- Instructor: He Wang
Email: he.wang@northeastern.edu

Let A be an $n \times n$ matrix.

- Recall that a (possibly complex) scalar λ is an eigenvalue of A if $A \vec{x}=\lambda \vec{x}$ has a nonzero solution.
- Equivalently, $\left(A-\lambda I_{n}\right) \vec{x}=\overrightarrow{0}$ has a nonzero solution.
- Equivalently, $A-\lambda I_{n}$ is not invertible.
- Equivalently, the determinant of $A-\lambda I_{n}$ equals zero.

Theorem. [The Characteristic Equation]

Let A be an $n \times n$ matrix. A (possibly complex) scalar λ is an eigenvalue of A if and only if

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

This last equation is called the characteristic equation of A.

Example 1. Finding Eigenvalues for the following matrices:

$$
A=\left[\begin{array}{ll}
2 & 5 \\
3 & 4
\end{array}\right] \quad B=\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
2-\lambda & 5 \\
3 & 4-\lambda
\end{array}\right| \\
& =(2-\lambda)(4-\lambda)-15 \\
& =\lambda^{2}-6 \lambda-7 \\
& =(\lambda-7)(\lambda+1)=0 \\
& \lambda=7 \quad \lambda=-1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\left|\begin{array}{cc}
2-\lambda & 1 \\
-1 & 4-\lambda
\end{array}\right| \\
& =(2-\lambda)(4-\lambda)+1 \\
& =\lambda^{2}-6 \lambda+9 \\
& =(\lambda-3)^{2}=0 \\
\lambda & =3
\end{aligned}
$$

Theorem.

The eigenvalues of a (upper or lower) triangular $n \times n$ matrix A equal the diagonal entries of A.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right] \\
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
a_{11}-\lambda & * & * \\
0 & a_{n 2-\lambda} & * \\
0 & 0 & a_{33}-\lambda
\end{array}\right|=\left(a_{11}-\lambda\right)\left(a_{n 2}-\lambda\right)\left(a_{n 1}-\lambda\right)=0
\end{aligned}
$$

Example 2. Finding Eigenvalues for the following matrices:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & 5 & \sqrt{2} \\
3 & 4 & 7 \\
0 & 0 & 3
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 4 & 0 \\
3 & 5 & 7
\end{array}\right] \\
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 5 & \sqrt{2} \\
3 & 4-\lambda & 7 \\
0 & 0 & 3-\lambda
\end{array}\right| \\
& =(3-\lambda)\left|\begin{array}{cc}
2-\lambda & 5 \\
3 & 4-\lambda
\end{array}\right| \\
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{cc|c}
2-\lambda & 1 & 0 \\
-1 & 4-\lambda & 0 \\
3 & 5 & 7-\lambda
\end{array}\right| \\
& =(3-\lambda)[(2-\lambda)(4-\lambda)-15] \\
& =(3-\lambda)\left(\lambda^{2}-6 \lambda-7\right) \\
& =(7-\lambda)\left|\begin{array}{cc}
2-\lambda & 1 \\
-1 & 4-\lambda
\end{array}\right| \\
& =(7-\lambda)\left(\lambda^{2}-6 \lambda+9\right) \\
& =(7-\lambda)(\lambda-3)^{2}=0 \\
& =(3-\lambda)(\lambda-7)(\lambda+1)=0 \\
& \lambda=3 \quad \lambda=7 \quad \lambda=1 \\
& \lambda=7 \quad \lambda=3
\end{aligned}
$$

Definition. [Characteristic Polynomial]
If A is an $n \times n$ matrix, the degree n polynomial

$$
f_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)
$$

is called the characteristic polynomial of A.

Example 3. A and A^{T} have the same characteristic polynomial.

$$
f_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)=\operatorname{det}\left[\left(A-\lambda I_{n}\right)^{T}\right]=\operatorname{det}\left[\left(A^{T}-\lambda I_{n}\right)\right]=f_{A^{T}}(\lambda)
$$

Example 4. Find the characteristic polynomial for a 2×2 arbitrary matrix.

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right|=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-\underline{(a+d)} \lambda+\underline{a d}-b c$

Definition.

Th sum of the diagonal entries of a square matrix is called the trace of A, denoted by $\operatorname{tr} A$.

Some basic properties about trace $\operatorname{tr} A$:

Proposition.

For $n \times n$ matrices A and B,

1. $\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$
2. $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
3. $\operatorname{tr}(k A)=k \operatorname{tr}(A)$
4. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

Summarize Example 2: the characteristic polynomial for a $2 \times 2 \mathrm{~A}$:

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-(\operatorname{tr} A) \lambda+\operatorname{det}(A)
$$

More generally,
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccccc}a_{11}-\lambda & x & * & \cdots & * \\ * & a_{22}-\lambda & * & \cdots & * \\ * & x & a_{n 3}-\lambda & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & x & \cdots & a_{n n-\lambda}\end{array}\right|$

Theorem.

Let A be an $n \times n$ matrix. Then the characteristic polynomial of A is

$$
f_{A}(\lambda)=\operatorname{det}(A-\lambda I)=(-\lambda)^{n}+(\operatorname{tr} A)(-\lambda)^{n-1}+\cdots+\operatorname{det}(A) .
$$

Definition. [Algebraic Multiplicity]

An eigenvalue λ_{0} of A is said to have algebraic multiplicity k if it has multiplicity k as a root of the characteristic polynomial $f_{A}(t)$. Equivalently,

$$
f_{A}(\lambda)=\left(\lambda_{0}-\lambda\right)^{k} g(\lambda)
$$

such that $g\left(\lambda_{0}\right) \neq 0$.
Example 5. Find all eigenvalues and their algebraic multiplicities of $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$

$$
\begin{aligned}
& \operatorname{dot}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right|=\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
0 & \lambda & -\lambda
\end{array}\right| \\
& =(1-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
\lambda & -\lambda
\end{array}\right|-\left|\begin{array}{cc}
1 & 1 \\
\lambda & -\lambda
\end{array}\right| \\
& =(1-\lambda)(-\lambda(1-\lambda)-\lambda)-(-2 \lambda) \\
& =(1-\lambda)\left(\lambda^{2}-2 \lambda\right)+2 \lambda=0 \quad a m=2 \\
& \lambda=3 a m=3
\end{aligned}
$$

Theorem.

An $n \times n$ matrix has at most n real eigenvalues, even counted with algebraic multiplicities.

Example 6. Find the characteristic polynomial of $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1\end{array}\right]$. Which of the following numbers $1,-1,4$ are eigenvalues of A ?

We only need to check $\operatorname{det}(A-I)$, $\operatorname{det}(A+I)$, $\operatorname{det}(A-4 I)$. All equal to zero. So, all $1,-1,4$ are eigenvalues.

A direct calculation of the eigenvalues is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 1 & 2 \\
1 & 2-\lambda & 1 \\
2 & 1 & 1-\lambda
\end{array}\right| & =(1-\lambda)\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|-\left|\begin{array}{cc}
1 & 1 \\
2 & 1-\lambda
\end{array}\right|+2\left|\begin{array}{cc}
1 & 2-\lambda \\
2 & 1
\end{array}\right| \\
& =(1-\lambda)[(2-\lambda)(1-\lambda)-1]-(1-\lambda-2)+2(1-2(2-\lambda)) \\
& =(1-\lambda)\left(\lambda^{2}-3 \lambda+1\right)+5(\lambda-1) \\
& =(1-\lambda)\left(\lambda^{2}-3 \lambda-4\right) \\
& =(1-\lambda)(\lambda+1)(\lambda-4)
\end{aligned}
$$

Example 7. Find the characteristic polynomial of $A=\left[\begin{array}{ccc}2 & 1 & 2 \\ -1 & 4 & 2 \\ -1 & 1 & 5\end{array}\right]$. Verify that 3 and 5 are eigenvalues.

$$
\begin{aligned}
& f(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2 \lambda & 1 & 2 \\
-1 & 4-\lambda & 2 \\
-1 & 1 & 5-\lambda
\end{array}\right| \\
& f(3)=\left|\begin{array}{lll}
-1 & 1 & 2 \\
-1 & 1 & 2 \\
-1 & 1 & 2
\end{array}\right|=0 \\
& f(5)=\left|\begin{array}{ccc}
-3 & 1 & 2 \\
-1 & -1 & 2 \\
-1 & 1 & 0
\end{array}\right|=\left|\begin{array}{ccc}
-3 & 1 & 2 \\
2 & -2 & 0 \\
-1 & 1 & 0
\end{array}\right|=2\left|\begin{array}{cc}
2 & -2 \\
-1 & 1
\end{array}\right|=0
\end{aligned}
$$

Theorem.

Let A be an $n \times n$ matrix. Suppose A has n eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, (listed with algebraic multiplicities.) Then

$$
\operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}
$$

and

$$
\operatorname{tr} A=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}
$$

This theorem comes from

$$
f_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)
$$

Theorem. [On Eigenvalues of Similar Matrices]

If A and B are similar, i.e., $A=P B P^{-1}$, then they have the same characteristic polynomial, i.e. $f_{A}(\lambda)=f_{B}(\lambda)$, and hence the same eigenvalues with the same multiplicities.
$f_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(P B P^{-1}-\lambda I\right)=\operatorname{det}\left(P(B-\lambda I) P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(B-$ $\lambda I) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}(B-\lambda I)=f_{B}(\lambda)$. So, A and B have the same characteristic polynomial.

The converse of the preceding theorem is not generally true. There do exist matrices with the same characteristic polynomial that are not similar matrices. See example later.

Proposition. Determinant and trace of similar matrices

If A and B are similar, we also have $\operatorname{det}(A)=\operatorname{det}(B), \operatorname{tr}(A)=\operatorname{tr}(B)$.

Proof. Since determinant and trace are determined by characteristic polynomial, so we get the result by the above theorem.

Proposition. rank of similar matrices

If A and B are similar, then $\operatorname{rank}(A)=\operatorname{rank}(B)$.
$A=P B P^{-1}$. Multiplying an invertible matrix does not change the rank. So, $\operatorname{rank}(A)=\operatorname{rank}(B)$.

Example 8. $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ are not similar, but they have the same rank, the same determinant, the same trace, the same eigenvalues.

If B similar to $A=I$, then $B=P A P^{-1}=I$ which is a contradiction.
Example 9. Are the following two matrices similar to each other? $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{ll}3 & 5 \\ 2 & 3\end{array}\right]$

$$
\begin{aligned}
& \operatorname{tr}(A)=5 \text { but } \operatorname{tr}(B)=6 \\
& |A|=2 \text { but }|B|=-1
\end{aligned}
$$

Warning: Similar matrices may have different eigenvectors.
Think about Example 1 in $\S 7.1$. The projection matrix $A=\frac{1}{14}\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right]$ is similar to $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$\vec{b}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$ is an eigenvector of D but it is not an eigenvector of A.

