• Instructor: He Wang Email: he.wang@northeastern.edu

Recall that the *determinant* of a 2×2 matrix is given by

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc.$$

We expand this definition to 1×1 matrices by setting

$$\det\left[a\right] = a.$$

For 1 and 2×2 matrices, we have the following property:

A is invertible if and only if det $A \neq 0$.

Goal: Define the determinant of an $n \times n$ matrix A with $n \geq 3$, such that A is invertible if and only if det $A \neq 0$.

Definition.

Let A be an $n \times n$ matrix with $n \ge 2$ and with (i, j)-th entry a_{ij} . Let A_{ij} be the $(n - 1) \times (n - 1)$ matrix obtained by deleting the *i*-th row and *j*-th column from A. Then the determinant of A denoted det A is defined as

Then the **determinant of** A, denoted det A, is defined as

$$\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{n+1} a_{1n} \det A_{1n}$$

This formula for det A is called the **first row cofactor expansion** formula for the determinant of A.

Example 1. $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

$\det(A) =$	$a_{11} \\ a_{21} \\ a_{31}$	$a_{12} \\ a_{22} \\ a_{32}$	$\begin{vmatrix} a_{13} \\ a_{23} \\ a_{33} \end{vmatrix} = a_{11}$	$\begin{vmatrix} a_{22} \\ a_{32} \end{vmatrix}$	$\begin{vmatrix} a_{23} \\ a_{33} \end{vmatrix}$	$-a_{12}$	$a_{21} \\ a_{31}$	$\begin{array}{c}a_{23}\\a_{33}\end{array}$	$+ a_{13}$	$a_{21} \\ a_{31}$	$\begin{vmatrix} a_{22} \\ a_{32} \end{vmatrix}$
-------------	------------------------------	------------------------------	---	--	--	-----------	--------------------	---	------------	--------------------	--

Theorem.

An $n \times n$ matrix A is invertible if and only if det $A \neq 0$.

Example 2. Find the determinant of $A = \begin{bmatrix} 0 & 4 & 2 \\ 5 & 2 & 2 \\ 0 & 2 & -1 \end{bmatrix}$. Is A invertible?

$$det A = \begin{vmatrix} 0 & 4 & 2 \\ 5 & 2 & 2 \\ 0 & 2 & -1 \end{vmatrix} = 0 \begin{vmatrix} 2 & 2 \\ 2 & -1 \end{vmatrix} - 4 \begin{vmatrix} 5 & 2 \\ 0 & 4 \end{vmatrix} + 2 \begin{vmatrix} 5 & 2 \\ 0 & 2 \end{vmatrix}$$
$$= -4(-5) + 2(10)$$
$$= 40 \qquad det A \neq 0 \implies A \text{ is invariable}.$$

Example 3. Find the determinant of $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \\ 5 & 6 & 7 \end{bmatrix}$. Is A invertible?

$$det A = 1 \begin{vmatrix} 0 & 4 \\ 6 & 7 \end{vmatrix} - 2 \begin{vmatrix} 0 & 4 \\ 5 & 7 \end{vmatrix} + 3 \begin{vmatrix} 0 & 0 \\ 5 & 6 \end{vmatrix} = -24 - 2(-20) + 3(0) = 16$$
$$det A \neq 0 \implies A \text{ is involvible}.$$

Definition.

Let A be an $n \times n$ matrix. Its (i, j)-th cofactor C_{ij} is defined as

$$C_{ij} = (-1)^{i+j} \cdot \det A_{ij}$$

where, as before, A_{ij} is the $(n-1) \times (n-1)$ matrix obtained from A by deleting its *i*-th row and *j*-th column.

Using cofactors, the first row cofactor expansion formula for the determinant of A can be rewritten as

$$\det A = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$

Theorem.

The determinant of an $n \times n$ matrix A can be computed via cofactor expansions across any row or down any column of A:

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$

These formulas are called the i-th row and j-th column cofactor expansions for det A, respectively.

Example 4. Redo Examples 1 and 2.

$$\frac{E_{x}(1)}{E_{x}(2)} det A = 5C_{21} = 5(-1)^{2+1} \begin{vmatrix} 4 & 2 \\ 2 & -1 \end{vmatrix} = 5(-1)(-8) = 40$$

$$\frac{E_{x}(2)}{E_{x}(2)} det A = 4C_{32} = 4(-1)^{3+2} \begin{vmatrix} 1 & 2 \\ 5 & 6 \end{vmatrix} = 4(-1)(-4) = 16$$

Example 5. Find the determinant of $A = \begin{bmatrix} 1 & 2 & 3 & 1.2 \\ 0 & 0 & 0 & 2 \\ 5 & 6 & 7 & \pi \\ 0 & 1 & 2 & \sqrt{2} \end{bmatrix}$

$$det A = 2(4)^{4+2} \begin{vmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 0 & 1 & 2 \end{vmatrix}$$
$$= 2\left(\begin{vmatrix} 6 & 7 \\ 1 & 2 \end{vmatrix} - 5 \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} \right)$$
$$= 2\left((12 - 7) - 5 \right)$$
$$= 2(0)$$
$$= 0$$
So *A* is not invertible

Recall the definition of lower triangular matrix. Similarly, we can define upper triangular matrix. An $n \times n$ matrix A is called triangular if it is either lower or upper triangular.

Theorem. [Determinants of Triangular Matrices]

Let A be an $n \times n$ triangular matrix, then det A equals the product of the diagonal entries of A:

$$\det A = a_{11} \times a_{22} \times \cdots \times a_{nn}.$$

Example 6. Find the determinant of
$$A = \begin{bmatrix} 2 & \sqrt{2} & 3 & 1.7 \\ 0 & 3 & 7 & 12 \\ 0 & 0 & 1 & \pi \\ 0 & 0 & 0 & 5 \end{bmatrix}$$
. Is A invertible?

det(A) = 2(3)(1)(5) = 30. So A is invertible.

Example 7. Find out for which value of λ the matrix $A - \lambda I$ is not invertible, where $A = \begin{bmatrix} 2 & \sqrt{2} & 1.7 \\ 0 & 3 & 12 \\ 0 & 0 & 5 \end{bmatrix}$

$$A - \lambda I = \begin{bmatrix} 2 & \sqrt{2} & 1.7 \\ 0 & 3 & 12 \\ 0 & 0 & 5 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} = \begin{bmatrix} 2 - \lambda & \sqrt{2} & 1.7 \\ 0 & 3 - \lambda & 12 \\ 0 & 0 & 5 - \lambda \end{bmatrix}$$
$$\begin{vmatrix} A - \lambda I \end{vmatrix} \begin{vmatrix} 2 - \lambda & \sqrt{2} & \sqrt{2} & 1.7 \\ 0 & 3 - \lambda & \sqrt{2} & \sqrt{2} & 1.7 \\ 0 & 0 & 5 - \lambda \end{vmatrix} = \begin{bmatrix} 2 - \lambda & \sqrt{2} & 1.7 \\ 0 & 3 - \lambda & 12 \\ 0 & 0 & 5 - \lambda \end{bmatrix}$$
$$= \begin{bmatrix} 2 - \lambda & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 0 & 3 - \lambda & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 0 & 0 & 5 - \lambda \end{bmatrix} = \begin{bmatrix} 2 - \lambda & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 0 & 3 - \lambda & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 0 & 0 & 5 - \lambda \end{bmatrix} = \begin{bmatrix} 2 - \lambda & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 0 & 3 - \lambda & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 0 & 0 & 5 - \lambda \end{bmatrix} = \begin{bmatrix} 2 - \lambda & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 0 & 0 & 5 - \lambda \end{bmatrix}$$

Example 8. If A is an $n \times n$ matrix. Consider the relation between det(kA), det (A^{-1}) , det (A^T) and det(A).

We consider this in the next section.

Determinant of a Block Matrix.

Theorem.
If
$$M = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$$
, then,
 $\det(M) = \det(A) \det(C)$.

No such formula for $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, in general.

Example 9.

$$M = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} = \begin{bmatrix} 1 & 2 & 11 & \sqrt{3} \\ 2 & 3 & \pi & 12 \\ 0 & 0 & 3 & 9 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

$$det M = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 3 & 8 \\ 1 & 4 \end{vmatrix}$$
$$= (-1)(3)$$
$$= -3$$