• Instructor: He Wang Email: he.wang@northeastern.edu

1. Diagonalization

Let D be an diagonal matrix. The power D^k is easy to calculate. For example,

$$D^{k} = \begin{bmatrix} d_{1} & 0 & 0 & 0 \\ 0 & d_{2} & 0 & 0 \\ 0 & 0 & d_{3} & 0 \\ 0 & 0 & 0 & d_{4} \end{bmatrix}^{k} = \begin{bmatrix} (d_{1})^{k} & 0 & 0 & 0 \\ 0 & (d_{2})^{k} & 0 & 0 \\ 0 & 0 & (d_{3})^{k} & 0 \\ 0 & 0 & 0 & (d_{4})^{k} \end{bmatrix}$$

Definition.

An $n \times n$ matrix A is said to be **diagonalizable** if it is similar to a diagonal matrix D, that is, if there exists an invertible matrix P such that $A = PDP^{-1}$.

Powers of a diagonalizable matrix A are also easy to calculate: $A^{k} = (PDP^{-1})^{k} = (PDP^{-1})(PDP^{-1}) \cdots (PDP^{-1}) = PD^{k}P^{-1}$

$$A^k = PD^kP^{-1}$$

We see that A^k is similar to the diagonal matrix D^k , and hence also **diagonalizable**.

Question:

1. Are all $n \times n$ matrices A diagonalizable?

2. If a matrix A is diagonalizable, how to find the invertible matrix P and the diagonal matrix D? The answer for this question is called **diagonalize** matrix A.

Solve $A = PDP^{-1}$. That is AP = PD. More explicitly (when n = 3) $A[\vec{b}_1 \ \vec{b}_2 \ \vec{b}_3] = [\vec{b}_1 \ \vec{b}_2 \ \vec{b}_3] \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}$ That is $[A\vec{b}_1 \ A\vec{b}_2 \ A\vec{b}_3] = [d_1\vec{b}_1 \ d_2\vec{b}_2 \ d_3\vec{b}_3]$ So, equivalently, we need to find numbers d_1, d_2, d_3 and $\vec{b}_1, \vec{b}_2, \vec{b}_3$ satisfy $A\vec{b}_1 = d_1\vec{b}_1, A\vec{b}_2 = d_2\vec{b}_2, A\vec{b}_3 = d_3\vec{b}_3$. They are the same equation:

 $A\vec{x} = d\vec{x}$

Recall from §3.4 the meaning of similar matrices $A = PDP^{-1}$. (If you have not learned §3.4, you can skip this page.)

Let A be the matrix of a transformation $T : \mathbb{R}^n \to \mathbb{R}^n$. Let $\mathscr{B} = \{\vec{b}_1, \ldots, \vec{b}_n\}$ be a basis for \mathbb{R}^n and denote $P = [\vec{b}_1 \ldots \vec{b}_n]$ the change of coordinate matrix. The matrix of T respect to basis \mathscr{B} is

$$D = \left[[T(\vec{b}_1)]_{\mathscr{B}} [T(\vec{b}_2)]_{\mathscr{B}} \cdots [T(\vec{b}_n)]_{\mathscr{B}} \right]$$

Then, $A = PDP^{-1}$.

Example 1. (Example 6 in §3.4) Let T be the projection transformation onto a line L =Span $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ \mathbb{R}^3 . The matrix of T is $A = \frac{1}{14} \begin{bmatrix} 1 & 2 & 3\\ 2 & 4 & 6\\ 3 & 6 & 9 \end{bmatrix}$

(1)Find a basis $\mathscr{B} = \{\vec{b}_1 \ \vec{b}_2 \ \vec{b}_3\}$ for \mathbb{R}^3 such that the \mathscr{B} -matrix of the T is the diagonal matrix $D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}$. (2) Equivalently, find a matrix $B = [\vec{b}_1 \ \vec{b}_2 \ \vec{b}_3]$ and D such that $A = PDP^{-1}$.

Step 1. Compare the columns of *D*. It is equivalent to find independent vectors $\vec{b}_1, \vec{b}_2, \vec{b}_3$ and numbers d_1, d_2, d_3 such that

$$T(\vec{b}_1) = d_1(\vec{b}_1), \quad T(\vec{b}_2) = d_2(\vec{b}_2), \quad T(\vec{b}_2) = d_2(\vec{b}_2)$$

Step 2. Use the geometric properties of the transformation to find those vectors and numbers. (We will develop algebraic method to solve this systematically.)

We need to find vectors $\vec{b}_1, \vec{b}_2, \vec{b}_3$ such that the projection $\operatorname{proj}_L \vec{b}_i$ is the scalar product of \vec{b}_i . Let $\vec{b}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Then, $A\vec{b}_1 = 1\vec{b}_1$. So, $d_1 = 1$. Let $\vec{b}_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}$. Then, $A\vec{b}_2 = \vec{0} = 0\vec{b}_2$. So, $d_2 = 0$. Let $\vec{b}_1 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$. Then, $A\vec{b}_3 = \vec{0} = 0\vec{b}_3$. So, $d_3 = 0$.

The key is to solve $T(\vec{x}) = \lambda \vec{x}$ or equivalently $A\vec{x} = \lambda \vec{x}$.

2. Eigenvalues and Eigenvectors.

Consider a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ by matrix $T\vec{x} = A\vec{x}$.

Definition.

• An **eigenvector** of A is a nonzero n-dimensional vector \vec{x} such that

 $A\vec{x} = \lambda \vec{x}$

for some (possibly complex) scalar λ .

- An eigenvalue of A is a (possibly complex) scalar λ for which there exists a nonzero vector \vec{x} such that $A\vec{x} = \lambda \vec{x}$. We say that \vec{x} is an eigenvector corresponding to λ .
- A basis $\vec{b}_1, \ldots, \vec{b}_n$ of \mathbb{R}^n is called an **eigenbasis** for A if the vectors $\vec{b}_1, \ldots, \vec{b}_n$ are eigenvectors of A.

Example 2. Geometric meaning of eigenvalue and eigenvector. $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}, \vec{u} = \begin{bmatrix} -1 \\ 1 \end{bmatrix},$

 $A\vec{v} = \lambda \vec{v}$. Hence, $A^{k}\vec{v} = A^{k+}A\vec{v} = A^{k+}\lambda\vec{v} = \lambda A^{k+}\vec{v} = \dots = \lambda^{k}\vec{v}$ \vec{v} is an eigenvector of A^{k} corresponding to eigenvalue λ^{k}

Example 4. If \vec{v} is an eigenvector of an invertible matrix A corresponding to λ , is \vec{v} an eigenvector of A^{-1} ?

 $A\vec{v} = \lambda \vec{v}$. Hence, $A^{-1}A\vec{v} = A^{-1}\lambda \vec{v}$. So, $\frac{1}{\lambda}\vec{v} = A^{-1}\vec{v}$. So, \vec{v} an eigenvector of A^{-1} with eigenvalue $1/\lambda$.

Example 5. Consider the eigenvalue of a polynomial of A. For example, what is the eigenvalue of $3A^3 - 2A^2$?

Theorem.

The matrix A is diagonalizable if and only if A has an eigenbasis $\vec{b}_1, \ldots, \vec{b}_n$, i.e., n independent eigenvectors.

In this case $A = PDP^{-1}$ where $P = [\vec{b}_1 \dots \vec{b}_n]$; the diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors given by the columns of P.

Proof: We already verified that system of equations $A\vec{b}_1 = \lambda_1\vec{b}_1, \ A\vec{b}_2 = \lambda_2\vec{b}_2, \ \dots, \ A\vec{b}_n = \lambda_n\vec{b}_n$. is equivalent to matrix equation

$$AP = PD$$

where
$$P = [\vec{b}_1 \ \dots \ \vec{b}_n]$$
 and $D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$.

P is invertible if and only if $\{\vec{b}_1, \ldots, \vec{b}_n\}$ is a basis of \mathbb{R}^n . In this case, $A = PDP^{-1}$ and *A* is diagonalizable.

Example 6. Write down all matrices A, P and D in Example 1.

$$\begin{split} \vec{a}_{1} &= p e_{J} \vec{v}_{P} \vec{e}_{1}^{T} = \left(\frac{\vec{e}_{1} \vec{v}}{\vec{v}_{1} \vec{v}_{P}} \right) \vec{v}^{T} = \left(\frac{1}{144} \right) \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} \qquad T \left(\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} \right) = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} \\ \vec{a}_{D}^{T} &= p e_{J} \vec{e}_{D}^{T} = \frac{2}{144} \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} \qquad T \left(\begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix} \right) = o \begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix} \\ \vec{a}_{D}^{T} &= \frac{3}{144} \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} \qquad T \left(\begin{bmatrix} 3\\ 0\\ 1 \end{bmatrix} \right) = o \begin{bmatrix} 3\\ 0\\ 0 \end{bmatrix} \\ \vec{a}_{D}^{T} &= \begin{bmatrix} 1 & 2 & 3\\ 3 & 0 & -1 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \\ A &= PDP^{-1}. \end{split}$$

Example 7. Let *T* be the rotation through an angle of $\pi/2$ in the counterclock direction. So the matrix of *T* is $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Find all eigenvalues and eigenvectors of *A*. Is *A* diagonalizable?

Example 8. Find all possible real eigenvalues of an $n \times n$ orthogonal matrix.

$$||A\overline{x}|| = ||\overline{x}|| \quad \text{for all } \overline{x} \in \mathbb{R}^{n}$$
If \overline{v} is an eigenvector of A consespondily eigenvalue λ . then $A\overline{v} = \lambda \overline{v}$.
 $||\overline{v}|| = ||A\overline{v}'|| = ||A\overline{v}'|| = ||A|\overline{v}|| \implies |\lambda| = 1 \implies |\lambda| = 1$

Example 9. Which matrix has 0 as an eigenvalue?

$$= ||A\vec{x}|| = |\vec{x}|| \quad \text{for all } \vec{x} \in \mathbb{R}^{n}$$

If \vec{v} is an eigenvector of A consequently eigenvalue λ . then $A\vec{v} = \lambda\vec{v}$.
 $||\vec{v}|| = ||A\vec{v}'|| = |\lambda||\vec{v}|| = |\lambda||\vec{v}|| \implies |\lambda| = 1 \implies \lambda = \pm 1$

Proposition.

A has 0 as a eigenvalue if and only if A is not invertible.