• Instructor: He Wang Email: he.wang@northeastern.edu

Theorem.

Let A be an $n \times n$ matrix. A scalar λ is an eigenvalue for A if and only if the matrix equation

$$(A - \lambda I_n)\vec{x} = \vec{0}$$

has a *nontrivial* solution \vec{x} .

Said differently, λ is an eigenvalue for A if and only if

$$\operatorname{Nul}(A - \lambda I_n) \neq \{0\}.$$

Definition.

Let A be an $n \times n$ matrix and λ be a eigenvalue of A. The set of all eigenvectors of A corresponding to λ together with the zero vector, is called the **eigenspace** of A corresponding to λ , and it equals the subspace

$$\operatorname{Nul}(A - \lambda I_n).$$

The dimension of $Nul(A - \lambda I_n)$ is called the **geometric multiplicity** of λ .

1 ≤ Geometric multiplicity of λ ≤ Algebraic multiplicity of λ ≤ n.

Example 1. Let *T* be the projection transformation onto a line $L = \text{Span}\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\} \mathbb{R}^3$. Explain the geometric meaning of the eigenvalues and eigenspaces

the geometric meaning of the eigenvalues and eigenspaces.

From §7.1, $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} P = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 0 \\ 3 & 0 & -1 \end{bmatrix}$ For $\lambda = 1$ the eigenspace $E_{\lambda=1} = L$. For $\lambda = 0$ the eigenspace $E_{\lambda=0} = L^{\perp}$.

Example 2. Find all eigenvalues and the corresponding eigenspaces of $A = \begin{bmatrix} 4 & -1 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & 2 \end{bmatrix}$

$$det (A-\lambda I) = \begin{vmatrix} 4-\lambda & + 0 \\ 2 & +\lambda & 0 \\ 2 & -\lambda & 0 \\ 2 & -1 & 2-\lambda \end{vmatrix} = \dots = -(\lambda - 2)^{2} (\lambda - 3)$$

$$\begin{array}{l} \lambda=2 \\ A-2\overline{I} = \begin{bmatrix} 2-1 & 0 \\ 2-1 & 0 \\ 2-1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{l} X_{1} - \frac{1}{2}X_{2} = 0 \\ X_{1}, X_{3} & focc \end{array} \\ \begin{bmatrix} x_{1} \\ x_{1} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}x_{1} \\ x_{1} \\ x_{3} \end{bmatrix} = X_{1} \begin{bmatrix} \frac{1}{2} \\ 0 \\ 0 \\ x_{1} \end{bmatrix} + X_{3} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \\ A \text{ basis for the eigen space of } A \text{ conseponding to } \lambda=2 \text{ if } \int \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ x_{1} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 2 & -1 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \\ \begin{array}{l} X_{1} = X_{3} \\ X_{2} = X_{3} \\ X_{3} \text{ dree} \end{array} \\ \begin{bmatrix} X_{1} \\ X_{3} \end{bmatrix} = X_{3} \begin{bmatrix} 1 \\ 1 \\ 1 \\ x_{3} \end{bmatrix} = X_{3} \begin{bmatrix} 1 \\ 1 \\ 1 \\ x_{3} \end{bmatrix}$$

Theorem.

Let A be an $n \times n$ matrix and let $\vec{v}_1, \ldots, \vec{v}_p$ be eigenvectors of A that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_p$ respectively. Then $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is a linearly independent set of vectors.

Theorem. [Review: Diagonalizability]

Let A be an $n \times n$ matrix.

A is diagonalizable if and only if it has n linearly independent eigenvectors. (eigenbasis.)

In this case $A = PDP^{-1}$ where the columns of P are eigenvectors of A; the diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors given by the columns of P.

Example 3. Diagonalizing Matrix $A = \begin{bmatrix} 4 & -1 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & 2 \end{bmatrix}$

_

$P = \begin{bmatrix} \frac{1}{2} & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$)
	D=020	
LUTI	L003	

Proposition. [Case of Distinct Eigenvalues]

If an $n \times n$ matrix A has n **distinct** eigenvalues, then its corresponding eigenvectors are linearly independent and accordingly A is diagonalizable.

Theorem. [Case of Repeated Eigenvalues]

Let A be an $n \times n$ matrix with distinct real eigenvalues $\lambda_1, \ldots, \lambda_p$ such that

$$f_A(\lambda) = \det(A - \lambda I) = (\lambda_1 - \lambda)^{k_1} (\lambda_2 - \lambda)^{k_2} \cdots (\lambda_p - \lambda)^{k_p}$$

Suppose $k_1 + k_2 + \cdots + k_p = n$. Let E_k be the eigenspace of λ_k . Suppose B_k is a basis for E_k .

- A is diagonalizable if and only if $B = B_1 \cup \cdots \cup B_p$ is an eigen-basis for A.
- A is diagonalizable if and only if

$$\dim E_1 + \dots + \dim E_p = n.$$

This equality is satisfied if and only if $\dim(E_i) = k_i$ for each $i = 1, \ldots, p$

Example 4. Diagonalizing Matrix $A = \begin{bmatrix} 5 & 1 & 0 \\ 2 & 4 & 0 \\ 2 & 1 & 3 \end{bmatrix}$

$$D = \begin{bmatrix} 3 \\ 3 \\ 6 \end{bmatrix} \qquad P = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Theorem. [Non Diagonalizing Result]

For any n > 1 there exist examples of $n \times n$ matrices that are not diagonalizable.

Example 5. For any n > 1, find examples of $n \times n$ non-diagonalizable matrices.

$$\begin{bmatrix} k \\ 0 \\ k \end{bmatrix} \begin{bmatrix} k \\ 0 \\ k \\ 0 \\ k \end{bmatrix} \begin{bmatrix} k \\ k \\ k \\ k \end{bmatrix}$$

Example 6. Diagonalizing the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$. We already know that 1, -1, 4 are eigenvalues of A.

$$Fr \lambda = \begin{bmatrix} 0 & | & 2 \\ 1 & | & | \\ 2 & | & 0 \end{bmatrix} \rightarrow \dots \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & | & 2 \\ 0 & 0 & 0 \end{bmatrix} \qquad \vec{X} = X_3 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$Fr \lambda = -1$$

$$A - \lambda I = \begin{bmatrix} 2 & | & 2 \\ 1 & 3 & | \\ 2 & | & 2 \end{bmatrix} \rightarrow \dots \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & | & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \vec{X}^2 = X_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$Fr \lambda = 4$$

$$A - \lambda J = \begin{bmatrix} -3 & | & 2 \\ 1 & -2 & | \\ 2 & | & -3 \end{bmatrix} \rightarrow \dots \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & | & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \vec{X}^2 = X_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$Fr \lambda = 4$$

$$P = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 0 \end{bmatrix}$$

Example 7. Diagonalizing the matrix $A = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 4 & 2 \\ -1 & 1 & 5 \end{bmatrix}$. We already know that 3 and 5 are eigenvalues of A.

 $D = \begin{bmatrix} 3 \\ 3 \\ 5 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$