- Instructor: He Wang

Email: he.wang@northeastern.edu
Definition. [Symmetric Matrices]
An $n \times n$ matrix A is called symmetric if $A^{T}=A$. If we write $A=\left[a_{i j}\right]$, then A is symmetric if and only if

$$
a_{i j}=a_{j i} \quad \text { for all } i, j \in\{1,2, \ldots, n\}
$$

Example 1 (Diagonalizing a Symmetric Matrix). $A=\left[\begin{array}{cc}10 & 6 \\ 6 & 1\end{array}\right]$.

1. $\operatorname{det}(A-\lambda I)=0 \quad \Rightarrow \quad \lambda_{1}=-2 \quad \lambda_{2}=13$
2. For $\lambda_{1}=-2$, a basis for even space $E_{\lambda_{1}}=\operatorname{ker}\left(A-\lambda_{1} I\right)$ is $\left\{\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]\right\}$ For $\lambda_{2}=B$, a basis for eigenspace $E_{\lambda_{2}}=\operatorname{kor}\left(A-\lambda_{2} I\right)$ is $\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$
3. $A=H D H^{-1} \quad D=\left[\begin{array}{cc}-2 & 0 \\ 0 & 13\end{array}\right] \quad H=\left[\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right] \quad H^{-1}=\frac{1}{-5}\left[\begin{array}{cc}1 & -2 \\ -2 & -1\end{array}\right]$

Example 2 (Diagonalizing a Symmetric Matrix). $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.

1. $\lambda_{1}=0 \quad \lambda_{2}=3$
2. A basis for eigenbasis $E_{\lambda_{1}}$ is $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\} \rightarrow \cdots \rightarrow\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right]\right\}$

$$
\text { A basis) for eigenbasis } E_{\lambda_{2}} \text { is }\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \quad\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
6
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

3. $A=P D P^{-1}$ where $D=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \quad P=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$

Example 3 (Diagonalizing a Symmetric Matrix). $A=\left[\begin{array}{lll}1 & 1 & 7 \\ 1 & 7 & 1 \\ 7 & 1 & 1\end{array}\right]$.

$$
\text { 1. } \begin{aligned}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 1 & 7 \\
1 & 7-\lambda & 1 \\
7 & 1 & 1-\lambda
\end{array}\right| & =(1-\lambda)\left|\begin{array}{cc}
7-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|-\left|\begin{array}{cc}
1 & 1 \\
7 & 1-\lambda
\end{array}\right|+7\left|\begin{array}{cc}
1 & 7-\lambda \\
7 & 1
\end{array}\right| \\
& =(1-\lambda)\left(\lambda^{2}-8 \lambda+6\right)-(-\lambda-6)+7(7 \lambda-48) \\
& =-\lambda^{3}+9 \lambda^{2}+36 \lambda-324
\end{aligned}
$$

$\lambda=9,6,-6$
2.
A_{n} erearrector for $\lambda=\rho$ is $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
A_{n} eigenvector for $\lambda=6$ is $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$
A_{n} erearnector for $\lambda=-6$ is $\left[\begin{array}{c}-1 \\ 9\end{array}\right]$
3. $A=H D H^{-1} \quad H=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & -2 & 0 \\ 1 & 1 & 1\end{array}\right] \quad D=\left[\begin{array}{ccc}9 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6\end{array}\right]$

Theorem.

Let A be a symmetric matrix and let λ, μ be two distinct eigenvalues of A with assocoated eigenvectors \vec{v}, \vec{w}. Then

$$
\vec{v} \cdot \vec{w}=0
$$

Definition. [Orthogonal Diagonalization]
An $n \times n$ matrix is orthogonally diagonalizable if there exist $n \times n$ matrices D and U, with D diagonal and U orthogonal (ie. $U^{T} U=I_{n}$), and with

$$
A=U D U^{-1}=U D U^{T}
$$

Theorem. [On Orthogonal Diagonalizability]

An $n \times n$ matrix A is orthogonally diagnonalizable if and only if A is a symmetric matrix.

Theorem. [Spectral Theorem for Symmetric Matrices]

Evey $n \times n$ symmetric matrix A has the following properties.

1. All eigenvalues of A are real, and there are exactly n of them if counted with their multiplicities.
2. The dimension of the eigenspace E_{λ} associated to the eigenvalue λ, equals precisely the algebraic multiplicity of λ.
3. E_{λ} is orthogonal to E_{μ} for distinct eigenvalues λ, μ (in that $\vec{v} \cdot \vec{w}=0$ for all $\vec{v} \in E_{\lambda}$ and $\left.\vec{w} \in E_{\mu}\right)$.
4. A is orthogonally diagonalizable.

Example 4 (Orthogonal Diagonalization). $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.

$$
A=P D P^{-1} \text { where } D=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad P=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 1 & -1 \\
1 & 0 & 2
\end{array}\right]
$$

$$
A=\text { UDU }^{-1} \quad U=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & -1 / \sqrt{6} \\
\frac{1}{\sqrt{\sqrt{3}}} & \frac{1}{\sqrt{2}} & -1 / \sqrt{6} \\
\frac{1}{\sqrt{3}} & 0 & 2 / \sqrt{6}
\end{array}\right]
$$

Example 5. (True or False)

1. If A and B are diagonalizable, then $A+B$ is diagonalizable.

False. For example, $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right]$ are diagonalizable. But $A+B=$ $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is not diagonalizable.
2. If A and B are orthogonally diagonalizable, then $A+B$ is orthogonally diagonalizable.

True. Reason?
Example 6 (Orthogonal Diagonalization). $A=\left[\begin{array}{lll}1 & 1 & 7 \\ 1 & 7 & 1 \\ 7 & 1 & 1\end{array}\right]$.

$$
\begin{array}{ll}
A=H D H^{-1} & H=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & -2 & 0 \\
1 & 1 & 1
\end{array}\right] \quad D=\left[\begin{array}{ccc}
9 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & -6
\end{array}\right] \\
\text { A=UDU-1 } & U=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right]
\end{array}
$$

3. The Spectral Decomposition

Let A be an $n \times n$ matrix and let D and U be a diagonal and orthogonal matrix with $A=U D U^{-1}$. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the diagonal entries of D, and let $\vec{u}_{1}, \ldots, \vec{u}_{n}$ be the column vectors of U. Note that $\vec{u}_{i} \cdot \vec{u}_{j}=0$ for $i \neq j$.

A new decomposition of A in terms of $\lambda_{1}, \ldots, \lambda_{n}$ and $\vec{u}_{1}, \ldots, \vec{u}_{n}$ can be found by starting with the relation $A=U D U^{-1}$.

$$
\begin{aligned}
A & =U D U^{-1}=U D U^{T} \\
& =\left[\begin{array}{llll}
\vec{u}_{1} & \ldots & \vec{u}_{2}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\left(\vec{u}_{1}\right)^{T} \\
\vdots \\
\left(\vec{u}_{n}\right)^{T}
\end{array}\right] \\
& =\left[\lambda_{1} \vec{u}_{1} \ldots \lambda_{n} \vec{u}_{n}\right]\left[\begin{array}{c}
\left(\vec{u}_{1}\right)^{T} \\
\vdots \\
\left(\vec{u}_{n}\right)^{T}
\end{array}\right] \\
& =\lambda_{1} \vec{u}_{1} \cdot\left(\vec{u}_{1}\right)^{T}+\cdots+\lambda_{n} \vec{u}_{n} \cdot\left(\vec{u}_{n}\right)^{T}
\end{aligned}
$$

Theorem. [Spectral Decomposition for Symmetric Matrices]

Using above notations

$$
A=\lambda_{1}\left(\vec{u}_{1} \cdot\left(\vec{u}_{1}\right)^{T}\right)+\cdots+\lambda_{n}\left(\vec{u}_{n} \cdot\left(\vec{u}_{n}\right)^{T}\right)
$$

For each $i=1, \ldots, n$, the matrix $\vec{u}_{i} \cdot\left(\vec{u}_{i}\right)^{T}$ is the projection matrix onto the line $\operatorname{Span}\left(\vec{u}_{i}\right)$ in the sense that

$$
\operatorname{proj}_{\vec{u}_{i}}(\vec{x})=\left(\vec{u}_{i} \cdot\left(\vec{u}_{i}\right)^{T}\right) \cdot \vec{x}, \quad \text { for each } \vec{x} \in \mathbb{R}^{n}
$$

Example 7 (Spectral Decomposition for Symmetric Matrices).

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Ex } 1 & A
\end{array}=\left[\begin{array}{ll}
10 & 6 \\
6 & 1
\end{array}\right] \quad A u^{-1} u^{-1} & u=\left[\begin{array}{cc}
-\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right] \\
A-2 \vec{u}_{1} \vec{u}_{1}^{\top}+B \vec{u}_{2} \vec{u}_{2}^{\top} & D=\left[\begin{array}{cc}
-2 & \\
& 13
\end{array}\right]
\end{array}
$$

Ex 2 $A=\left[\begin{array}{lll}1 & 1 & 7 \\ 1 & 7 & 1 \\ 7 & 1 & 1\end{array}\right]$
$=9 \vec{u}_{1} \vec{u}_{1}^{\top}+6 \overrightarrow{u_{2}} \vec{u}_{u}^{\top}+(6) \vec{u}_{2} \vec{u}_{3}^{\top}$

