- Instructor: He Wang Email: he.wang@northeastern.edu

1. Diagonalization

Let D be an diagonal matrix. The power D^{k} is easy to calculate. For example,

$$
D^{k}=\left[\begin{array}{cccc}
d_{1} & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 \\
0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & d_{4}
\end{array}\right]^{k}=\left[\begin{array}{cccc}
\left(d_{1}\right)^{k} & 0 & 0 & 0 \\
0 & \left(d_{2}\right)^{k} & 0 & 0 \\
0 & 0 & \left(d_{3}\right)^{k} & 0 \\
0 & 0 & 0 & \left(d_{4}\right)^{k}
\end{array}\right]
$$

Definition.

An $n \times n$ matrix A is said to be diagonalizable if it is similar to a diagonal matrix D, that is, if there exists an invertible matrix P such that $A=P D P^{-1}$.

Powers of a diagonalizable matrix A are also easy to calculate: $A^{k}=\left(P D P^{-1}\right)^{k}=\left(P D P^{-1}\right)\left(P D P^{-1}\right) \cdots\left(P D P^{-1}\right)=P D^{k} P^{-1}$

$$
A^{k}=P D^{k} P^{-1}
$$

We see that A^{k} is similar to the diagonal matrix D^{k}, and hence also diagonalizable.

Question:

1. Are all $n \times n$ matrices A diagonalizable?
2. If a matrix A is diagonalizable, how to find the invertible matrix P and the diagonal matrix D ? The answer for this question is called diagonalize matrix A.

Solve $A=P D P^{-1}$. That is $A P=P D$. More explicitly (when $n=3$)

$$
A\left[\begin{array}{lll}
\vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3}
\end{array}\right]\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]
$$

That is $\left[\begin{array}{lll}A \vec{b}_{1} & A \vec{b}_{2} & A \vec{b}_{3}\end{array}\right]=\left[\begin{array}{lll}d_{1} \vec{b}_{1} & d_{2} \vec{b}_{2} & d_{3} \vec{b}_{3}\end{array}\right]$
So, equivalently, we need to find numbers d_{1}, d_{2}, d_{3} and $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ satisfy $A \vec{b}_{1}=d_{1} \vec{b}_{1}, A \vec{b}_{2}=d_{2} \vec{b}_{2}, A \vec{b}_{3}=d_{3} \vec{b}_{3}$. They are the same equation:

$$
A \vec{x}=d \vec{x}
$$

Recall from $\S 3.4$ the meaning of similar matrices $A=P D P^{-1}$. (If you have not learned $\S 3.4$, you can skip this page.)

Let A be the matrix of a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Let $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis for \mathbb{R}^{n} and denote $P=\left[\vec{b}_{1} \ldots \vec{b}_{n}\right]$ the change of coordinate matrix. The matrix of T respect to basis \mathscr{B} is

$$
D=\left[\left[T\left(\vec{b}_{1}\right)\right]_{\mathscr{B}}\left[T\left(\vec{b}_{2}\right)\right]_{\mathscr{B}} \cdots\left[T\left(\vec{b}_{n}\right)\right]_{\mathscr{B}}\right]
$$

Then, $A=P D P^{-1}$.

Example 1. (Example 6 in $\S 3.4$) Let T be the projection transformation onto a line $L=$ $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\} \mathbb{R}^{3}$. The matrix of T is $A=\frac{1}{14}\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right]$
(1)Find a basis $\mathscr{B}=\left\{\begin{array}{lll}\vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3}\end{array}\right\}$ for \mathbb{R}^{3} such that the \mathscr{B}-matrix of the T is the diagonal matrix $D=\left[\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right]$. (2) Equivalently, find a matrix $B=\left[\begin{array}{lll}\vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3}\end{array}\right]$ and D such that $A=P D P^{-1}$.

Step 1. Compare the columns of D. It is equivalent to find independent vectors $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ and numbers d_{1}, d_{2}, d_{3} such that

$$
T\left(\vec{b}_{1}\right)=d_{1}\left(\vec{b}_{1}\right), \quad T\left(\vec{b}_{2}\right)=d_{2}\left(\vec{b}_{2}\right), \quad T\left(\vec{b}_{2}\right)=d_{2}\left(\vec{b}_{2}\right)
$$

Step 2. Use the geometric properties of the transformation to find those vectors and numbers. (We will develop algebraic method to solve this systematically.)

We need to find vectors $\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}$ such that the projection $\operatorname{proj}_{L} \vec{b}_{i}$ is the scalar product of \vec{b}_{i}.
Let $\vec{b}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Then, $A \vec{b}_{1}=1 \vec{b}_{1}$. So, $d_{1}=1$.
Let $\vec{b}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$. Then, $A \vec{b}_{2}=\overrightarrow{0}=0 \vec{b}_{2}$. So, $d_{2}=0$.
Let $\vec{b}_{1}=\left[\begin{array}{c}3 \\ 0 \\ -1\end{array}\right]$. Then, $A \vec{b}_{3}=\overrightarrow{0}=0 \vec{b}_{3}$. So, $d_{3}=0$.

The key is to solve $T(\vec{x})=\lambda \vec{x}$ or equivalently $A \vec{x}=\lambda \vec{x}$.

2. Eigenvalues and Eigenvectors.

Consider a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by matrix $T \vec{x}=A \vec{x}$.

Definition.

- An eigenvector of A is a nonzero n-dimensional vector \vec{x} such that

$$
A \vec{x}=\lambda \vec{x}
$$

for some (possibly complex) scalar λ.

- An eigenvalue of A is a (possibly complex) scalar λ for which there exists a nonzero vector \vec{x} such that $A \vec{x}=\lambda \vec{x}$. We say that \vec{x} is an eigenvector corresponding to λ.
- A basis $\vec{b}_{1}, \ldots, \vec{b}_{n}$ of \mathbb{R}^{n} is called an eigenbasis for A if the vectors $\vec{b}_{1}, \ldots, \vec{b}_{n}$ are eigenvectors of A.

Example 2. Geometric meaning of eigenvalue and eigenvector. $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right], \vec{u}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, $\vec{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$

$$
\begin{aligned}
& A \vec{u}=\left[\begin{array}{c}
-5 \\
-1
\end{array}\right] \\
& A \vec{v}=\left[\begin{array}{c}
4 \\
2
\end{array}\right]=2 \vec{v}
\end{aligned}
$$

Example 3. If \vec{v} is an eigenvector of A corresponding to λ, is \vec{v} an eigenvector of A^{k} ?

$$
\begin{aligned}
& A \vec{v}=\lambda \vec{v} \text {. Hence, } \\
& A^{k} \vec{v}=A^{k-1} A \vec{v}=A^{k-1} \lambda \vec{V}=\lambda A^{k-1} \vec{V}=\ldots=\lambda^{k} \vec{V} \\
& \left.\vec{V} \text { is an eigenvector of } A^{k} \text { conesponding to eyendue }\right)^{k}
\end{aligned}
$$

Example 4. If \vec{v} is an eigenvector of an invertible matrix A corresponding to λ, is \vec{v} an eigenvector of A^{-1} ?
$A \vec{v}=\lambda \vec{v}$. Hence, $A^{-1} A \vec{v}=A^{-1} \lambda \vec{v}$. So, $\frac{1}{\lambda} \vec{v}=A^{-1} \vec{v}$. So, \vec{v} an eigenvector of A^{-1} with eigenvalue $1 / \lambda$.

Example 5. Consider the eigenvalue of a polynomial of A. For example, what is the eigenvalue of $3 A^{3}-2 A^{2}$?

Theorem.

The matrix A is diagonalizable if and only if A has an eigenbasis $\vec{b}_{1}, \ldots, \vec{b}_{n}$, i.e., n independent eigenvectors.
In this case $A=P D P^{-1}$ where $P=\left[\begin{array}{lll}\vec{b}_{1} & \ldots & \vec{b}_{n}\end{array}\right]$; the diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors given by the columns of P.

Proof: We already verified that system of equations $A \vec{b}_{1}=\lambda_{1} \vec{b}_{1}, A \vec{b}_{2}=\lambda_{2} \vec{b}_{2}, \ldots$, $A \vec{b}_{n}=\lambda_{n} \vec{b}_{n}$. is equivalent to matrix equation

$$
A P=P D
$$

where $P=\left[\begin{array}{lll}\vec{b}_{1} & \ldots & \vec{b}_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}d_{1} & 0 & \cdots & 0 \\ 0 & d_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n}\end{array}\right]$.
P is invertible if and only if $\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ is a basis of \mathbb{R}^{n}. In this case, $A=P D P^{-1}$ and A is diagonalizable.

Example 6. Write down all matrices A, P and D in Example 1.

$$
\begin{aligned}
& \vec{a}_{1}=P g_{\vec{\nabla}} \vec{e}_{\vec{c}}=\left(\frac{\vec{e} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right) \vec{v}=\left(\frac{1}{14}\right)\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
\frac{1}{3} \\
3
\end{array}\right] \\
& \overrightarrow{a_{2}}=\operatorname{poj} \vec{\nabla} \overrightarrow{\vec{e}_{v}}=\frac{2}{14}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
& T\left(\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]\right)=0\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \\
& \vec{a}_{3}=\frac{3}{14}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
& T\left(\left[\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right)=0\left[\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right]\right.
\end{aligned}
$$

$A=\left[\begin{array}{lll}1 / 4 & 3 / 4 & 3 / 14 \\ 2 / 4 & 4 / 4 & 6 / 4 \\ 3 / 4 & 6 / 4 & 9 / 4\end{array}\right]$
$P=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 0 \\ 3 & 0 & -1\end{array}\right] \quad D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$A=P D P^{-1}$.

Example 7. Let T be the rotation through an angle of $\pi / 2$ in the counterclock direction. So the matrix of T is $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Find all eigenvalues and eigenvectors of A. Is A diagonalizable?

Rotation a vector of $\pi / 2$ counterclockwise an never be its sabre.
So, there is no eigenvectors.
So A is not diagonatizable.

Example 8. Find all possible real eigenvalues of an $n \times n$ orthogonal matrix.

$$
\|A \vec{x}\|=\|\vec{x}\| \text { for } d \| \vec{x} \in \mathbb{R}^{n}
$$

$$
\text { If } \vec{v} \text { is an ejenvector of } A \text { conespondiy ejegndule } \lambda \text {. then } A \vec{v}=\lambda \vec{v} \text {. }
$$

$$
\|\vec{V}\|=\|\vec{A} \vec{V}\|=\|\vec{v}\|=|\lambda\|\vec{V}\| \quad \Rightarrow \quad| \lambda \mid=1 \quad \Rightarrow \lambda= \pm 1
$$

Example 9. Which matrix has 0 as an eigenvalue?

$$
\begin{aligned}
& \|\vec{x}\|=\|\vec{x}\| \text { for al } \vec{x} \in \mathbb{R}^{n} \\
& \text { If } \vec{v} \text { is on ejpnectar of } A \text { conesponendy equndnel. then } A \vec{v}=\lambda \vec{v} \text {. } \\
& \|\vec{v}|=\|A \vec{v}\|=\|\vec{v}\|=|\lambda\|\vec{v}\| \quad \Rightarrow| \lambda|=1 \quad \Rightarrow \lambda= \pm 1
\end{aligned}
$$

Proposition.

A has 0 as a eigenvalue if and only if A is not invertible.

