

(
~un · (~un)T

)
For each i = 1, ..., n, the matrix ~ui ·(~ui)T is the projection matrix onto the line Span(~ui)
in the sense that

proj~ui(~x) =
(
~ui · (~ui)T

)
· ~x, for each ~x ∈ Rn.

Example 7 (Spectral Decomposition for Symmetric Matrices).
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