- Instructor: He Wang Email: he.wang@northeastern.edu

Recall that the determinant of a 2×2 matrix is given by

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

We expand this definition to 1×1 matrices by setting

$$
\operatorname{det}[a]=a
$$

For 1 and 2×2 matrices, we have the following property:

A is invertible if and only if $\operatorname{det} A \neq 0$.

Goal: Define the determinant of an $n \times n$ matrix A with $n \geq 3$, such that A is invertible if and only if $\operatorname{det} A \neq 0$.

Definition.

Let A be an $n \times n$ matrix with $n \geq 2$ and with (i, j)-th entry $a_{i j}$.
Let $A_{i j}$ be the $(n-1) \times(n-1)$ matrix obtained by deleting the i-th row and j-th column from A.
Then the determinant of A, denoted $\operatorname{det} A$, is defined as

$$
\operatorname{det} A=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+(-1)^{n+1} a_{1 n} \operatorname{det} A_{1 n}
$$

This formula for $\operatorname{det} A$ is called the first row cofactor expansion formula for the determinant of A.

Example 1. $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
$\operatorname{det}(A)=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$

Theorem.

An $n \times n$ matrix A is invertible if and only if $\operatorname{det} A \neq 0$.

Example 2. Find the determinant of $A=\left[\begin{array}{ccc}0 & 4 & 2 \\ 5 & 2 & 2 \\ 0 & 2 & -1\end{array}\right]$. Is A invertible?

$$
\begin{aligned}
\operatorname{det} A=\left|\begin{array}{ccc}
0 & 4 & 2 \\
5 & 2 & 2 \\
0 & 2 & -1
\end{array}\right| & =0\left|\begin{array}{cc}
2 & 2 \\
2 & -1
\end{array}\right|-4\left|\begin{array}{cc}
5 & 2 \\
0 & -1
\end{array}\right|+2\left|\begin{array}{ll}
5 & 2 \\
0 & 2
\end{array}\right| \\
& =-4(-5)+2(10) \\
& =40 \quad \operatorname{det} A \neq 0 \Rightarrow A \text { is invarible. }
\end{aligned}
$$

Example 3. Find the determinant of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 4 \\ 5 & 6 & 7\end{array}\right]$. Is A invertible?

$$
\begin{gathered}
\operatorname{det} A=1\left|\begin{array}{ll}
0 & 4 \\
6 & 7
\end{array}\right|-2\left|\begin{array}{ll}
0 & 4 \\
5 & 7
\end{array}\right|+3\left|\begin{array}{ll}
0 & 0 \\
5 & 6
\end{array}\right|=-24-2(-20)+3(0)=16 \\
\operatorname{det} A \neq 0 \Rightarrow A \text { is invertible. }
\end{gathered}
$$

Definition.

Let A be an $n \times n$ matrix. Its (i, j)-th cofactor $C_{i j}$ is defined as

$$
C_{i j}=(-1)^{i+j} \cdot \operatorname{det} A_{i j}
$$

where, as before, $A_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained from A by deleting its i-th row and j-th column.

Using cofactors, the first row cofactor expansion formula for the determinant of A can be rewritten as

$$
\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

Theorem.

The determinant of an $n \times n$ matrix A can be computed via cofactor expansions across any row or down any column of A :

$$
\begin{aligned}
\operatorname{det} A & =a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \\
\operatorname{det} A & =a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
\end{aligned}
$$

These formulas are called the i-th row and j-th column cofactor expansions for $\operatorname{det} A$, respectively.

Example 4. Redo Examples 1 and 2.

$$
\text { Ex 1 } \operatorname{det} A=5 C_{21}=5(-1)^{2+1}\left|\begin{array}{ll}
4 & 2 \\
2 & -1
\end{array}\right|=5(-1)(-8)=40
$$

$$
E \times 2 \quad \operatorname{det} A=4 C_{32}=4(-1)^{32}\left|1 \begin{array}{l}
1 \\
5
\end{array} \frac{6}{6}\right|=4(-1)(-4)=16
$$

Example 5. Find the determinant of $A=\left[\begin{array}{cccc}1 & 2 & 3 & 1.2 \\ 0 & 0 & 0 & 2 \\ 5 & 6 & 7 & \pi \\ 0 & 1 & 2 & \sqrt{2}\end{array}\right]$

$$
\left.\begin{array}{rl}
\operatorname{det} A & =2(-1)^{4+2}\left|\begin{array}{lll}
1 & 2 & 3 \\
5 & 6 & 7 \\
0 & 1 & 2
\end{array}\right| \\
& =2\left(\left|\begin{array}{ll}
6 & 7 \\
1 & 2
\end{array}\right|-5\left|\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right|\right) \\
& =2((12-7)-5
\end{array}\right)
$$

So, A is not invertible.

Recall the definition of lower triangular matrix. Similarly, we can define upper triangular matrix. An $n \times n$ matrix A is called triangular if it is either lower or upper
triangular.

Theorem. [Determinants of Triangular Matrices]

Let A be an $n \times n$ triangular matrix, then $\operatorname{det} A$ equals the product of the diagonal entries of A :

$$
\operatorname{det} A=a_{11} \times a_{22} \times \cdots \times a_{n n}
$$

Example 6. Find the determinant of $A=\left[\begin{array}{cccc}2 & \sqrt{2} & 3 & 1.7 \\ 0 & 3 & 7 & 12 \\ 0 & 0 & 1 & \pi \\ 0 & 0 & 0 & 5\end{array}\right]$. Is A invertible?

$$
\operatorname{det}(A)=2(3)(1)(5)=30 . \text { So } \mathrm{A} \text { is invertible. }
$$

Example 7. Find out for which value of λ the matrix $A-\lambda I$ is not invertible, where $A=\left[\begin{array}{ccc}2 & \sqrt{2} & 1.7 \\ 0 & 3 & 12 \\ 0 & 0 & 5\end{array}\right]$

$$
\begin{aligned}
& A-\lambda I=\left[\begin{array}{ccc}
2 & \sqrt{2} & 1.7 \\
0 & 3 & 12 \\
0 & 0 & 5
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]=\left[\begin{array}{ccc}
2-\lambda & \sqrt{2} & 1.7 \\
0 & 3-\lambda & 12 \\
0 & 0 & 5-\lambda
\end{array}\right] \\
& |A-\lambda I|=\left|\begin{array}{ccc}
2-\lambda & \sqrt{2} & 1.7 \\
0 & 3-\lambda & 12 \\
0 & 0 & 5-\lambda
\end{array}\right|=(2-\lambda)(3-\lambda)(5-\lambda)=0 \quad \Rightarrow \lambda=2,3,5
\end{aligned}
$$

Example 8. If A is an $n \times n$ matrix. Consider the relation between $\operatorname{det}(k A), \operatorname{det}\left(A^{-1}\right)$, $\operatorname{det}\left(A^{T}\right)$ and $\operatorname{det}(A)$.
We consider this in the next section.

Determinant of a Block Matrix.

Theorem.

$$
\text { If } M=\left[\begin{array}{cc}
A & B \\
0 & C
\end{array}\right] \text {, then, }
$$

$$
\operatorname{det}(M)=\operatorname{det}(A) \operatorname{det}(C)
$$

No such formula for $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, in general.

Example 9.

$$
M=\left[\begin{array}{cc}
A & B \\
0 & C
\end{array}\right]=\left[\begin{array}{cccc}
1 & 2 & 11 & \sqrt{3} \\
2 & 3 & \pi & 12 \\
0 & 0 & 3 & 9 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

$$
\begin{aligned}
d_{t \in M}= & =\left[\begin{array}{l}
2 \\
2
\end{array}|\cdot| \cdot\left|\begin{array}{l}
3 \\
4
\end{array}\right|\right. \\
& =(-1)(3) \\
& =-3
\end{aligned}
$$

